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ABSTRACT 

For an augmented reality application to be realistic, exact 

tracking of target objects is essential. However, recent mobile 

augmented reality applications such as location or recognition-

based applications lack realism in augmentation due to inexact 

tracking methods. Vision-based tracking is capable of being exact 

and robust, but in a mobile augmented reality system, the number 

of objects that can be augmented is far limited. In this paper, we 

propose a new framework that overcomes the limitations of the 

previous works. First, our framework is scalable to the number of 

objects being augmented. Second, our framework provides an 

improved and realistic augmentation by adopting a real-time 

accurate visual tracking method. To the best of our knowledge, 

there has been no system proposed successfully integrating both 

of these properties. To achieve scalability, the bag of visual words 

based recognition module with a large database runs on a remote 

server and the mobile phone tracks and augments the target object 

by itself. The server and mobile phone is connected by 

conventional Wi-Fi. Including network latency, our 

implementation takes 0.2 seconds for initiating an AR service on a 

10,000 object database, which is acceptable for a real-world 

augmented reality application. 
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1. Introduction 
Aided by the increasing popularity of smart phones, mobile 

augmented reality (AR) has received much more attention than 

ever before. For high quality AR, it is important to know the pose 

of the target object in every frame, and so tracking is essential. 

Early AR researches assumed enough computational power for 

fully utilizing heavy vision algorithms. These previous works 

succeeded in showing acceptable tracking performance for AR. 

However, these vision algorithms are not available in mobile 

devices due to their low resources and computational power.  For 

this reason, not until recently did real-world interactive mobile 

AR applications become available. However, developers for these 

particular AR applications chose to work on different domains 

such as recognition-based AR, or they chose to avoid directly 

augmenting the information on the real object as shown in 

location-based AR applications. On the one hand, these 

approaches can be evaluated as a good strategy since they roughly 

overcome the technical limitations and successfully provide an 

AR service. But on the other hand, they didn’t provide a realistic 

AR experience, which is what we are ultimately looking for. 

Fortunately, computational limitations on mobile devices have 

being reduced significantly recently. Embedded processors in the 

mobile phones have become much more powerful than previously. 

By redesigning or tuning PC-based vision algorithms for the 

mobile device environment, state-of-the art works on natural 

features such as SIFT and Ferns have been successively ported to 

the mobile platforms. The detection/tracking methods suited for 

mobile phones have been proposed and verified [Wagner et al. 

2008]. 

Some of the works adapting these new technologies have been 

released recently. [Wagner et al. 2008; Wagner et al. 2009] 

provides an elaborated level of AR adapting these finely adjusted 

vision algorithms. But still the authors only showed an 

augmenting capability for a small set of objects. To the best of our 

knowledge, there has not been any mobile augmented reality 

system proposed which is scalable in regard to the number of 

augmented objects. 

In this paper, we propose a new mobile augmented reality 

framework that provides an elaborated level of tracking by 

adopting recent mobile vision technologies and that is also 

scalable to the number of objects being augmented. We achieve 

these two goals via a scalable recognition module on the server 

side and by performing tracking on the mobile side. The 

information needed is sent over conventional Wi-Fi networks. In 

our implementation, a cold start of the AR service takes about 0.2 

seconds, which is acceptable for a real-time application. As for the 

bag of visual words based scalable recognition module used on 

server side, it is already verified to have stable performance up to 

1 million objects according to previous researches [Nister et al. 

2008; Chum et al. 2007]. 

The rest of the paper is organized as follows. In section 2, a 

quick overview of the overall framework is provided. In section 3, 

the server side scalable recognition module is described. In 

section 4, the mobile side detection and tracking algorithm is 

explained with detailed parameters. In section 5, the optimization 

we did for the mobile device programming is summarized. In 

section 6, experiments focused on a time interval is given. Lastly, 

the conclusion is provided in section 7. 
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2. Framework 
The framework is configured into two parts: the mobile phone 

and the server computer, both of which are connected through the 

network. A visual stream comes from the mobile phone camera 

and the user is required to select a specific region of interest on 

the mobile phone screen. After the user selects the region, the 

image information on that region is sent to the server and the 

recognition process is preceded on the server side. After the server 

finds a match, it sends back the corresponding tracking 

information including the initial homography, keypoint locations, 

description vectors, and the information to be augmented on. With 

the tracking information received, the mobile phone runs the 

detection process until it finds the target object. After succeeding 

in detection, the tracking is carried on. The overall framework is 

depicted in Figure 1. 

 

 

3. Server Side: Scalable Recognition  
The bag of visual words scheme is used for scalable recognition. 

Among its variation, we adopted the vocabulary tree [Nister et al. 

2008]. A major step in the bag of visual words is the quantization 

step which extracts representative data points called visual words 

from a large quantity of description vectors; this is an elaborate 

retrieval method that is accurate and fast. To extract the descriptor 

image features, SIFT [Lowe 2004] is used. 

3.1 Quantization 
The resulting description vectors from thousands of images are 

tremendously large. Therefore, storing and searching the entire 

vectors is not a viable option. To handle the large data efficiently, 

a clustering method is usually adopted. With a proper clustering 

method, the large database is summarized with a small number of 

clusters, and the representative data points of the clusters (usually 

the mean) are named visual words. 

Once the visual words are identified, the images in the database 

are summarized with the obtained visual words. An actual 

keypoint description on the image is replaced with a visual word 

for which the feature belongs. This process drastically reduces the 

size of data and eventually the search space in the retrieval 

process. For the vocabulary tree, the hierarchical clustering 

method is used. This method clusters data points using K-means 

clustering, and it does K-means clustering again on K result 

clusters from the previous clustering. This process is repeated for 

a specified number of iteration steps. Therefore in hierarchical 

clustering, K is the branch factor of the tree, and it needs another 

parameter for the number of iterations corresponding to the depth 

of the tree. For a vocabulary tree with K=6 and depth=6, 300k 

descriptors from 1000 images are summarized to 47k leaf nodes. 

As K-means clustering is sensible for an initial seed, it needs 

additional steps to distribute seeds uniformly and for verifying 

that the seeds were proper. In our implementation, we used the 

mean and the standard deviation of the cluster, and initial seeds 

are distributed centered on the mean and the standard deviation 

scale. The distance between seeds is also required to be farther 

than a certain threshold. As a verifying step, we checked that the 

number of data points assigned to the cluster was more than zero. 

3.2 Retrieval 
Scoring The appropriate weighting of tree nodes reduces the 

search space of tree nodes and this directly improves searching 

time and accuracy of the retrieval process. Tree nodes are 

weighted according to the traditional text retrieval TF-IDF (Term-

Frequency Inverse Document Frequency) scheme. For a visual 

word node i, its weight is defined as  
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where    is the number of features that visited the node, and    is 

the weight of the node. The weight is defined as 
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where    is the number of images that has at least one visual word 

at node i, and N is the total number of images. This weighting rule 

clearly reflects the TF-IDF scheme.    corresponds to the term 

frequency (TF) by being the number of visual words that occurred 

on an input image and   corresponds to the inverse document 

frequency (IDF) by being the inverse of the number of occurrence 

of the visual word in each image in the overall database. By 

multiplying the IDF to the TF, a vocabulary occurs frequently on 

the overall database and is treated insignificant by being assigned 

small weights. 

An image is described by the path down its entire description 

vectors by the vocabulary tree and the concatenating leaf node 

weightings following the above weighting rule. Then the 

similarity between the query image   and the database image   is 

calculated by the normalized difference: 
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For an efficient implementation, the inverted files at each leaf 

node store the term frequency of the vocabularies for each 

database image and pre-calculate the node weight from the large 

test dataset. For a query image, only those database images linked 

to an inverted file at the visited node are compared by the 

following equation 
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where   and   are normalized leaf node weightings for the query 

and the database image. Detailed proofs are given in [Nister et al. 

2008]. 

Figure 1. Framework overview 

 

 



Geometric matching As a post-processing step, PROSAC is 

proceeded to refine the result and find an exact matched region. 

The top score of three images is selected as a candidate and the 

one image that has the most inliers is chosen to be the retrieval 

image. Iteration steps for PROSAC is limited under 300 times for 

fast execution. 

4. Mobile Side: Detection and Tracking 
Once receiving the keypoint locations and the corresponding 

descriptions, the mobile side runs the detection and tracking by 

itself. The detection is carried on first, and if the detection result is 

fine, tracking is carried on repeatedly. For every frame after the 

tracking ends, the quality of the tracking is evaluated, and if its 

result is bad, detection is carried on again. 
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4.1 Detection 
Concerning the computational power and memory consumption 

of mobile phones, the Modified SIFT [Wagner et al. 2008] is 

selected as the mobile phone side detector. Modified-Fern was 

also a candidate, but as its resulting descriptor is rather large to be 

sent through the network, it is discarded for the sake of the overall 

fast response of the framework. In Mobile SIFT, the 

computationally intensive Difference of Gaussian and the Local 

min/max search are replaced with the FAST detector on an image 

pyramid. The image pyramid at level 5 with a scale ratio of 1 over 

root 2 is built and keypoints from each pyramid are extracted and 

projected onto the original image size. The maximum number of 

keypoints is limited up to 250 points to maintain computation 

speed. For a larger scale variation, the input image is also formed 

at image pyramid level 3 with half the scale. And this half scale is 

efficiently implemented with a subsample. 

For the descriptor, rather than the usual 128 dimension 

descriptor, a configuration of 36 dimensions of 4 orientation bin 

and 3x3 sub region descriptor is used. In Lowe’s original 

experiment, the usual 128 dimensional setting showed a 50% 

matching rate for 40,000 database keypoints and a 3x3 4 bin 

histogram setting showed 43%, and this is a quite good result for a 

1/4 computation. 

After putative matching, the outlier removal is carried on by 

300 PROSAC iteration steps. If the number of inliers for the 

homography exceeds a certain threshold, the homography is used 

in initiating the next step of the tracking procedure. 

4.2 Tracking 
Initiated with a homography from the detection phase, the 

purpose of the tracking is find the 6DOF pose of the target objects. 

To be robust and fast, the Coarse-to-fine matching [Klein and 

Murray 2007] is used. In the Coarse step, keyframe-based 

tracking is used. In the fine step, frame-to-frame tracking is used. 

The keyframe-based tracking is free from drifting but suffers from 

jittering whereas the frame-to-frame tracking is free from jittering 

but suffers from drifting. Using both together, these deficiencies 

of each method are complemented. To be more robust to a blur 

effect, the coarse step is carried on 160x120 projected keypoints. 

Working the coarse step at a higher level of the image gives a 

robust tracking capability on fast camera motions. 

Given previous keypoint locations from the detection/previous 

tracking result, the actual matching is done using a Normalized 

Cross Correlation (NCC) of an 8x8 patch. Forming a circle with a 

certain radius centered at the current keypoint, all the pixels inside 

the circle at the previous frame is searched. Patches need to 

approximate an affine warp and this is done like in [Klein and 

Murray 2007]. Given the matching result, a robust estimator is 

proceeded to estimate an accurate 6DOF pose. Estimation of the 

pose is obtained by minimizing a Tukey biweight objective 

function [Hartley and Zisserman 2003] of the re-projection error, 

iteratively. If the matching ratio of the fine step exceeded 0.5, it is 

evaluated as good quality and the next frame tracking is initiated. 

If not, the detection is prepared for the next frame. A detailed 

procedure with parameters is given in Figure 3. 
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Figure 2. Detection and Tracking 

 

 

Figure 3. Tracking procedure 

 

 



5. Optimization 
Fixed point conversion Normally mobile phones usually don’t 

support the floating point processing unit (FPU). In our 

configuration, floating point processing is emulated by software 

and is usually much slower than integer processing. Therefore, all 

the floating point computations are replaced with fixed point 

computations by pre-multiplying and using an integer data 

structure. For our implementation, the three digits after the 

decimal position were fine to use. 

Lookup tables For repeated, deterministic, and bounded output 

operations, these results are pre-calculated and stored in lookup 

tables for fast computation. In our implementation, the calculation 

of the image warping positions in small patches, the orientation, 

and the magnitude calculation of SIFT descriptors are boosted 

with lookup tables. 

Single Instruction and Multiple Data (SIMD) Recent mobile 

processors support SIMD operations. With SIMD operations, a 

further degree of exploiting parallelism is possible. In tracking, 

8x8 patch similarity calculations are boosted by SIMD operations, 

and as a result the overall process of tracking time is reduced by 

half. 

6. Experiment 
An experiment is carried out on an Android Nexus one with a 

1GHz snapdragon processor. The camera has an image size of 

320x240 pixels, gets frames at around 20Hz depending on the 

illumination conditions, and its network connection is IEE 802.1b 

100Mbps. The database has pictures of 10k music CD covers and 

10k corresponding music video scenes; it is used for correctly 

augmenting the music video scenes on the CD case covers. 

6.1 Initial start time interval  
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The initial start time interval, including the network send and 

receive time composition, is shown in Figure 4. The time spent to 

send a region of interest (ROI) through the network was 25 ms 

( 10 ms); recognition on a 10k database was up to 100 ms 

including the GPU version of the SIFT description. Tracking 

information receiving time was 25 ms ( 10 ms) and detection 

time was 50 ms ( 15 ms). The pure network overhead was 50 ms 

( 20 ms), which is almost equal to the time taken processing 

detection for one frame. Though the experiment was carried out 

with no network traffic, the send and receive data size is up to 

80Kb and only happens during user initialization; the influence 

from an external network condition is not expected to affect the 

system much. 

6.2 Overall performance time measure 

 

  

 

The overall time spent on a real use experiment is depicted on 

Figure 5. The horizontal axis is the number of frames and the 

vertical axis is the time spent on that frame in ms. For every 

reinitiallization of the AR service, the time for processing the 

frame is increased nearly 200 ms. As reinitialization by the user 

does not happen frequently, the latency from reinitialization 

would not much hurt the overall real-time performace of the 

system. Trailing peaks near 80 ms is due to internal garbage 

collection of the Android OS. Except for reinitialization, the 

average processing frame rate for 71 frames was 23.9Hz, which is 

faster than the mobile camera capture speed of 20Hz. 

7. Conclusion 
In this paper, we proposed a new mobile AR framework that 

provides an elaborate level of AR by natural feature tracking and 

that is also scalable to the number of objects to be augmented. We 

successfully integrated this scalable recognition technology based 

on a bag of visual words and the natural feature tracking on 

mobile phones through conventional Wi-Fi networks and proved 

that its performance is acceptable to real-world applications. In 

our research we remove the limitations on mobile AR coming 

from inexact tracking and make scalability possible. We expect 

that more high quality AR applications are created based on the 

presented techniques. 
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Figure 4. Time band of initial start time 

 

 

Figure 6. Augmentation of a music video on a CD cover 

 

 

Figure 5. Overall performance time 
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