
Scalable Recognition and Tracking

for Mobile Augmented Reality
Jaewon Ha*

KAIST

Kyusung Cho†

KAIST

Francisco A. Rojas♯

KAIST

H. S. Yang‡

KAIST

ABSTRACT

For an augmented reality application to be realistic, exact

tracking of target objects is essential. However, recent mobile

augmented reality applications such as location or recognition-

based applications lack realism in augmentation due to inexact

tracking methods. Vision-based tracking is capable of being exact

and robust, but in a mobile augmented reality system, the number

of objects that can be augmented is far limited. In this paper, we

propose a new framework that overcomes the limitations of the

previous works. First, our framework is scalable to the number of

objects being augmented. Second, our framework provides an

improved and realistic augmentation by adopting a real-time

accurate visual tracking method. To the best of our knowledge,

there has been no system proposed successfully integrating both

of these properties. To achieve scalability, the bag of visual words

based recognition module with a large database runs on a remote

server and the mobile phone tracks and augments the target object

by itself. The server and mobile phone is connected by

conventional Wi-Fi. Including network latency, our

implementation takes 0.2 seconds for initiating an AR service on a

10,000 object database, which is acceptable for a real-world

augmented reality application.

Keywords

Mobile augmented reality, mobile phones, scalable recognition,

visual detection and tracking.

1. Introduction
Aided by the increasing popularity of smart phones, mobile

augmented reality (AR) has received much more attention than

ever before. For high quality AR, it is important to know the pose

of the target object in every frame, and so tracking is essential.

Early AR researches assumed enough computational power for

fully utilizing heavy vision algorithms. These previous works

succeeded in showing acceptable tracking performance for AR.

However, these vision algorithms are not available in mobile

devices due to their low resources and computational power. For

this reason, not until recently did real-world interactive mobile

AR applications become available. However, developers for these

particular AR applications chose to work on different domains

such as recognition-based AR, or they chose to avoid directly

augmenting the information on the real object as shown in

location-based AR applications. On the one hand, these

approaches can be evaluated as a good strategy since they roughly

overcome the technical limitations and successfully provide an

AR service. But on the other hand, they didn’t provide a realistic

AR experience, which is what we are ultimately looking for.

Fortunately, computational limitations on mobile devices have

being reduced significantly recently. Embedded processors in the

mobile phones have become much more powerful than previously.

By redesigning or tuning PC-based vision algorithms for the

mobile device environment, state-of-the art works on natural

features such as SIFT and Ferns have been successively ported to

the mobile platforms. The detection/tracking methods suited for

mobile phones have been proposed and verified [Wagner et al.

2008].

Some of the works adapting these new technologies have been

released recently. [Wagner et al. 2008; Wagner et al. 2009]

provides an elaborated level of AR adapting these finely adjusted

vision algorithms. But still the authors only showed an

augmenting capability for a small set of objects. To the best of our

knowledge, there has not been any mobile augmented reality

system proposed which is scalable in regard to the number of

augmented objects.

In this paper, we propose a new mobile augmented reality

framework that provides an elaborated level of tracking by

adopting recent mobile vision technologies and that is also

scalable to the number of objects being augmented. We achieve

these two goals via a scalable recognition module on the server

side and by performing tracking on the mobile side. The

information needed is sent over conventional Wi-Fi networks. In

our implementation, a cold start of the AR service takes about 0.2

seconds, which is acceptable for a real-time application. As for the

bag of visual words based scalable recognition module used on

server side, it is already verified to have stable performance up to

1 million objects according to previous researches [Nister et al.

2008; Chum et al. 2007].

The rest of the paper is organized as follows. In section 2, a

quick overview of the overall framework is provided. In section 3,

the server side scalable recognition module is described. In

section 4, the mobile side detection and tracking algorithm is

explained with detailed parameters. In section 5, the optimization

we did for the mobile device programming is summarized. In

section 6, experiments focused on a time interval is given. Lastly,

the conclusion is provided in section 7.

* e-mail : hjw@paradise.kaist.ac.kr
† e-mail : qtboy@paradise.kaist.ac.kr
♯ e-mail : francis@paradise.kaist.ac.kr
‡ e-mail : hsyang@paradise.kaist.ac.kr

2. Framework
The framework is configured into two parts: the mobile phone

and the server computer, both of which are connected through the

network. A visual stream comes from the mobile phone camera

and the user is required to select a specific region of interest on

the mobile phone screen. After the user selects the region, the

image information on that region is sent to the server and the

recognition process is preceded on the server side. After the server

finds a match, it sends back the corresponding tracking

information including the initial homography, keypoint locations,

description vectors, and the information to be augmented on. With

the tracking information received, the mobile phone runs the

detection process until it finds the target object. After succeeding

in detection, the tracking is carried on. The overall framework is

depicted in Figure 1.

3. Server Side: Scalable Recognition
The bag of visual words scheme is used for scalable recognition.

Among its variation, we adopted the vocabulary tree [Nister et al.

2008]. A major step in the bag of visual words is the quantization

step which extracts representative data points called visual words

from a large quantity of description vectors; this is an elaborate

retrieval method that is accurate and fast. To extract the descriptor

image features, SIFT [Lowe 2004] is used.

3.1 Quantization
The resulting description vectors from thousands of images are

tremendously large. Therefore, storing and searching the entire

vectors is not a viable option. To handle the large data efficiently,

a clustering method is usually adopted. With a proper clustering

method, the large database is summarized with a small number of

clusters, and the representative data points of the clusters (usually

the mean) are named visual words.

Once the visual words are identified, the images in the database

are summarized with the obtained visual words. An actual

keypoint description on the image is replaced with a visual word

for which the feature belongs. This process drastically reduces the

size of data and eventually the search space in the retrieval

process. For the vocabulary tree, the hierarchical clustering

method is used. This method clusters data points using K-means

clustering, and it does K-means clustering again on K result

clusters from the previous clustering. This process is repeated for

a specified number of iteration steps. Therefore in hierarchical

clustering, K is the branch factor of the tree, and it needs another

parameter for the number of iterations corresponding to the depth

of the tree. For a vocabulary tree with K=6 and depth=6, 300k

descriptors from 1000 images are summarized to 47k leaf nodes.

As K-means clustering is sensible for an initial seed, it needs

additional steps to distribute seeds uniformly and for verifying

that the seeds were proper. In our implementation, we used the

mean and the standard deviation of the cluster, and initial seeds

are distributed centered on the mean and the standard deviation

scale. The distance between seeds is also required to be farther

than a certain threshold. As a verifying step, we checked that the

number of data points assigned to the cluster was more than zero.

3.2 Retrieval
Scoring The appropriate weighting of tree nodes reduces the

search space of tree nodes and this directly improves searching

time and accuracy of the retrieval process. Tree nodes are

weighted according to the traditional text retrieval TF-IDF (Term-

Frequency Inverse Document Frequency) scheme. For a visual

word node i, its weight is defined as

,iii wkn

where is the number of features that visited the node, and is

the weight of the node. The weight is defined as

,ln
i

i
N

N
w

where is the number of images that has at least one visual word

at node i, and N is the total number of images. This weighting rule

clearly reflects the TF-IDF scheme. corresponds to the term

frequency (TF) by being the number of visual words that occurred

on an input image and corresponds to the inverse document

frequency (IDF) by being the inverse of the number of occurrence

of the visual word in each image in the overall database. By

multiplying the IDF to the TF, a vocabulary occurs frequently on

the overall database and is treated insignificant by being assigned

small weights.

An image is described by the path down its entire description

vectors by the vocabulary tree and the concatenating leaf node

weightings following the above weighting rule. Then the

similarity between the query image and the database image is

calculated by the normalized difference:

.),(
d

d

q

q
dqs

For an efficient implementation, the inverted files at each leaf

node store the term frequency of the vocabularies for each

database image and pre-calculate the node weight from the large

test dataset. For a query image, only those database images linked

to an inverted file at the visited node are compared by the

following equation

,22
0,0|

2

2

ii dqi

iidqdq

where and are normalized leaf node weightings for the query

and the database image. Detailed proofs are given in [Nister et al.

2008].

Figure 1. Framework overview

Geometric matching As a post-processing step, PROSAC is

proceeded to refine the result and find an exact matched region.

The top score of three images is selected as a candidate and the

one image that has the most inliers is chosen to be the retrieval

image. Iteration steps for PROSAC is limited under 300 times for

fast execution.

4. Mobile Side: Detection and Tracking
Once receiving the keypoint locations and the corresponding

descriptions, the mobile side runs the detection and tracking by

itself. The detection is carried on first, and if the detection result is

fine, tracking is carried on repeatedly. For every frame after the

tracking ends, the quality of the tracking is evaluated, and if its

result is bad, detection is carried on again.

Start

Detection

Tracking

Quality

Measure

BadGood

Tracking information

from server

4.1 Detection
Concerning the computational power and memory consumption

of mobile phones, the Modified SIFT [Wagner et al. 2008] is

selected as the mobile phone side detector. Modified-Fern was

also a candidate, but as its resulting descriptor is rather large to be

sent through the network, it is discarded for the sake of the overall

fast response of the framework. In Mobile SIFT, the

computationally intensive Difference of Gaussian and the Local

min/max search are replaced with the FAST detector on an image

pyramid. The image pyramid at level 5 with a scale ratio of 1 over

root 2 is built and keypoints from each pyramid are extracted and

projected onto the original image size. The maximum number of

keypoints is limited up to 250 points to maintain computation

speed. For a larger scale variation, the input image is also formed

at image pyramid level 3 with half the scale. And this half scale is

efficiently implemented with a subsample.

For the descriptor, rather than the usual 128 dimension

descriptor, a configuration of 36 dimensions of 4 orientation bin

and 3x3 sub region descriptor is used. In Lowe’s original

experiment, the usual 128 dimensional setting showed a 50%

matching rate for 40,000 database keypoints and a 3x3 4 bin

histogram setting showed 43%, and this is a quite good result for a

1/4 computation.

After putative matching, the outlier removal is carried on by

300 PROSAC iteration steps. If the number of inliers for the

homography exceeds a certain threshold, the homography is used

in initiating the next step of the tracking procedure.

4.2 Tracking
Initiated with a homography from the detection phase, the

purpose of the tracking is find the 6DOF pose of the target objects.

To be robust and fast, the Coarse-to-fine matching [Klein and

Murray 2007] is used. In the Coarse step, keyframe-based

tracking is used. In the fine step, frame-to-frame tracking is used.

The keyframe-based tracking is free from drifting but suffers from

jittering whereas the frame-to-frame tracking is free from jittering

but suffers from drifting. Using both together, these deficiencies

of each method are complemented. To be more robust to a blur

effect, the coarse step is carried on 160x120 projected keypoints.

Working the coarse step at a higher level of the image gives a

robust tracking capability on fast camera motions.

Given previous keypoint locations from the detection/previous

tracking result, the actual matching is done using a Normalized

Cross Correlation (NCC) of an 8x8 patch. Forming a circle with a

certain radius centered at the current keypoint, all the pixels inside

the circle at the previous frame is searched. Patches need to

approximate an affine warp and this is done like in [Klein and

Murray 2007]. Given the matching result, a robust estimator is

proceeded to estimate an accurate 6DOF pose. Estimation of the

pose is obtained by minimizing a Tukey biweight objective

function [Hartley and Zisserman 2003] of the re-projection error,

iteratively. If the matching ratio of the fine step exceeded 0.5, it is

evaluated as good quality and the next frame tracking is initiated.

If not, the detection is prepared for the next frame. A detailed

procedure with parameters is given in Figure 3.

Extract 40 keypoints

and project to

160x120 image

Warp and Project

keyframe keypoints to

160x120 image

Select best NCC

matching w/ circle

10 pixel radius

Robust estimator

Tukey biweight fucntion

-Estimate: Warped KP

 -Measure: Matched KP

Extract 60 keypoint

from current frame

Select best NCC

matching circle w/

5 pixel radius

Robust estimator

Tukey biweight fucntion

-Estimate: Previous KP

-Measure: Matched KP

Initial Pose from detection

/ Previous pose result

Coarse Pose

result
Fine Pose Result

Coarse step

Fine step

Figure 2. Detection and Tracking

Figure 3. Tracking procedure

5. Optimization
Fixed point conversion Normally mobile phones usually don’t

support the floating point processing unit (FPU). In our

configuration, floating point processing is emulated by software

and is usually much slower than integer processing. Therefore, all

the floating point computations are replaced with fixed point

computations by pre-multiplying and using an integer data

structure. For our implementation, the three digits after the

decimal position were fine to use.

Lookup tables For repeated, deterministic, and bounded output

operations, these results are pre-calculated and stored in lookup

tables for fast computation. In our implementation, the calculation

of the image warping positions in small patches, the orientation,

and the magnitude calculation of SIFT descriptors are boosted

with lookup tables.

Single Instruction and Multiple Data (SIMD) Recent mobile

processors support SIMD operations. With SIMD operations, a

further degree of exploiting parallelism is possible. In tracking,

8x8 patch similarity calculations are boosted by SIMD operations,

and as a result the overall process of tracking time is reduced by

half.

6. Experiment
An experiment is carried out on an Android Nexus one with a

1GHz snapdragon processor. The camera has an image size of

320x240 pixels, gets frames at around 20Hz depending on the

illumination conditions, and its network connection is IEE 802.1b

100Mbps. The database has pictures of 10k music CD covers and

10k corresponding music video scenes; it is used for correctly

augmenting the music video scenes on the CD case covers.

6.1 Initial start time interval

Send
ROI

Recognition
Send

Tracking
info

DetectionGPU-SIFT

0(ms) 25 50 125 200150

The initial start time interval, including the network send and

receive time composition, is shown in Figure 4. The time spent to

send a region of interest (ROI) through the network was 25 ms

(10 ms); recognition on a 10k database was up to 100 ms

including the GPU version of the SIFT description. Tracking

information receiving time was 25 ms (10 ms) and detection

time was 50 ms (15 ms). The pure network overhead was 50 ms

(20 ms), which is almost equal to the time taken processing

detection for one frame. Though the experiment was carried out

with no network traffic, the send and receive data size is up to

80Kb and only happens during user initialization; the influence

from an external network condition is not expected to affect the

system much.

6.2 Overall performance time measure

The overall time spent on a real use experiment is depicted on

Figure 5. The horizontal axis is the number of frames and the

vertical axis is the time spent on that frame in ms. For every

reinitiallization of the AR service, the time for processing the

frame is increased nearly 200 ms. As reinitialization by the user

does not happen frequently, the latency from reinitialization

would not much hurt the overall real-time performace of the

system. Trailing peaks near 80 ms is due to internal garbage

collection of the Android OS. Except for reinitialization, the

average processing frame rate for 71 frames was 23.9Hz, which is

faster than the mobile camera capture speed of 20Hz.

7. Conclusion
In this paper, we proposed a new mobile AR framework that

provides an elaborate level of AR by natural feature tracking and

that is also scalable to the number of objects to be augmented. We

successfully integrated this scalable recognition technology based

on a bag of visual words and the natural feature tracking on

mobile phones through conventional Wi-Fi networks and proved

that its performance is acceptable to real-world applications. In

our research we remove the limitations on mobile AR coming

from inexact tracking and make scalability possible. We expect

that more high quality AR applications are created based on the

presented techniques.

8. ACKNOWLEDGMENTS
This research is jointly supported by the Ubiquitous Computing

and Network (UCN) Project and the Knowledge and Economy

Frontier R&D Program of the Ministry of Knowledge Economy

(MKE) in Korea as a result of the subproject UCN 10C2-J2-11T"

and ICC research grants funded by KAIST in Korea.

0

50

100

150

200

250

1 11 21 31 41 51 61 71

Figure 4. Time band of initial start time

Figure 6. Augmentation of a music video on a CD cover

Figure 5. Overall performance time

9. REFERENCES
CHUM, O., PHILBIN J., SIVIC J., ISARD M., ZISSERMAN A. 2007,

Total Recall - Automatic Query Expansion with a Generative

Feature Model for Object Retrieval IEEE International

Conference on Computer Vision, (Rio de Janeiro, Brazil,

October 14-20, 2007)

HARTLEY, R., ZISSERMAN, A. 2003, A. Multiple View Geometry,

and 2nd ed., Cambridge University Press, pp. 616-622.

KLEIN, G., MURRAY, D. 2007. Parallel Tracking and Mapping for

Small AR Workspaces 6th IEEE and ACM International

Symposium on Mixed and Augmented Reality. (Nara, Japan

13 - 16 November)

LOWE, D. 2004. Distinctive Image Features from Scale-Invariant

Keypoints International Journal of Computer Vision, vol 60,

no 2, pp 91 – 110

NISTER, D., STEWENIUS, H. 2008, Scalable recognition with

vocabulary tree. IEEE Computer Society Conference on

Computer Vision and Pattern Recognition (New-York, USA,

June. 17-22, 2006)

WAGNER, D., REITMAYR, G., MULLONI, A, DRUMMOND, T.,

SCHMALSTIEG, D. 2008. Real-Time Detection and Tracking

for Augmented Reality on Mobile Phones. IEEE

Transactions on Visualization and Computer graphics, vol

16, no. 3, pp 355-368.

WAGNER, D., SCHMALSTIEG, D., BISCHOF, H. 2009. Multiple

Target Detection and Tracking with Guaranteed Framerates

on Mobile Phones. IEEE International Symposium on Mixed

and Augmented Reality (Florida, USA, October 19-22, 2009)

