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Abstract

Inlining is critical for both performance and size in mobile

apps. When building large mobile apps, ThinLTO, a scalable

link-time optimization is imperative in order to achieve both

optimal size and build scalability. However, inlining with

ThinLTO is not tuned to reduce the code size because each

module inliner works independently without modeling the

size cost across modules, and functions are often not eligible

to import due to private references, appearing in Objective-C

or Swift for iOS. This paper extends the bitcode summary to

perform a global inlining analysis to find inline candidates

for saving the code size. Using this summary information, a

pre-inliner eagerly inlines the candidates that are proven to

shrink the size. When the inline candidates are not eligible

to import, a pre-merger combines their bitcode modules to

remove inline restrictions. Our work improves the size of

real-world mobile apps when compared to the MinSize (-Oz)

optimization level. We reduced the code size by 2.8% for

SocialApp and 4.0% for ChatApp.

CCS Concepts: · Software and its engineering → Com-

pilers; · Computer systems organization→ Embedded

systems.

Keywords: inlining, ThinLTO, size optimization, mobile ap-

plications, iOS
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1 Introduction

Mobile app size continues to grow as new features are con-

stantly added to meet users’ needs [5, 12]. They are mostly

optimized for size while keeping the performance of start-up
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Figure 1. Inlining for size in LTO and ThinLTO. Functions𝐴,

𝐵, and𝐶 are defined inmodules𝑀1,𝑀2, and𝑀3, respectively.

LTO merges all modules to inline 𝐵 and𝐶 into 𝐴 and deletes

their bodies at compile time. ThinLTO imports the inline

candidates for each module that runs independently. The

linker can dead-strip unreferenced functions, 𝐵𝐶 or 𝐶 .

and key scenarios [11]. Outlining [4, 8, 11, 15ś17] improves

the code size by factoring out the common code into func-

tions. Conversely, inlining [3, 14] has been primarily consid-

ered a speed optimization which removes call overhead at

the cost of cloning the callee, and provides a bigger scope for

other optimizations to be effective. Inlining is also important

for size, even at MinSize (-Oz) optimization level [6, 22].

Commercial mobile apps [4, 11] are globally optimized at

link time using either the regular full link-time optimization

(LTO) or ThinLTO [10]. When building large apps, we use

ThinLTO [10] because using LTO is impractical, taking a

long time to build. Figure 1 shows how LTO or ThinLTO can

save the code size by inlining functions. Three functions 𝐴,

𝐵, and 𝐶 are defined in modules 𝑀1, 𝑀2, and 𝑀3, respec-

tively. The call edges are represented as arrows between

functions. Functions 𝐵 and 𝐶 cannot be inlined across mod-

ules with NoLTO. LTO merges the whole modules to inline

𝐵 and 𝐶 while deleting them at compile time. Unlike LTO

that can analyze the entire intermediate representation (IR),

ThinLTO uses the combined bitcode summary to import the

inline candidates for each module compilation. The final size

can be reduced at link time by dead-stripping unreferenced

functions.

This inline framework with ThinLTO has the following

limitations toward size optimization: (i) The bitcode sum-

mary keeps one call edge for each callee, even if there are

multiple call sites to the callee. The function import and

inlining decisions are largely tuned for speed, but not for

This work is licensed under a Creative Commons Attribution 4.0 Interna-

tional License.

116

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3519941.3535074
https://doi.org/10.1145/3519941.3535074
https://doi.org/10.1145/3519941.3535074
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3519941.3535074&domain=pdf&date_stamp=2022-06-14


LCTES ’22, June 14, 2022, San Diego, CA, USA Kyungwoo Lee, Manman Ren, and Shane Nay

Figure 2. Overview of size inliner passes (in the dashed

boxes) with ThinLTO. Size inlining analyzer determines in-

line candidates at the summary level. Pre-merger groups

bitcode modules and merges each group to remove inline

restrictions. Again, size inlining analyzer with a new set of

modules guides pre-inliner to inline the candidates ahead.

size. In addition, these decisions are made independently

per module. (ii) An inline candidate may not be imported

inherently, and thus cannot be inlined across modules. For

instance, if a function has references privately bound within

a module, it is not eligible to import.

This paper addresses these shortcomings by modeling the

size cost across modules followed by pre-inliner and pre-

merger. Using these techniques, we improved the code size

(i.e., text section size) by 2.8% for SocialApp, and 4.0% for

ChatApp compared to -Oz optimization with ThinLTO. In

particular, this paper makes the following contributions:

1. We propose pre-inliner which secures inlining for size

using an inter-module size inlining analyzer at the

summary level.

2. We describe pre-merger which regroups bitcode mod-

ules to lift inline barriers across modules.

3. We evaluate the aforementioned techniques with two

real-world mobile apps and an open-source compiler,

Clang.

The rest of this paper is organized as follows. Section 2

proposes our size inliner framework with ThinLTO. Sec-

tion 3 presents our evaluation. Section 4 discusses related

and future work, and Section 5 concludes the paper.

2 Size Inliner

LTO inliner makes inlining decisions with the entire IR,

which can be optimal. ThinLTO inliner imports cross-module

inline candidates, and makes inlining decisions indepen-

dently for each module. Figure 3 shows how the ThinLTO

inliner may decide to inline function 𝐷 into function 𝐵 in

𝑀2 as well as function 𝐶 in 𝑀3. If the size for 𝐷 is large,

inlining 𝐷 into two call sites may increase the overall size.

Figure 2 shows an overview of our size inliner passes with

ThinLTO. After ThinLink, which combines the bitcode sum-

mary, size inlining analyzer, described in Section 2.1, globally

determines inline candidates at the summary level. We will

describe how to implement pre-inliner for each module in

Section 2.2. For those inline candidates that are not eligible to

import, pre-merger efficiently links their modules to expand

inline scope, as discussed in Section 2.3.

Figure 3. Inlining for size in LTO, ThinLTO, and our

size inliner. Function 𝐵 dynamically calls function 𝐶 via

objc_msgSend [1], shown as a dotted arrow. Using the entire

IR, LTO optimally inlines a single callee 𝐵 into 𝐴 but does

not inline 𝐷 . ThinLTO fails to import 𝐵 into𝑀1 since 𝐵 has

private references within𝑀2. ThinLTO may inline both 𝐷s

in 𝑀2 and 𝑀3, increasing the overall size. Our size inliner

merges𝑀1 and𝑀2 to remove inline restrictions on 𝐵. 𝐷 is

not inlined using a global inlining analysis.

2.1 Size Inlining Analyzer

We now consider a simplified size cost model for inlining

that has the total number of call sites for a given callee, using

the global call graph at the summary level. We ignore the

additional size benefit from downstream optimizations on

the inlined code.We also assume the callee will be completely

inlined into all call sites and thus removed.

𝐶𝑏𝑒𝑓 𝑜𝑟𝑒 = 𝐶𝑐𝑎𝑙𝑙𝑒𝑒 + 𝑁 ·𝐶𝑐𝑎𝑙𝑙

𝐶𝑎𝑓 𝑡𝑒𝑟 = 𝐶𝑐𝑎𝑙𝑙𝑒𝑒 · 𝑁

where 𝑁 is the number of call sites,

𝐶𝑐𝑎𝑙𝑙𝑒𝑒 is the callee size, and

𝐶𝑐𝑎𝑙𝑙 is the call overhead.

(1)

When optimizing for size, we should inline as long as

𝐶𝑎𝑓 𝑡𝑒𝑟 is smaller than 𝐶𝑏𝑒 𝑓 𝑜𝑟𝑒 . When 𝑁 = 1, inlining always

decreases the size. For the case of 𝑁 ≥ 2, we iteratively make

inlining decisions by updating the call graph at the summary

level. Similar to Figure 3, if function 𝐷 is completely inlined

to both function 𝐵 and 𝐶 , then 𝐷 will be removed from the

call graph while 𝐵 will become 𝐵𝐷 and 𝐶 will become 𝐶𝐷 .

Note all the call sites of 𝐷 will appear in 𝐵𝐷 and𝐶𝐷 . We can

find all the inlining candidates using a greedy algorithm by

handling the lowest 𝑁 first, until inlining increases the size

and 𝐶𝑎𝑓 𝑡𝑒𝑟 > 𝐶𝑏𝑒 𝑓 𝑜𝑟𝑒 .

The current bitcode summary with ThinLTO conserva-

tively represents a single call edge for a pair of caller and

callee by aggregating multiple call sites. This, in turn, pre-

vented us from computing the size cost precisely in Equa-

tion 1. We extended CalleeInfo, attached to each call edge,
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to include the number of call sites to a callee. 𝑁 , the total

number of call sites to the callee, can be computed from the

call graph.

Our initial implementation only handles the case of 𝑁 = 1,

which is absolutely beneficial for size, which is assumed

for the rest of paper. However, we handled several practical

issues to make inlining effective. First, some functions are

dynamically exported or accessed by the regular objects

outside the scope of bitcodemodules. These call edges cannot

be modeled in this analysis, but the linker conservatively

preserves those functions, therefore inlining them increases

the size. We conveyed such symbol resolution information

from the linker to remove them from the inline candidates.

We also bailed out functions with user inline attributes like

__attribute__((noinline)) or __attribute__((always_inline)) to

avoid unnecessary interactions. Finally, when functions are

large, the size reduction from inlining might be smaller than

extra spill code from high register pressure. Empirically, we

excluded functions whose IR size was greater than 500.

2.2 Pre-Inliner

An inliner typically prioritizes the small inline candidates

that are frequently called. The existing inliner’s heuristics

with ThinLTO are hard to tune when optimizing for size.

Therefore, we propose adding pre-inliner that imports and

inlines candidates for each module compilation, shown in

Figure 2. Pre-inliner extends the existing always-inliner [19]

and performs the published decisions from size inlining ana-

lyzer described in Section 2.1.

In order to preclude adversary interactions, we must exe-

cute out the published inlining decisions prior to the existing

inliner. For instance, function 𝐵 is to be inlined into 𝐴 be-

cause of a single call edge in Figure 3. Although the callers

of𝐴 do not appear in this figure, if𝐴 were inlined into many

call sites from other heuristics before 𝐵 being inlined into 𝐴,

the number of call sites to 𝐵 would become larger. Forcing in-

lining 𝐵 to the already inlined instances of 𝐴 would increase

the size. As expected, our prototype handled pre-inlining

candidates as if theywere with __attribute__((always_inline))

when compiling Clang, and the code size was increased by

1.7%. We will present the details on the size saving with

pre-inliner in Section 3.2.

2.3 Pre-Merger

When a cross-module inline candidate has references pri-

vately bound in a module, it is not eligible to import, and

thus we cannot inline it with ThinLTO. In Figure 3, function

𝐵 in module𝑀2 is uniquely called from function𝐴 in module

𝑀1. However, function 𝐵 in module𝑀2 may access private

Objective-C metadata to dynamically dispatch a call to 𝐶

in 𝑀3. In this case, we pre-merge 𝑀1 and 𝑀2 to produce

𝑀1 +𝑀2 to allow inlining 𝐵 into 𝐴 within the same module.

For those inline candidates computed in the size inlining

analyzer described in Section 2.1, if they are not eligible to

import, pre-merger uses a union-find data structure [18] to

recursively link their corresponding bitcode modules. The

bitcode summary is recomputed for each merged module,

and the new set of modules are published. Then the remain-

ing ThinLTO passes follow.

Pre-merging many modules may unbalance the size of

ThinLTO modules, increasing the overall build time. To limit

the build time increase, we used a tunable parameter (merge

threshold) that controls the maximum number of merged

modules. We chose the default value to be 500. To realize

more size wins with fewer merges, we prioritized merging

of two modules with the decreasing order of inline affinity.

We define inline affinity for two modules as the number of

cross-module inline candidates in between them. Modules

with higher inline affinity get merged first. We will present

the details on the trade-off of code size and build time in

Section 3.3.

Direct annotations for methods [20] in Objective-C tell

the compiler to use static dispatch instead of dynamic dis-

patch. These direct methods often have private references

to Objective-C metadata, thus becoming ineligible to be

imported across modules. Pre-merger removes such inline

restrictions on the direct methods. At our company, we

regularly perform whole-app analysis offline to find direct

method candidates. Codemod service [7] automatically gen-

erates source patches with annotations.

3 Evaluation

3.1 Benchmark

Table 1 summarizes our benchmark. SocialApp is one of the

largest non-gaming mobile apps with dozens of dynamically

loaded libraries (dylibs). Direct annotations for methods are

enabled in SocialApp, as described in Section 2.3. This app

is written using a mix of Objective-C and Swift. ChatApp is a

medium sized mobile app with a mix of Objective-C and C++.

Clang is an open-source compiler, using the 12.0 release. Un-

like the other two mobile apps, Clang is computationally

intensive, so we evaluated size as well as performance. In par-

ticular, we measured the runtime performance of libLTO [9],

called from the linker (LD), when natively building another

libLTO. All benchmarks were compiled with ThinLTO and

the baseline was built with -Oz, unless otherwise specified.

Table 1. Statistics of Applications used for Evaluation.

App Code Direct Language OS

Size Annot.

SocialApp 106MB Yes Obj-C/Swift iOS

ChatApp 33MB No Obj-C/C++ iOS

Clang 12MB No C/C++ MacOS

118



LCTES ’22, June 14, 2022, San Diego, CA, USA Kyungwoo Lee, Manman Ren, and Shane Nay

Figure 4. Code-size saving with pre-inliner and pre-

inliner+pre-merger. The code-size saving is calculated by

1 minus the ratio of each case over the baseline.

Figure 5. Code-size saving and ThinLTO build time with

varyingmerge threshold for the largest binary of SocialApp.

3.2 Code Size Impact

Figure 4 compares the code-size improvement for SocialApp,

ChatApp, and Clang. Pre-inliner improved the code size by

1.2% for SocialApp. Adding pre-merger improved the code

size further by 2.8% because there are many direct meth-

ods in this app, as described in Section 2.3, that were not

eligible to import before. Similarly, the code size was im-

proved for ChatApp by 2.8% with pre-inliner and 4.0% with

pre-inliner combined with pre-merger. ChatApp already has

a large portion of C/C++ functions with private references

to Objective-C metadata, similar to direct methods. Clang

is a C/C++ program that is almost always eligible to import.

Therefore, pre-merger is ineffective, but pre-inliner itself al-

ready reduced the code size by 3% for Clang.

3.3 Trade-Off

Figure 5 shows the code-size saving and the ThinLTO build

time increase as merge threshold increases for the largest

binary of SocialApp. We set the default merge threshold to

500, which increased the ThinLTO build time by 1.15𝑋 while

saving the code size by 2.5%. Most binaries are much smaller

than this binary, and they rarely reach this threshold.

We compared the code-size saving and speed-up with or

without the machine outliner [13]. Note -Oz enables the

machine outliner by default for AArch64 [2] we target. As

Table 2. Code-size saving and speed-up with or without the

machine outliner [13] for Clang. The baseline disables the

inliner (-fno-inline-functions [21]).

Code-Size Speed-up

Saving

NoOutliner (Default Inliner) 41.9% 2.95X

NoOutliner (Size Inliner) 44.0% 3.11X

Outliner (Default Inliner) 46.9% 2.15X

Outliner (Size Inliner) 48.5% 2.28X

shown in Table 2, without the outliner, the size and perfor-

mance impacts from inlining were significant: 41.9% and

2.95𝑋 , for each. Expectedly, the outliner reduced the code

size further at the cost of performance due to additional call

overhead. Importantly, our size inliner improved both size

and performance regardless of the outliner’s presence. In

short, when compared to -Oz with the default inliner and

outliner, our size inliner produced 3% smaller and 6.1% faster

Clang.

4 Discussion

Trofin et al. [22] proposed a machine learning guided inliner

for size. Their numbers were collected with NoLTO, and

they did not address ThinLTO-specific inlining issues. Our

approach focuses on ThinLTO inlining by improving inlining

scope andmaking inlining decisions using a global call graph.

Damásio et al. [6] targeted inlining for code-size reduction,

similar to the method we used in this study. They simplified

the inlinee’s IR ahead to precisely model the size cost. We

performed inlining decisions at the summary level. We also

dealt with the inline candidates that were ineligible with

ThinLTO.

We will extend our size inliner with 𝑁 ≥ 2, as described in

Section 2.1. Instead of only targeting size, wewill improve the

heuristics in the inlining analyzer to find inline candidates for

speedwith size constraints.We can define inline budget as the

percentage of size increase on top of the initial computational

cost,𝐶𝑏𝑒𝑓 𝑜𝑟𝑒 , and use the inline budget to adjust the trade-off

of the speed and size. Once we have exploited all the inline

candidates for size, we can continue finding candidates using

profile or other performance-centric priority, until the inline

budget is exhausted.

5 Conclusion

Wepresented our size inliner framework that globallymodels

the size cost by extending the bitcode summary.We proposed

pre-inliner to secure the size win, and pre-merger to over-

come inline restrictions with ThinLTO. Our work improved

the code size, 2.8% for SocialApp and 4.0% for ChatApp.

When compared to the state-of-the-art, -Oz optimization

with ThinLTO, Clang became 3% smaller and 6.1% faster.
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