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Abstract

X-ray computerized tomography (CT) and related imag-

ing modalities (e.g., PET) are notorious for their excessive

computational demands, especially when noise-resistant

probabilistic methods such as regularized tomography are

used. The basic idea of regularizated tomography is to com-

pute a smooth image whose simulated projections (line in-

tegrals) approximate the observed, noisy X-ray projections.

The computational expense in previous methods stems from

explicitly applying a large sparse projection matrix to en-

force these smoothness and data fidelity constraints dur-

ing each of many iterations of the algorithm. Here we re-

view our recent work in regularized tomography in which

the smoothness constraint is analytically transformed from

the image to the projection domain, before any computa-

tions begin. As a result, iterations take place entirely in

the projection domain, avoiding the repeated sparse matrix-

vector products. A more surprising benefit is the decoupling

of a large system of regularization equations into many

small systems of simpler independent equations, whose so-

lution requires an “embarassingly parallel” computation.

In this paper, we demonstrate that this method provides lin-

ear speedup of regularized tomography for up to 20 com-

pute nodes (Pentium 4, 1.5 GHz) on a 100 Mb/s network

using a Matlab MPI implementation.

1 Introduction

1.1 The Computational Burden of Regularized
Tomography

X-ray computerized tomography (CT) and other related

imaging modalities such as positron emission tomogra-

phy (PET) are notorious for their excessive computational

demands. The earliest algorithms in tomography, such

as filtered backprojection (FBP), are now trivial in two-

dimensions and scalable in three-dimensions due to their

“pleasantly” or “embarassingly” parallel nature [18]. Un-

fortunately, FBP can produce streaking artifacts in high-

noise situations because it does not model the statistics of

the noise. The more noise-resistant probabilistic (e.g., regu-

larized) tomography methods are still computationally pro-

hibitive, especially in three-dimensions and at high resolu-

tions. In this paper we consider a new class of algorithms in

which probabilistic tomography becomes “pleasantly paral-

lel” as well.

To understand how this works, recall that tomographic

images are produced by converting observed projections

(data) into an image. For example, in X-ray CT imaging,

X-ray beams are directed at a patient and become attenu-

ated by various amounts by the different materials within

the body. On the opposite side of the patient the attenuated

beams are detected as an array of measurements called a

projection. (Such projections are produced at many differ-

ent angles around the patient.) Not only are these measure-

ments noisy, the relative noise level depends on the amount

of attenuation: projections through dense materials such as

bone and especially metal have lower signal-to-noise ratio

than projections through only tissue or water (Fig. 1). Cop-

ing with the large and spatially-varying fluctuations in the

number of detected photons often requires a probabilistic

smoothing technique (also known as regularization) to im-

prove the image. The basic idea of regularization is to in-

fer a smooth image whose simulated projections approxi-

mate the observed (but noisy) projections. The difficulty is

that the standard regularization specifies the two basic con-

straints in different domains: (1) smoothness is an image

property specified in the image domain, while (2) closeness

to the data is determined in the projection domain. Enforc-

ing these constraints computationally requires a very large

sparse matrix-vector multiplication (projection or backpro-

jection) to convert between the two domains during each

iteration of the algorithm (§2.2). This multiplication places

great demands on system memory and memory bandwidth,

and requires significant network usage when parallelized.

Projection and backprojection are thus considered to be the

largest expense in iterative methods for tomography [13].

The novelty in our proposed formulation of regularized

tomography is in the analytical conversion of the smooth-

ness constraint itself from the image to the projection do-
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main, before any computations begin. Regularized CT

thus becomes a two-stage process of (nonhomogeneous)

smoothing of the projections followed by filtered backpro-

jection. As a by-product, the repeated forward and back-

projections common in iterative image reconstruction are

eliminated. Despite the computational simplification, we

demonstrate that this method can be used to reduce metal

artifacts in X-ray CT images (Fig. 4). But a more fascinat-

ing benefit of the conversion of the smoothness constraint

to the projection domain is the decoupling of a large sys-

tem of regularization equations into many small systems of

simpler regularization equations, each for a separate projec-

tion. Thus the difficult computation of regularized tomog-

raphy becomes pleasantly parallel, so that latency tolerant

and ideally scalable parallel computations are possible, as

we report in §4.2 in two-dimensions.

1.2 Applications of Fast Regularized Tomography

A wide variety of applications in physics, biology, and

medicine can benefit from such a scalable probabilistic al-

gorithm for tomographic imagery.

1.2.1 Higher Resolution Tomography

Current tomographic problems typically have up to on

the order of a million unknowns in the volumetric image.

There is always a demand for higher resolution, and thus

more unknowns. For example, a tenfold increase in res-

olution in each dimension (1000-by-1000-by-1000) would

give rise to a problem in a billion unknowns. One can al-

ready see nearly such resolutions emerging in electron mi-

croscopy [18] for studying biological specimens as well as

in CT.

1.2.2 A Hospital’s Workstations as a Supercomputer

for Tomography

An algorithm for tomographic imaging that is “embarass-

ingly parallel” would be beneficial for hospitals, as it would

make high performance computing readily accessible: the

increasingly powerful desktop computers throughout the

hospital could be used as a cluster. This is due to the tol-

erance of embarassingly parallel applications to network la-

tency and variations in node processor speed.

Previous methods for parallelizing probabilistic tomog-

raphy cannot easily exploit available workstations [5, 13]

as they are based on iterated projection and backprojection.

Recall that the projection matrix is a discretization of a lin-

ear operator taking the line-integral of the image over the

X-ray path; this O(n2)-by-O(n2) sparse matrix has O(n)
nonzero entries per row for an n-by-n 2-dimensional im-

age. This growth of the number of nonzero entries with res-

olution means that tomographic projection has much greater
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Figure 1. Streaking artifacts in this X-ray CT

(top; bottom: detail around hip to right) of a

human hip are due to the presence of a metal

hip implant (bright oval). Such streaks in-

terfere with post-operative examinations fol-

lowing total hip replacement surgery as well

as with the automatic extraction from the

CT image, or segmentation, of the patient’s

other hip (top left). CT metal artifacts are

also caused by pins that secure bones to-

gether, by bullets and shrapnel in combat ca-

sualties, and by luggage screened at airports

(an application we hope to develop using our

method). Similar artifacts occur in PET and

SPECT scans as well because the common

cause is the random, particulate nature of the

Poisson-distributed projection data.
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network bandwidth needs than the fixed local-neighborhood

communication requirements for partial differential opera-

tors. Some methods based on projection matrices even re-

quire a global summation of a volumetric dataset across the

network, where each processor sends and/or receives the en-

tire dataset. Not only is this communication a serial bottle-

neck, it can become the dominant component of execution

time. In addition, when exploiting the sparsity of projec-

tion data or when using processors of different speeds, load

balancing can be a problem. Also, even after significant

attempts at exploiting symmetries and sparsity have been

made [13], these matrices can require a lot of memory (e.g.,

220 MB for the projection matrix for a two-dimensional

256-by-256 image; more realistic image sizes and three-

dimensional images can be much worse). Our embarass-

ingly parallel technique requires far less communication

(distributing data and gathering final results) and scales al-

most perfectly at higher resolutions (see §4.2). In addition,

our memory requirements are trivial (kilobytes) in two-

dimensions and modest (megabytes) in three-dimensions.

1.2.3 Reduction of Radiation Exposure

A tantalizing application for faster probabilistic methods in

tomography is the reduction of the amount of X-ray radi-

ation or radio-pharmaceutical to which the patient would

have to be exposed. The reason this is possible stems from

the faithfulness of the probabilistic model to the physics

of the imaging, and thus enabling a faithful reconstruction

from noisier data, which in turn allows for lower X-ray ra-

diation. Outside of medicine, applications in biology would

benefit from less exposure to specimens for examination by

microCT (the application of CT to small objects) or electron

microscopy.

1.2.4 Other Applications

Another application of faster probabilistic tomography is in

fully 3-dimensional tomography (as opposed to a stack of

2-dimensional tomographs, or slices). Three-dimensional

tomography would allow the exploitation of smoothness be-

tween the slices and noise reductions in PET images. A re-

lated benefit would be the application of the C-arm (a rotat-

ing flouroscope) as an inexpensive CT device. On-line elec-

tron microscopy, where the resulting tomograph is formed

during the scan, would also benefit from faster probabilistic

tomography. Somewhat surprisingly, probabilistic tomog-

raphy can be used to increase the resolution of astronomical

images [3]. Here one rotates a binocular telescope (which

has higher resolution in one of the two dimensions), and

then reconstructs a single high-resolution image.

1.3 Overview of Paper

The remainder of this paper is organized as follows. In

§2.1 we provide background on CT. In §2.2 we present

the theory of regularized CT, ending with the equations that

one typically must solve in standard approaches. In §3, we

then review the mathematical techniques needed to carry the

smoothness constraint from the image domain to the projec-

tion domain and thus decouple the regularized CT equations.

Our parallel algorithm is described in §4.1 and its scalability

is demonstrated in §4.2.

2 Review of Regularized Tomography

2.1 Background in CT

In the absence of noise, the basic problem of computer-

ized tomography (CT) is to determine an unknown image

f = f(x, y) from its (forward) projections, or Radon trans-

form Rf , where

(Rf)(t, θ) :=

∫ ∫

f(x, y)δ(t − x cos θ − y sin θ)dxdy,

where (x, y) are planar coordinates, t is the location along

each projection, θ ∈ [0, π) is the orientation of the projec-

tion, and δ(·) is the Dirac delta-function. (Here we focus on

the two dimensional problem with standard parallel-beam

geometry, but the ideas readily extend to three dimensions

(see §3.1) and other scanning geometries.) Unfortunately,

since measurements are never perfect, what we actually ob-

serve are the noisy projection data g = g(t, θ). (To em-

phasize the essentials of the tomography problem, we view

the unknown f = f(x, y) and the observation g = g(t, θ)
as functions, although the implementation is discrete. See

§3.2.) We make the standard independence and local-

ity assumptions that the likelihood P (g|f), or conditional

distribution of g given f , equals
∏

p(g(t, θ)|(Rf)(t, θ)),
where the product is over all (t, θ). Since the likeli-

hood depends on the particular imaging modality, we illus-

trate using X-ray CT for concreteness, although our tech-

nique applies more broadly (e.g., to PET). Here, there-

fore, b exp(−g(t, θ)) is the observed X-ray photon count,

Poisson-distributed with mean b exp(−(Rf)(t, θ)), where b

is the mean photon count before any attenuation and f(x, y)
is the attenuation coefficient at (x, y). Our task is to infer

the image f given the noisy projections g.

2.2 Regularized CT

Because this inverse problem is ill-posed [16], one typ-

ically imposes extra constraints on f . In penalized maxi-

mum likelihood [8], or regularization, inferring f amounts
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to finding that f which minimizes − lnP (g|f) + ρ (f),
where ρ (f) characterizes the extra constraint on f . Here

we impose the standard smoothness constraint that uses the

image gradient ∇f = (∂f
∂x

, ∂f
∂y

) in the quadratic penalty

ρ (f) := β||∇f ||2, where β > 0, ||f ||2 := 〈f, f〉, and

〈f1, f2〉 :=
∫

f1f2 is an inner product. Following [17] and

to simplify the presentation, we approximate − lnP (g|f)
with the quadratic form ||g − Rf ||2

W
, where ||g||2

W
=

〈g,Wg〉 is a weighted norm with (diagonal) weight opera-

tor W satisfying (Wg)(t, θ) := w(t, θ)g(t, θ). The weight

w(t, θ) := b exp(−g(t, θ)) is small for those rays passing

through dense materials such as bone or metal, and larger

otherwise. This formulation of tomography requires that

we solve the following “hard” optimization problem:

Problem 1 (Regularized CT). Given the projection data g,

find the image f that minimizes

||g −Rf ||2W + β||∇f ||2.

To proceed, let △ denote ∂2

∂x2 + ∂2

∂y2 , the Laplacian in the

plane. Using integration by parts and zero boundary con-

ditions, we recall that ||∇f ||2 = 〈f,−△f〉. By taking the

functional derivative with respect to f of the functional in

Problem 1, we obtain the Euler-Lagrange equation

R∗WRf − β

(

∂2

∂x2
+

∂2

∂y2

)

f = R∗Wg, (1)

where f is unknown and A∗ denotes the adjoint of linear

operator A (R∗ is also known as the backprojection opera-

tor). By examining (1), we see that Problem 1 is hard in two

related ways.

First, the problem constraints occur in two different do-

mains. Fidelity to the data (||g − Rf ||2
W

) is enforced in

the projection domain {(t, θ)}, while smoothness (||∇f ||2)

is imposed in the image domain {(x, y)}. Thus we see in

(1) the operators R and R∗ for shuffling back and forth be-

tween these domains; iterative solution techniques typically

compute these forward and backprojections explicitly and

at great expense (§1).

Second, observe that (1) is a coupled equation in the two-

variable function f = f(x, y), i.e., in the large set of vari-

ables {f(x, y), for all x, y} under some discretization of x

and y. The coupling arises first because both x− and y−
derivatives are present; in addition, R and R∗ are integral

operators, and so are not even local. The computational

difficulty in solving (1) and related tomographic problems

(e.g., emission) has spawned a large body of work in opti-

mization (see [9, 15, 4] and references therein).

3 Decoupled Regularized CT

In this section we formulate the entire regularization

problem in a single domain. (We introduced the mathemat-

ics of our approach in [1], which we review here; we re-

port on scalability in this paper.). As we shall see, working

solely in the projection domain will decouple our large joint

optimization problem into many smaller ones. But first we

recall the standard technique for inverting the Radon trans-

form: filtered backprojection. Let the Fourier transform of

g = g(t, θ) with respect to t be denoted (F1g)(τ, θ) =

(2π)−
1

2

∫

g(t, θ)e−iτtdt, where τ is the spatial frequency

along the θ-projection.

Definition 1. Given the function h = h(t, θ), the

Riesz potential is the linear operator Iα satisfying

(F1I
αh)(τ, θ) = |τ |−α(F1h)(τ, θ).

Given noise-free observations h = Rf , one can solve for

the unknown f by directly implementing the following clas-

sical formula [16] for the inverse of the Radon transform:

Fact 1 (Filtered Backprojection). R−1 = 1

4π
R∗I−1.

By defining � as the Laplacian ∂2

∂t2
along each projection,

we note that I−1 is the “square root” of−�. This is because

Iα1Iα2 = Iα1+α2 and the following:

Fact 2. I−2 = −�.

Now recall the Fourier slice theorem, which says that the

two-dimensional Fourier transform of f , evaluated at polar

coordinates (τ, θ), is just (F1Rf)(τ, θ). Using this theo-

rem, one can relate the two Laplacians △ and � because the

two-dimensional Fourier transform of −△ is u2+v2 (where

u and v are spatial frequencies for x and y, respectively),

or |τ |2 in polar coordinates, which is the one-dimensional

Fourier transform of −�. For details and the extension to

higher dimensions, see [16] and [11]. This crucial but sim-

ple idea is called “intertwining”.

Fact 3. The Radon transform R intertwines △ and �, i.e.,

R△ = �R.

Our main contribution is the realization that by applying in-

tertwining to regularized CT, we can “decouple” this large

optimization problem into an equivalent set of much smaller

optimization problems. The idea is to reformulate Prob-

lem 1 in terms of h = Rf . We need only transfer the

smoothness constraint to the projection domain, as the data

constraint is already naturally specified there already. In-

tertwining allows us to analytically transfer the smoothness

constraint to the projection domain, as opposed to numer-

ically enforcing it during optimization computations with

repeated and expensive forward and backward projections.

Proposition 1 (Smoothness Constraint to Projection Do-

main).

||∇f ||2 = (4π)−1〈h, I−3h〉, where h = Rf.
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For proof, note that −||∇f ||2 = 〈f,△f〉 =
〈R−1h,△R−1h〉 = 〈h,R−1∗△R−1h〉. Now, note that

R−1∗ = (4π)−1I−1R, using Fact 1 and the symme-

try of Iα. But then using Fact 3 −R−1∗△R−1 =
−(4π)−1I−1R△R−1 = −(4π)−1I−1

�RR−1. Prop. 1

follows using Fact 2 and because RR−1 is the identity op-

erator.

Thus we can pose Problem 1 in an equivalent, “easy”

form in the projection domain, as follows:

Problem 2 (Decoupled Regularized CT). Given observed

projections g, find projections h = Rf minimizing

||g − h||2W + β′〈h, I−3h〉, where β′ := (4π)−1β.

The corresponding Euler-Lagrange equation,

Wh + β′I−3h = Wg, (2)

where h is unknown, is easy exactly where (1) is hard.

First, the forward and backprojections are eliminated from

the optimization; backprojection need only be done once

to determine f from solution h. Second, and more impor-

tantly, equation (2) is really a decoupled set of systems of

equations, where each system corresponds to the unknowns

{h(t, θ), for all t}, at each fixed θ. This follows because

operator W is pointwise multiplication by a scalar and I−3

acts only along t. Thus our “decoupled” approach to regu-

larized CT requires solving the integral equation (2) in the

unknown single variable function h(·, θ), for each fixed θ.

To get an intuitive understanding of (2), recall from the

definition of the Riesz potential that the operator I−3 acts

along each projection by boosting high spatial frequencies

to the third power, much like differentiation. Thus the oper-

atorW+β′I−3 is analogous to a shifted derivative operator,

and thus its inverse can be expected to have a smoothing ef-

fect (integraton). The smoothing will be greatest in those

portions of a projection where the weight w is smallest.

3.1 Generalization to Three Dimensions

The same decoupling concept applies in three dimen-

sions as well. To show this, one can argue in a formally

analogous way as above, except that the Radon transform is

replaced by the X-ray transform (which takes straight line

integrals in �
3). One then obtains equations of the same

form as (2), and f, g, and h are three-dimensional functions.

In future work, we shall implement these equations, assess

their scalability (which we anticipate due to the increased

computational granularity of processing two-dimensional

arrays vs. one-dimensional ones), and make the connec-

tion to the cone-beam geometry in addition to the parallel

geometry which we have already studied.

3.2 Metal Streak Artifact Reduction

To solve (2), we observe that W + β′I−3 is a positive

definite operator (if w(t, θ) > 0), and thus the conjugate

gradient method can be applied. To discretize the equations,

we sampled in t and θ uniformly. The operator W was im-

plemented by restriction to the sample locations. The Riesz

potential was implemented by taking 1-dimensional FFTs.

We applied our decoupled regularized CT method to the

reduction of metal artifacts in X-ray CT (Fig. 1) [20, 12,

14]. Since the actual projection data and scanner param-

eters were unavailable, we simulated the projections (us-

ing “radon” from the Image Processing Toolbox in Matlab)

after rescaling the image pixel values (range 0 to 255) by

0.012 (Fig. 3, top left). Alternative and faster methods for

computing projections and backprojections include the hier-

archical decomposition method of Basu and Bresler [2] and

the nonuniform FFT method of Fessler and Sutton [10].

The bright band results from the metal, and is noisier

than elsewhere; the noise is obvious in the single projection

in Fig. 2 (solid curve). For each fixed projection orientation

θ, the decoupled regularized CT equation (2) was solved

(b = 109, β = 103) to produce the nonhomogeneously

smoothed projection shown in Fig. 2 (dotted curve). After

smoothing each projection independently, filtered backpro-

jection (using “iradon” in Matlab) was applied to the set of

smoothed projections (Fig. 3, top right), producing our final

result (Fig. 4), which shows reduced streaking artifacts.

4 Parallel Computations

4.1 A Scalable Algorithm

To solve the equation (1) in its decoupled form (2) on

a network of processors, we set up a master-slave compu-

tation where the master processor performs a single Radon

transform (X-ray transform in 3-d) and then sends each of

the resulting projections (one per fixed orientation θ) to the

next available slave processor. The master also receives the

result from each slave processor computation and sends out

another projection to said slave if there any left to process or

a termination message if there are not. When the resulting

solutions for all projections have been received, the master

then performs a single filtered backprojection computation

(e.g. the Feldkamp method in 3-d) to produce the proba-

bilistically reconstructed image. Each slave processor waits

to receive the next projection, solves the decoupled regu-

larization equation (2) and then sends the solution back to

the master. In slave then returns to its waiting state until it

receives a message from the master to terminate.

As is common for such embarassingly parallel master-

slave computations, load balancing and tolerance of la-

tency in the interconnection network are automatically dealt
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Figure 2. A simulated projection (solid curve,

g(·, θ)) oriented at θ ≈ 45◦ is noisy particularly

in the portion due to the metal (large hump in

the center). The smoothing due to decoupled

regularized CT (dotted curve, h(·, θ)) is greater

in the metal portion, where the weights are

automatically lowest.

with [19, 6]. In addition, processors of different speeds can

be used as slaves: the slower units simply take longer to

return their results while the faster ones will process more

projections.

4.2 Scalability Study

We also performed a scalability study of our decoupled

approach to regularized tomography. Here, the number of

processors was increased and the corresponding execution

time was measured. The input image was the standard two-

dimensional Shepp-Logan phantom (produced by Matlab),

and instead of simply solving our decoupled regularization

equations once per projection, we used them as the lin-

ear step in a Newton’s method to fully exploit the (nonlin-

ear) Poisson noise model. Computations were performed

in Matlab (version 6.1) and communications were handled

by MPITB [7], a MATLAB toolbox for LAM/MPI (version

6.5.7, and built with GNU C compiler version 2.96). The

computations were performed on a network of idle 1.5 GHz

Pentium 4 nodes running GNU/Linux (Redhat 7.1) and con-

nected by a 100 Mb/s ethernet (with 3Com 3c905C PCI host

adapters). Each CPU had 256 kB of L2 cache and 256 MB

of main memory with a memory bandwidth of 1.6 GB/s

(obtained using Stream “triad” compiled with the GNU C

compiler). One node was a dedicated master and 20 slave

nodes were available. In Fig. 5 we see the results of this
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Figure 3. The simulated projection data g(t, θ)
(top), or Radon transform, of Fig. 1 (bottom)

shows a bright band due to the metal. The key

smoothing action of decoupled regularized

CT (h(t, θ), middle) is localized on the metal

band, as emphasized (bottom) in the result

of applying I−1 (a kind of differentiation and

the first step in filtered backprojection) to the

difference g − h.
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Figure 4. The result of decoupled regularized
CT for reducing streaking artifacts (compare

to Fig. 1). Observe that the smoothing effect

is primarily near the metal; the rest of the im-

age is still sharp.

study, where the scalability is essentially linear for the re-

alistic image sizes of 256x256 or 1024x1024. Anecdotally

we note that master processor was mostly idle at these large

image sizes, suggesting our algorithm is granular.

5 Conclusion

In this paper we have presented the decoupling concept

for simplifying regularized tomography. Our approach is

fundamentally unlike most current approaches to the sta-

tistical estimation of tomographic images as it eliminates

the most expensive steps of those techniques, viz., the re-

peated projections and backprojections. In addition, the

decoupling idea makes regularized tomography embarass-

ingly parallel and our results show how this leads to scal-

able computations. As discussed at length in the introduc-

tion, the impacts of this approach include the many practical

applications of faster regularized tomography.
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Figure 5. (top) Speedup (the run-time for

one slave processor / the run-time for sev-

eral slave processors) of decoupled regu-

larized tomography with increased number

of processors. From bottom to top are the

speedup results for images of size 16x16,

64x64, 256x256, and 1024x1024. Observe that

while speedup is poor for the smaller, unre-

alistic, image sizes, it is almost linear (i.e.,

ideal) for typical image sizes and improves

with increased resolution, which is very en-

couraging. (bottom) Efficiency of processor

use for decoupled regularized tomography

with increased number of processors. Ef-

ficiency is defined as speedup / number of

processors. Observe that for the larger (and

typical) image sizes, the scalability is essen-

tially optimal.
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