
Scalable Recognition of Daily Activities with

Wearable Sensors
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Abstract. High-level and longer-term activity recognition has great po-
tentials in areas such as medical diagnosis and human behavior modeling.
So far however, activity recognition research has mostly focused on low-
level and short-term activities. This paper therefore makes a first step
towards recognition of high-level activities as they occur in daily life. For
this we record a realistic 10h data set and analyze the performance of
four different algorithms for the recognition of both low- and high-level
activities. Here we focus on simple features and computationally effi-
cient algorithms as this facilitates the embedding and deployment of the
approach in real-world scenarios. While preliminary, the experimental re-
sults suggest that the recognition of high-level activities can be achieved
with the same algorithms as the recognition of low-level activities.

1 Introduction

Activity recognition has been an active area of research in recent years due to
its potential and usefulness for context-aware computing. Current approaches
typically rely on state-of-the-art machine learning ranging from unsupervised to
supervised techniques and from discriminant to generative models. Most research
however has focused on low-level and short-term activities. While this focus
has advanced the state-of-the-art significantly we strongly believe that activity
recognition should move forward to address the important and challenging area
of longer-term and high-level activity recognition. In many applications ranging
from medical diagnosis over elderly care to modeling of human behavior, the
analysis and recognition of high-level activities is an important component.

There are various reasons why only a few researchers have worked on longer-
term, complex and high-level activities (with some notable exceptions as dis-
cussed in Section 2). For example it is often argued that the recognition of
low-level activities is a prerequisite to recognize more complex and high-level
activities. Besides being tedious and time-consuming, the recording of high-level
activities is a non-trivial task, as the data should be as realistic and representa-
tive as possible. So fundamental problems such as the inherent difficulties and
the large variability as well as more practical reasons seem to have prevented
most researchers to address the recognition of complex and high-level activities.



The explicit goal of our research is to enable the recognition of longer-term
and high-level activities. Therefore, an essential first step is to record an interest-
ing and realistic dataset of high-level activities. As we are interested in long-term
activities it is essential to use long-term recordings which is why this papers uses
over 10h worth of data. The paper then compares four algorithms both for the
recognition of low-level activities as well as high-level activities. For each of the
algorithms, we analyze and discuss different parameters such as feature length
and sensor placement. The results suggest that the recognition of high-level ac-
tivities may be achievable with the same algorithms as for low-level activities.
In particular, our results indicate that recognition of high-level activities can be
achieved using features computed from raw sensor data alone, without building
up any intermediate representation such as a grammar of low-level activities.

Let us briefly define – for the purpose of this paper – the difference between
low-level and high-level activities. Low-level activities are e.g. walking, sitting,

standing, hoovering, eating, washing dishes, etc which typically last between 10s
of seconds to several minutes. High-level activities, on the other hand, are longer-
term as e.g. cleaning the house, which will typically last more than 10s of minutes
and could last as long as a few hours.

The main contributions of the paper are as follows. First, the results of our
experiments suggest that today’s activity recognition algorithms are quite capa-
ble to address the problem of high-level activity recognition. Second, we record
and provide an interesting and realistic dataset of high-level activities which
we plan to make publicly available upon publication of this paper. Third, we
analyze and compare different algorithms for the recognition of low-level and
high-level activities. Fourth, we systematically analyze important parameters
such as sensor placement, feature length and classification window.

The paper is structured as follows: In the next section we will put our work
into context by discussing related work. In Section 3, we introduce the dataset
and hardware for our experiments. Section 4 presents the algorithms we use for
recognition of both high- and low-level activities. Sections 5 and 6 report on
the results for low- and high-level activities, respectively. Section 7 presents the
summary and conclusion.

2 Related Work

Current research in activity recognition from wearable sensors covers a wide
range of topics, with research groups focusing on topics such as the recognition
of activities of daily living (ADLs) in the context of healthcare and elderly care
(e.g. [1]), automated discovery of activity primitives in unlabeled data (e.g. [2]),
semi- or unsupervised learning of activities (e.g. [3, 4]), or the combination of
several sensor modalities to improve recognition performance (e.g. [5, 6]). The
majority of this work is concerned with single activities over relatively short
timescales, ranging from limb movements in dumbbell exercises [2] over postures
and modes of ambulation such as sitting, standing and walking [7, 8], to house-
hold activities such as making tea, dusting, cleaning the windows or taking a



shower [6, 9]. To our knowledge, little work has been done in using wearable
sensors to recognize activities on larger time scales, i.e. by recognizing higher-
level scenes such as cleaning the house or going shopping. A notable exception is
the work by Clarkson et al. [10], who used wearable vision and audio sensors to
recognize scenes such as a user visiting a supermarket or a video store. However,
since cameras and microphones are considered intrusive by many people, such
an approach is unlikely to be adopted in everyday life. There has been work
in identifying daily routines in the lives of users (e.g. [11]) or inferring a user’s
high-level intentions during his daily movements through urban environments
(e.g., [12–14]). However, these works mainly focus on the location of the user or
have a different understanding of the term ’high-level’, more referring to a user’s
abstract goals in terms of traveling destinations than to a collection of related
low-level activities. On a smaller scale, [6] proposed to break down activities
such as cleaning the windows into small movements called actions, such as wipe

horizontally and wipe vertically. In this work we follow a different approach, by
summarizing a collection of activities into scenes measured in hours rather than
in minutes.

3 Experimental Setup

An important first step towards the recognition of high-level activities is a realis-
tic and representative recording of sensor-data. We formulated four requirements
and considerations as the basis of our data recording. First, as the primary aim
is the recognition of high-level activities, we explicitly started with the recording
of such activities and later defined, named and annotated those low-level activ-
ities that occurred and were performed during these high-level activities. As we
will see below, this leads to quite a different set of low-level activities than one
may obtain when starting from low-level activities. Second, the recording should
be as realistic as possible so that the activities should be performed ”in the
field” – that is in an unconstrained and natural setting – and not in a laboratory
or staged setting. Third, the usefulness and the usability of high-level activity
recognition strongly depends on the price and form-factor of the final device.
Therefore we decided to keep the algorithms, features and the sensor-platform
as simple and power-efficient as possible so that the embedding into a simple
self-contained device is feasible in the future. Forth, we decided to start with the
recording of data for a single user, as our primary aim in this paper is to ana-
lyze and show the feasibility of high-level activity recognition first. Even though
that might seem like a limitation, we rather expect that the execution of high-
level activities varies greatly between individuals so that one might need to use
a personalized device. If this holds true or one can enable person-independent
high-level activity recognition remains an open research question and is beyond
the scope of this paper.

One requirement formulated above was to base our recognition on simple
sensors and easy-to-compute features which is why we decided to use the mean
and variance of acceleration signals. Accelerometers are especially appealing in



this context, since they are cheap and can be increasingly found in everyday
objects such as mobile phones, cameras, wrist watches and even shoes. The use
of simple features for recognition would allow the computation to take place
online on a miniature mobile device without draining the battery or slowing
down other applications. Computing the features on the device and discarding
the raw signals can also help to save memory and allow for longer recordings.

Dataset. During the recordings the user was wearing three sensors. One sensor
was attached to the right wrist, one to the righthand side of the hip, and one to
the right thigh, as illustrated in Figure 3(a). The ground truth labels were mainly
added and edited offline, using a separate video recording (from a passively
mounted video-camera used during the housework and morning scenes) and
some optional online annotations from a PDA.

The dataset consists of three different high-level activities or scenes per-
formed by one user. The first scene consists of a typical morning routine one
might perform before going to work, which, for one of the recordings, looked
as follows (see Figure 1 for the corresponding ground truth annotation). After
some time of sleeping, the user gets up, walks to the bathroom, uses the toilet
and brushes his teeth. After having breakfast, he leaves the house and drives
to work by car. The second scene is a shopping scenario which might look as
follows: after working at the computer for some time, the user walks to his car
and drives to a nearby shopping center, buys groceries and heads back in his
car. In the third scene, the user does some housework after getting up. He might
first brush his teeth and have some breakfast, may then wash the dishes, hoover
his apartment and iron some clothes, and eventually walk out of the house.

Each scene was recorded four times, on different days and in a natural envi-
ronment, i.e. at the user’s home and in a nearby supermarket. The scenes were
loosely defined by the fact that each activity should at least occur once in each
instance. The length of the scenes varies between 40 and 80 minutes; the total
length of the data is 621 minutes. Figure 1 shows the ground truth for one in-
stance of each scene, and Figure 2 gives an overview of all activities. The scenes
consist of 15 different activities (plus one garbage class for unlabeled data), some
of which are shared between two or three scenes. For evaluation, we created four
sets, each consisting of three concatenated scenes. We used these sets to perform
a 4-fold leave-one-out crossvalidation on the data.

Hardware. Figure 3(b) shows the sensor platform that was used for recording
the data for our experiments [15]. It features a 2D accelerometer (ADXL202JE)
and nine binary tilt switches for sensing motion and orientation of the user. The
sensor board is stacked onto a BSN node [16] with 512 kb of EEPROM storage
for logging sensor data, followed by a third board for the power supply.

Feature Computation. During recordings, the platform stores all sensor data
on the EEPROM storage, from which it can later be retrieved via an rs232
connection. As we aimed for recordings of several hours, the limiting factor for
our experiments was the size of the 512 kb on-board memory rather than battery
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Fig. 1. Ground truth for recordings of the three scenes Housework, Morning and Shop-

ping. Each scene was performed four times by the user, here we show only one instance
of each scene.

lifetime. To save memory, we compute and store only the mean and variance of
the acceleration signal at 2 Hz and discard the raw (80 Hz) acceleration data.
This allows us to record about five hours of sensor data on the chip. The next
generation of the platform will have a larger on-board memory and allow for
recordings of several days or even weeks.

4 Algorithms

We use four different approaches for recognition of activities – three of them are
based on a discrete representation that we obtain by clustering the sensor data,
and one approach is based on training HMMs on continuous data. All approaches
have in common that they use the mean and variance of the acceleration signal
over a sliding window as the underlying features. These features are cheap to
compute and are known to yield high recognition rates in settings comparable
to ours (e.g. [8, 17–19]).

Related work has shown that it is possible to recognize movements or activi-
ties based on low dimensional models learned in a semi- or unsupervised fashion
(e.g., [2, 19]). Such models can also be thought of as an alphabet of symbols,
a vocabulary in which activities are formulated as ’sentences’. Compositions of
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Highlevel Activities Lowlevel Activities

Preparing for Work (unlabeled) walking [a, b]

Going Shopping brushing teeth [a, c] working at computer [b]

Doing Housework taking a shower [a] waiting in line in a shop [b]

sitting [a] strolling through a shop [b]

driving car [a, b] hoovering [c]

eating at table [a,c] ironing [c]

using the toilet [a] preparing lunch [c]

sleeping [a] washing the dishes [c]

Fig. 2. Overview of the low- and high-level activities in the recorded dataset. Each
high-level activity consists of a set of low-level activities, as indicated in brackets.

(a) (b)

Fig. 3. Left: User wearing sensors on wrist, hip and thigh. Right: The sensor platform,
consisting of the power supply (bottom), the BSN node for logging (middle) and the
sensor board (top).

such sentences could later serve as a tool for recognizing more abstract and high-
level behavior. The first three of the following approaches are inspired by this
idea, but as we do not assume that human motion follows a strict grammar, we
only consider the occurrences of symbols over intervals, without modeling their
temporal order. We use k-means clustering as a simple yet effective unsupervised
method to map features to a set of discrete symbols, i.e. to one of the k clus-
ter centers. We represent each feature by the closest cluster center. As a result,
the input data is transformed into a one-dimensional sequence of cluster assign-
ments. Based on this representation, we employ three different learning methods
which we describe in the following. The fourth method is based on HMMs and
uses a vector of mean and variance values as features. Figure 4 illustrates the
different representations we use for recognition.
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Fig. 4. Examples of the different representations used for recognition. From top to
bottom: ground truth; features (mean & variance over 4 sec); cluster assignments (each
feature is assigned to one of k=100 clusters); histograms of cluster assignments (over
windows of 480 samples).

K-means. As a baseline method, we label each cluster with the activity that
occurs most often among the training samples belonging to the cluster. Classifi-
cation is then performed by assigning to each test sample the label of the closest
cluster center. During experiments we vary the size of k and the length of the
window over which the features are computed.

Occurrence Statistics + NN. In this approach, rather than using individual
symbols as features, we compute histograms of cluster assignments over a sliding
window of the training sequence. Each histogram is labeled with the activity that
occurs most often in the window of samples that it covers. For evaluation, we
perform a nearest neighbor (NN) classification on the histograms computed from
a test sequence.

Occurrence Statistics + SVM. This approach is also based on histograms of
cluster assignments. However, instead of using a nearest neighbor classifier, we
train a support vector machine (SVM) using the histograms as features.

HMMs. The fourth approach is based on Hidden Markov Models (HMMs).
HMMs belong to the class of generative statistical signal models, and they have
been successfully used in activity recognition tasks before (e.g. [20, 10, 21]). They



lend themselves to a hierarchical classifier design, which makes them interesting
candidates for modelling activities on different levels of abstraction.

As for the first three approaches, we use the mean and variance of the accel-
eration signal over a sliding window as features. We then partition the data into
N equal parts and train a separate HMM on each part. We use left-right models
with one gaussian per state, and we vary the number of states in our experiments.
In order to assign activity labels to the models, we use a sliding window over the
features as observation sequence, and compute the likelihood of the window for
each of the N models. The model with the highest likelihood is then assigned
the label of the activity that occurs most often in the window. Classification is
performed similarly, i.e. by computing the likelihood of each model over a sliding
window starting at a certain sample, and subsequently assigning to the sample
the label of the model with the highest likelihood.

5 Low-level Activities

In this section we report on the performance of our proposed approaches with
respect to the fifteen low-level activities listed in Figure 2. As mentioned earlier,
the definition of those low-level activities came after the recording of the high-
level activities. That way, a somewhat obvious but important observation is that
the definition of low-level activities is not as well-defined as one might expect.
E.g., for the following activities, it is not clear if they belong to the same or
to different low-level activities: walking down a corridor vs. walking in a super-

market while collecting items; sitting in a car vs. sitting at a table while eating

vs. sitting on the toilet vs. sitting at a desk and working on a computer ; etc. It
should be clear that this is not simply a question of a hierarchical and temporal
decomposition of concurrent activities but that this is rather an inherent diffi-
culty linked to the context of the particular activity (e.g. sitting on the toilet vs.
sitting at a table). So we decided to define the low-level activities within each
high-level activity as they occurred within the context of the high-level activity.
That way we have a range of activities which occur across multiple high-level
activities such as walking, eating at table and brushing teeth and others which
are more specific such as driving a car or strolling through a shop.

Based on these definitions of low-level activities, this section compares he
recognition performance of our four approaches. For each of the algorithms we
also identify and discuss suitable parameters such as the number of clusters, the
length of the feature window, and also appropriate on-body locations for the
sensors.

K-means. Figure 5(a) shows the accuracy1 for different numbers k of clusters
and different window lengths for the features. One can observe that values of k

below 50 have a negative impact on the recognition performance. For values of
k >= 50, accuracy lies roughly between 60 and 70%. The best result of 69,4% is

1 we use the term accuracy to refer to the number of correctly classified samples
divided by the number of all samples
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Fig. 5. Accuracy of classification for low-level activities; using assignments to cluster
centers as features (left) vs. using histograms of such assignments in combination with
nearest neighbor classification (right).

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 Sum Recall

1 unlabeled 1314 148 188 64 567 136 81 103 540 85 10 428 317 993 707 158 5839 22.5%

2 brush teeth 146 1258 310 0 0 0 0 0 9 0 16 0 71 302 2 51 2165 58.1%

3 shower 83 249 1710 0 0 13 17 0 58 0 0 47 54 270 40 70 2611 65.5%

4 sit 287 4 6 684 424 168 267 5 68 19 0 49 7 26 19 0 2033 33.6%

5 drive car 334 0 0 343 9743 301 84 26 62 0 0 73 0 0 0 0 10966 88.8%

6 eat 192 5 21 127 938 4253 26 11 42 0 0 25 2 3 21 13 5679 74.9%

7 use toilet 83 14 46 41 324 106 224 7 14 16 0 0 12 53 4 0 944 23.7%

8 sleep 260 14 21 45 116 34 0 7016 111 36 0 55 0 0 10 22 7740 90.6%

9 walk 614 12 105 29 66 0 7 0 8988 0 0 1285 139 153 32 40 11470 78.4%

10 work at comp. 99 0 3 22 52 35 15 36 26 1325 0 24 9 21 21 0 1688 78.5%

11 stand at cashier 14 0 0 0 0 0 0 0 0 0 798 717 23 145 92 15 1804 44.2%

12 walk in shop 193 14 37 7 2 0 0 0 836 0 297 3260 109 201 342 14 5312 61.4%

13 hoover 74 44 74 0 0 0 0 0 128 0 0 135 785 456 66 149 1911 41.1%

14 iron 122 76 155 0 0 0 0 0 38 0 162 53 267 7009 438 263 8583 81.7%

15 prep. lunch 331 4 2 0 0 20 0 0 14 0 37 349 49 499 731 95 2131 34.3%

16 wash dishes 240 29 54 13 0 0 0 0 11 0 3 37 23 350 255 2554 3569 71.6%

Sum 4386 1871 2732 1375 12232 5066 721 7204 10945 1481 1323 6537 1867 10481 2780 3444 74445

Precision 30.0% 67.2% 62.6% 49.7% 79.7% 84.0% 31.1% 97.4% 82.1% 89.5% 60.3% 49.9% 42.0% 66.9% 26.3% 74.2%
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Fig. 6. Aggregate confusion matrix for the best parameter combination when using
k-means cluster centers as features. k = 500, mean & var computed over 64 seconds,
shift = 0.5 seconds. Overall accuracy is 69%.

obtained for k = 500 and a feature length of 64 seconds. Surprisingly, the best
results are obtained for relatively long window lengths. Lengths between 16 and
256 seconds perform best, and there is a visible drop in performance for shorter
and longer window lengths. Figure 6 shows the confusion matrix for the best
parameter combination. One can clearly see that the recognition performance
varies strongly between the different activities. Seven of the 15 activities have
recall or precision values above 70%, the best being sleeping (97.4/90.6), working

at the computer (89.9/78.5), walking (82.1/78.4) and driving car (79.7/88.8).
During four activities the user was sitting (sitting, driving car, eating at table,

using the toilet), and from Figure 6 one can see that these activities are often
confused with each other during classification.



1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 Sum Recall

1 unlabeled 79 79 24 0 7 4 34 50 53 0 0 0 10 208 11 66 625 12.6%

2 brush teeth 73 142 86 0 0 8 8 1 0 0 0 3 0 0 0 59 380 37.4%

3 shower 0 0 558 0 0 0 0 0 0 0 0 0 0 0 0 3 561 99.5%

4 sit 0 0 0 0 67 0 68 0 26 0 0 0 0 0 27 0 188 0.0%

5 drive car 0 0 0 0 2134 0 0 0 102 0 0 54 0 0 0 0 2290 93.2%

6 eat 0 10 13 0 104 1033 25 0 0 0 0 47 5 0 11 23 1271 81.3%

7 use toilet 0 81 5 0 71 28 26 10 13 0 0 0 0 0 0 0 234 11.1%

8 sleep 15 26 0 0 0 4 7 1498 7 0 0 0 0 0 0 0 1557 96.2%

9 walk 46 0 6 0 90 0 17 7 1632 18 0 303 10 69 0 3 2201 74.1%

10 work at comp. 0 0 0 0 127 0 0 0 17 180 0 0 0 0 0 0 324 55.6%

11 stand at cashier 0 0 0 0 0 0 0 0 3 0 125 120 0 0 139 0 387 32.3%

12 walk in shop 0 0 0 0 23 0 0 0 52 0 60 886 0 0 75 0 1096 80.8%

13 hoover 10 0 0 0 0 0 0 0 0 0 0 0 365 8 10 21 414 88.2%

14 iron 0 0 0 0 0 10 0 0 10 0 0 0 0 1676 45 10 1751 95.7%

15 prep. lunch 0 0 8 68 0 17 30 0 5 0 30 53 13 14 156 109 503 31.0%

16 wash dishes 0 0 12 0 0 17 0 0 6 0 0 14 6 0 0 715 770 92.9%

Sum 223 338 712 68 2623 1121 215 1566 1926 198 215 1480 409 1975 474 1009 14552

Precision 35.4% 42.0% 78.4% 0.0% 81.4% 92.1% 12.1% 95.7% 84.7% 90.9% 58.1% 59.9% 89.2% 84.9% 32.9% 70.9%
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Fig. 7. Aggregate confusion matrix for the best parameter combination when using
histograms of cluster centers as features. k = 100, histogram windows over 480 features
(about 4 min.) shifted by 5 features each, mean & var computed over 4 sec., shift =
0.5 seconds. Overall accuracy is 77%.

Occurrence Statistics + NN. Figure 5(b) shows the recognition results for the
histogram-based approach combined with a nearest neighbor classifier. We vary
the number of clusters and the length of the histogram windows (the windows
are always shifted by 5 features at a time). The underlying mean and variance
features are computed over windows of 4 seconds with a shift of 0.5 seconds (in
contrast to the k-means approach, we observed that small feature windows per-
formed better here). The highest accuracy of 77% is obtained for k = 100 and a
histogram window of 480 samples, covering about 4 minutes of data. For larger
histogram windows the accuracy visibly decreases. Similarly to the k-means re-
sults, values of k below 50 lead to a sharp drop in performance, implying that too
much information is lost from the discretization. Figure 7 shows the confusion
matrix for the best parameter settings. Except for the activities taking a shower,
sitting, using the toilet and washing the dishes, the precision increases for all ac-
tivities compared to the previous approach. Notably, the confusion between the
activities ironing and hoovering is much lower in this approach. The overall gain
in accuracy of 8% indicates that the use of histograms of symbols rather than
individual symbols does indeed help to improve recognition performance.

Occurrence Statistics + SVM. When using an SVM for classification in combina-
tion with the histogram features, the recognition results can be slightly improved
compared to the nearest neighbor approach. Figure 8(a) shows the accuracy for
different values of k and different window lengths for the histograms. The best
result of 78% is obtained for k = 50 and a histogram window of 480 samples,
covering about 4 minutes of data. One can observe that accuracy decreases with
higher number of clusters and smaller window lengths. For window lengths be-
tween 240 and 960 samples, corresponding to about 2 to 8 minutes of data, and
values of k between 50 and 200, we obtain the highest accuracies.

HMMs. Figure 8(b) shows recognition results for the HMM approach. We vary
the feature length and the number of models N ; in this particular example,
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Fig. 8. Accuracy of classification for low-level activities; using histograms of cluster
assignments in combination with an SVM (left) vs. using HMMs (right).

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 Sum Recall

1 unlabeled 288 337 654 849 323 497 533 49 879 458 65 833 103 485 151 98 6602 4.4%

2 brush teeth 0 1565 32 77 21 32 46 0 20 32 0 0 0 159 183 0 2167 72.2%

3 hoover 0 75 1070 523 0 33 32 0 120 50 0 0 0 0 0 0 1903 56.2%

4 iron 0 0 182 6732 1211 41 0 0 117 166 0 0 0 0 130 0 8579 78.5%

5 prep. lunch 0 0 0 365 927 105 27 0 131 162 66 35 130 33 54 33 2068 44.8%

6 sit 10 81 0 61 142 577 84 13 273 212 33 257 0 0 0 196 1939 29.8%

7 eat 0 0 20 43 70 80 3615 0 130 252 0 1327 0 33 19 32 5621 64.3%

8 sleep 533 16 0 0 11 283 29 6638 56 0 33 127 0 0 0 65 7791 85.2%

9 walk 33 130 196 145 7 463 310 0 8399 171 0 493 13 903 0 33 11296 74.4%

10 wash dishes 0 9 0 167 98 69 206 0 2 2740 0 0 0 0 262 0 3553 77.1%

11 work at comp. 0 0 0 0 0 65 24 0 178 0 1307 33 0 86 0 0 1693 77.2%

12 drive car 0 0 0 0 0 99 524 0 440 0 33 9670 0 33 0 98 10897 88.7%

13 stand at 99 0 0 0 200 0 0 0 0 0 0 0 1285 212 0 0 1796 71.5%

14 walk in shop 0 98 0 0 197 66 0 0 862 0 0 68 429 3581 0 0 5301 67.6%

15 shower 0 254 0 205 0 0 0 0 0 130 0 0 0 0 1982 0 2571 77.1%

16 use toilet 20 16 0 25 0 206 328 0 28 2 0 295 0 0 0 0 920 0.0%

Sum 983 2581 2154 9192 3207 2616 5758 6700 11635 4375 1537 13138 1960 5525 2781 555 74697

Precision 29.3% 60.6% 49.7% 73.2% 28.9% 22.1% 62.8% 99.1% 72.2% 62.6% 85.0% 73.6% 65.6% 64.8% 71.3% 0.0%
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Fig. 9. Aggregate confusion matrix for the best parameter combination when using
the HMM-based approach. The parameters were: window length for features = 64 sec.,
200 models, 32 states per model, observation length = 16. Overall accuracy is 67.4%.

the number of states is fixed to 8, and the observation window for classification
covers 16 samples. The number of models N directly affects the length of data
that each HMM models, since the data is equally partitioned into N parts. Thus,
N is inversely related to the length of the histogram windows of the previous
approaches. From the plot one can observe that using less than 200 models
(i.e. each model sees about 2.5 min of data or more) leads to a visible decrease
in performance. We obtained the best result of 67% for N = 200 models and
a feature length of 64 sec, an observation length of 16 and models with 32
states. When varying the number of states we found that they only marginally
effected the results. Figure 9 shows the confusion matrix for the best parameter
combination. Overall, results of the HMM approach suggest that the temporal
aspect – at least for the features we employed – is not dominant enough to allow
for higher recognition rates.



Sensor placement. The results so far were based on the data of all three sensors
the user was wearing on wrist, hip and thigh. It turns out that using only subsets
of these sensors for recognition reveals some interesting relations between the
placement of sensors and the recognition of individual activities. For instance,
we found that the overall accuracy of the k-means approach slightly improved
from 69 to 70% when we used only two sensors, namely the sensors on wrist and
thigh. These results are consistent with the findings from [8], who also found
that when using only two sensor locations, wrist and thigh are the most suitable
locations. Using these locations even leads to better results when recognizing
the activities brushing teeth, driving car, preparing lunch and washing dishes.
When only using the wrist sensor, performance for brushing teeth and taking

a shower improves, likely because these activities are mainly characterized by
hand and arm movements. For sleeping and walking, using only the hip sensor
already yields precision and recall values up to 95%.

5.1 Discussion

Figure 10 shows a summary table comparing the best results of the four ap-
proaches. Generally, the approach Occurrence Statistics + SVM achieves the
highest accuracy of 79.1%. For most activities, the use of histograms instead of
single cluster assignments as features leads to better precision and recall values.
However, there are two stationary (sitting, using the toilet) and two dynamic
activities (brushing teeth, walking) in which the use of single cluster assignments
yields higher results in either precision, recall or both. The HMM approach
achieves the lowest accuracy of 67.4%, slightly less than the k-means approach.
In summary, we conclude that using histograms of symbols as features and com-
bining them with a strong classifier is a promising and competitive approach for
recognizing the type of daily activities we recorded in our study.

It is worth noting that the overall recognition scores seem low compared to the
published state-of-the-art. However, in contrast to most other recordings and as
discussed above, we explicitly defined the low-level activities after the recording
of the high-level activities, and therefore both the larger variability within single
low-level activities (such as walking) and the high similarity between different
low-activities (such as walking and walking through shop) pose a more challenging
recognition problem than is usually addressed.

6 High-level Activities

In this section we report on how well our proposed approaches can deal with the
recognition of high-level scenes comprising a collection of low-level activities.
More specifically, we evaluate how well our algorithms can classify the three
different scenes Morning, Housework, and Shopping. Each scene has a length of
at least 40 minutes and consists of at least six different activities. The evaluation
was performed in the same fashion as for the low-level activities: we constructed
four datasets, each containing one instance of each of the three scenes, and then
performed a leave-one-out crossvalidation.
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work at computer
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walk in shop
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Mean
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Fig. 10. Summary of the results for low-level activities. Each column shows the preci-
sion (p) and recall (r) values for each activity, as well as the accuracy, i.e. the number
of correctly classified samples divided by all samples. The highest values in each row
are highlighted.

K-means. Figure 11(a) shows the accuracy for different numbers of clusters and
different window lengths for computing mean and variance of the signal. As for
the low-level activities, one can observe that for values of k below 50 performance
decreases rapidly. In terms of feature windows, there is a visible tendency that
longer window lengths lead to a better performance. For the parameter values
that we sampled, the best result of 84.9% was obtained for k = 50 and a feature
window of 768 sec., i.e. about 13 min. (We comment on the feature length below
in the paragraph ’Sensor Placement’.) The confusion matrix for this configura-
tion is shown in Figure 12 (upper left). Precision and recall range between 74
and 94%.

Occurrence Statistics + NN. In this experiment, as for the low-level activities,
we vary the number of clusters and the length of the histogram. The results can
be seen in Figure 11(b). The mean and variance features are computed over 4
sec. windows with a shift of 1 second. The best results are obtained for values of
k between 50 and 500, and histogram windows between 512 and 2048 samples,
i.e. between about 8 and 32 minutes. Figure 12 (upper right) shows the confusion
matrix for k = 500 and a histogram window of 512 samples; the accuracy for this
run was 83.4%, which is slightly lower than for the k-means approach. In terms
of precision and confusion there is no clear difference to the k-means approach.
However, the results improve substantially when using an SVM for classification
instead of a nearest neighbor classifier, as is described in the next section.

Occurrence Statistics + SVM. Figure 11(c) shows the accuracy for different val-
ues of k and different window lengths for the histograms when using an SVM as
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Fig. 11. Accuracy of classification for high-level activities.

classifier. The best results are obtained for histogram windows between 1280 and
2048 samples, i.e. between 20 and 32 min. Interestingly, the number of clusters
for discretization only has a minimal influence on the recognition performance,
the dominating parameter is the length of the histogram window. Even when
using only k = 10 clusters, the accuracy stays above 90%. Figure 12 (lower left)
shows the confusion matrix for the best result of 91.8% accuracy, which is an
improvement of about 7% compared to using the nearest neighbor classifier as
described in the previous paragraph.

HMMs. Figure 11(d) shows the recognition results for the HMM approach. As
for the low-level activities, we vary the feature length and the number of models
N . The number of states is fixed to s = 2 (we did vary the number of states
but found only small changes in performance), and the length of the observation
window for each HMM is set to 16 samples. From the figure one can observe
that values of N below 200 lead to a decrease in performance. The best results
of slightly above 80% are obtained for feature lengths above 256 seconds (4 min)
and N = 200 models or more. Figure 12 (lower right) shows the confusion matrix
for N = 200 and a feature length of 768 seconds.
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going shopping 1030 6683 1310 9023 74.1% 86 1669 101 1856 89.9%

doing housework 741 263 14764 15768 93.6% 354 224 2651 3229 82.1%

Sum 9423 7867 16990 34280 2008 2229 2824 7061

Precision 81.2% 84.9% 86.9% 78.1% 74.9% 93.9%

Sum Recall Sum Recall

preparing for work 1383 132 0 1515 91.3% 8220 753 515 9488 86.6%

going shopping 62 1359 126 1547 87.8% 1042 4962 930 6934 71.6%

doing housework 14 143 2612 2769 94.3% 1156 536 7334 9026 81.3%

Sum 1459 1634 2738 5831 10418 6251 8779 25448

Precision 94.8% 83.2% 95.4% 78.9% 79.4% 83.5%
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Classification (Occ. Stats + SVM)

G
T

Classification (Occ. Stats + NN)

Classification (HMM)

G
T

Fig. 12. Aggregate confusion matrices for the best parameter combinations of the four
approaches for recognizing high-level activities.

Sensor Placement. We also investigated the influence of different sensor loca-
tions on the recognition of high-level activities. Figure 13 shows the differences in
performance when applying the k-means approach to subsets of sensors. Figure
13(a) shows the results for the wrist sensor. One can observe that for this sensor,
the size of the feature window strongly influences the recognition rate – there is
a distinct peak for relatively large windows between 512 and 1024 seconds. Ob-
viously, for shorter windows the wrist movements are not discriminative enough
for recognition. This might be due to the fact that the three scenes share some of
the low-level activities, and that of these, many involve similar wrist movements,
as for example brushing teeth or showering. The results for hip (Figure 13(b))
and thigh (Figure 13(c)) sensor do not exhibit such a clear tendency towards
specific window lengths. Thus it appears that it is mainly the wrist sensor that
is responsible for the good performance of relatively long windows when using
all three sensors. The result for the hip sensor indicates that the performance
at this location is more influenced by the number of clusters than the feature
length; the best results are obtained for k = 100. Similarly as for the low-level
activities, the combination of wrist and thigh sensor also performs very well for
high level activities. For k = 100 and a feature length of 1024, the accuracy is
82%, i.e. only 3% worse than when using all three sensors.

6.1 Discussion

Figure 14 shows a summary table comparing the best results of the four ap-
proaches. As for the low-level activities, one observes that the approach Oc-

currence Statistics + SVM achieves the highest accuracy, in this case 91.8%.
Combining the histogram features with an SVM instead of a nearest neighbor
classifier leads to higher precision and recall values for all activities. Generally,
the accuracy of all four approaches is over 80%, which is significantly higher than
the chance level of about 33%. Even though the results might not generalize due
to the small number of high-level activities in our set, we find that the high recog-
nition rates are remarkable, considering the use of simple and easy-to-compute
features in combination with a relatively large and challenging dataset.
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Fig. 13. K-means based recognition accuracy of high-level activities for subsets of
sensor locations. The best values of each combination are highlighted.

7 Conclusion

The main goal of this paper was to investigate how well current approaches in
activity recognition can be applied to the recognition of high-level activities,
which happen on the order of hours rather than minutes and consist of a diverse
set of small scale activities. To this end, we recorded a naturalistic dataset with
a user wearing three sensors on wrist, hip and thigh performing several instances
of three different high-level scenes. We evaluated four different algorithms with
respect to their ability to recognize both the low- and high-level activities con-
tained in the dataset. One important aim of our research is to investigate to
which extent current approaches for recognition of low-level activities can be
directly applied to the recognition of high-level activities – i.e. using the same
simple features without adding any intermediate levels of representation. We
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Fig. 14. Summary of the results for high-level activities. The columns show the preci-
sion (p) and recall (r) values for each activity, as well as the accuracy.

believe that in the future such an approach would allow for scalable and efficient
activity recognition systems based on simple sensors.

The results indicate that our algorithms can achieve competitive recognition
rates for many of the low-level activities. The best results of slightly below 80%
were achieved when using histograms of cluster assignments as features, com-
bined with a support vector machine for classification. We investigated different
window lengths and numbers of clusters and found that mapping the data to 50
clusters already leads to good results. In terms of sensor placement, using only
two sensors at wrist and thigh resulted in equal or even better rates than using
all three sensors.

When classifiying high-level activites, we achieve recognition rates of up to
92%, which is clearly above the chance level of about 33%. We achieve these
results with the same algorithms that we used for the low-level activities, merely
by changing parameters such as the feature length and classification window. The
best results were again obtained by the histogram-based approach in combination
with an SVM. For all our approaches we use simple mean and variance features
derived from accelerometer readings at 2 Hz. Considering the relatively simple
sensors and features, as well as the challenging dataset, we find that the results
for the high-level activities are surprisingly good.

We conclude that recognizing activities on such scales using only small and
unobtrusive body-worn accelerometers is a viable path worth pursuing. Yet we
are aware that our work is but a first step towards recognition of high-level activ-
ities, and that more sophisticated models might yield better results. An obvious
extension would be an hierarchical approach, using the outcome of the low-level
classification as basis for the high-level inference, e.g. by defining a grammar
of low-level activities. High-level activities however are often unstructured and
may contain seemingly unrelated low-level activities, as e.g. observed in the data
collection of this paper (e.g. when the user decided to eat during his housework).
Therefore such an hierarchical approach is beyond the scope of this paper and
will be explored in future work. In addition, we intend to validate our results on
larger and more diverse sets of high-level activities, as well as across different
users, in order to find out how well our approach generalizes.
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