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ABSTRACT
The skyline operator returns from a set of multi-dimensional ob-
jects a subset of superior objects that are not dominated by others.
This operation is considered very important in multi-objective anal-
ysis of large datasets. Although a large number of skyline meth-
ods have been proposed, the majority of them focuses on mini-
mizing the I/O cost. However, in high dimensional spaces, the
problem can easily become CPU-bound due to the large number
of computations required for comparing objects with current sky-
line points while scanning the database. Based on this observation,
we propose a dynamic indexing technique for skyline points that
can be integrated into state-of-the-art sort-based skyline algorithms
to boost their computational performance. The new indexing and
dominance checking approach is supported by a theoretical analy-
sis, while our experiments show that it scales well with the input
size and dimensionality not only because unnecessary dominance
checks are avoided but also because it allows efficient dominance
checking with the help of bitwise operations.

Categories and Subject Descriptors
H.2.4 [Database Management]: Systems—Query processing

General Terms
Algorithms, Experimentation, Performance, Theory

Keywords
skyline, preference, space partitioning

1. INTRODUCTION
The skyline query, as an efficient tool for preference-based data
analysis [27, 13], has attracted a lot of attention in the database
community. It has a wide range of real applications [8, 26] and
it can easily be incorporated into commercial database systems, as
SQL is being extended with clauses for the support of preference
queries [3, 10, 19, 8].

Specifically, given a set of d-dimensional objects O, a skyline
query retrieves all superior objects, which can not be dominated by
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any others in O with respect to user preferences. Here, an object
o dominates another object o′, if and only if o is not worse than o′

in all dimensions and better than o′ in at least one dimension (as-
suming that dimensional domains can be partially or totally ordered
according to some preference or quality criterion).

Skyline queries are useful in multi-criteria decision making ap-
plications that involve high dimensional and large datasets, espe-
cially for clients with a limited bandwidth connection since they
only return a minimum of superior candidates from the server. For
example, consider a person using a wireless client device (e.g., a
smart mobile phone) to connect to a phone shopping website (e.g.,
http://www.phonescoop.com/phones/finder.php) and look for a cell
phone. He/she may care about a wide range of features including
weight, size, standby time, screen size, etc. and wish to manu-
ally select a phone among the best ones in the market. Computing
and returning the skyline over the concerned features, filters out a
large number of inferior cell phones, hopefully leaving only a man-
ageable number of phones ferried to the client device for manual
evaluation.

Several algorithms have been proposed targeting the efficient
skyline evaluation on large datasets. There is a number of meth-
ods that operate on pre-computed indexes on the data, including
Bitmap [23], Index [23], NN [14], BBS [19], LS [18] and ZSearch
[15]. Techniques that do not rely on indexes include BNL [3], D&C
[3], SFS [10], LESS [11], and SaLSa [1]. Intuitively, the index-
based schemes are faster than index-independent strategies, since
they avoid accessing the entire data collection, yet their applica-
bility is significantly limited by the indexing requirement. First,
in many applications the data are dynamically produced (e.g., they
arrive from a stream or they are output from an ad-hoc database op-
erator), so they may not be indexed. Second, the skyline may have
to be computed for an ad-hoc set of features (dimensions), some
of which may be dynamically derived (e.g., distance to a reference
location); we may not assume that multi-dimensional indexes pre-
exist for any possible set of (static or dynamic) preference features.
Finally, multi-dimensional indexes like R-trees have their own lim-
itations as they suffer from the well-known curse of dimensional-
ity. In addition, in high-dimensional problems, index-based skyline
methods face memory management problems as they need to man-
age a huge number of skyline points [31, 6, 7].

We observe that skyline computation in high dimensional spaces
is challenging and CPU-intensive pairwise dominance tests (as op-
posed to I/O) become the dominant cost factor. In specific, the
state-of-the-art approaches that do not depend on indexing (e.g.,
[10, 11, 1]), first sort the data, such that no point dominates a pre-
vious one in the order. Then, while scanning the sorted file, they
compare each accessed point with the skyline points found so far;
these are kept in a memory buffer. If an accessed point is not dom-



inated by the previously found skyline points, it is added to the
current skyline. The bottleneck of this process is the comparison of
each accessed point with the current skyline, which can become as
large as the available memory.

In this work, we propose an object-based space partitioning
(OSP) scheme, which recursively divides the d-dimensional space
into 2d separate partitions w.r.t. a reference skyline object, and fa-
cilitates progressive skyline retrieval on high dimensional datasets.
Using this scheme, our method organizes the current skyline points
in a search tree, which facilitates efficient skyline computation; ev-
ery accessed point is compared only to a small number of current
skyline points, using the tree to guide search. We perform a theoret-
ical analysis, which estimates the expected number of comparisons
that have to be performed in order to decide whether an accessed
point is in the skyline. In addition, we encode the partitions using
bitmaps and use a left-child/right-sibling (LCRS) tree to organize
them. The benefit of this tree is that it allows efficient breadth-
first search, while the encoding allows for fast bitwise comparisons.
Our experimental evaluation demonstrates that our algorithms are
orders of magnitude faster than the current state-of-the-art, practi-
cally minimizing the required comparisons during skyline retrieval.

The rest of this paper is organized as follows. Section 2 reviews
the related work. Section 3 introduces our OSP scheme and ana-
lyzes its pruning power for dominance tests. Thereafter, we present
the LCRS tree implementation of our recursive partitioning scheme
and show the details of three skyline algorithms based on it; two
memory-based and one that is suitable for cases where the skyline
does not fit in memory. Section 4 describes how the LCRS skyline
tree is updated when data are inserted or deleted. Section 5 presents
our experimental evaluation on both real and synthetic datasets. In
Section 6 we discuss how our method can be (i) extended for k-
dominant skyline queries, (ii) adapted for parallel skyline evalua-
tion, and (iii) applied for skyline computation on partially ordered
domains. Finally, Section 7 concludes the paper.

2. RELATED WORK
The skyline query is a popular and powerful paradigm for extract-
ing interesting objects from multi-dimensional databases. The prob-
lem, also known as maximal vector computation [2], was first coined
into the database community in [3]. It is related to other classic
problems in theory, such as convex hull [2] and Pareto optimal-
ity [13]. Early solutions, based on the divide & conquer (D&C)
paradigm, do not scale well for large datasets, since they do not
take into account main memory limitations. [3] adapts the basic
D&C approach to operate with external memory. The main idea is
to recursively divide the dataset into partitions that fit in memory
and compute the local skyline for each of them. The global sky-
line is computed by progressively merging the local ones based on
a bushy merge tree. As argued in [3, 10, 11], the average perfor-
mance of D&C deteriorates with the dimensionality of the problem,
because as dimensionality increases the non-skyline objects have
greater chance to belong to the local skyline of their partition and
the sizes of local skylines grow significantly.

[3] also introduces a block nested loop (BNL) algorithm, which
scans the dataset while using a memory buffer for tracking the ob-
jects not dominated by others. If the buffer overflows, then space
is freed by flushing some objects to a temporary disk file. After the
first pass, objects that entered the buffer before any other object was
written to the temporary file are guaranteed to be skyline objects.
The rest are kept in the buffer and the temporary file is used as input
for a new run of BNL. The algorithm may require a large number
of passes until the complete skyline is computed. The sort filter
skyline (SFS) [10] is an improvement of BNL, which first sorts the

dataset topologically with the help of a monotone function (e.g.,
sum of coordinates, assuming they have been normalized). Sorting
guarantees that each object cannot be dominated by ones that fol-
low it in the order. As a result, each object that is pushed into the
buffer window can immediately be reported as part of the skyline.
The number of passes over the data is then equal to the size of the
skyline over the size of the memory buffer. An optimized version of
SFS, called linear elimination sort for skyline (LESS), is proposed
in [11]. LESS uses a small buffer, called elimination-filter window
in the initial pass of the external sort routine of SFS, which keeps a
small set of objects used to prune others dominated by them early.
Further, LESS combines the last pass of the external sort in SFS
with the first filter-scan of SFS (i.e., first pass of the BNL compo-
nent of SFS). In SFS and LESS, all objects should be scanned at
least once after sorting. Sort and limit skyline algorithm (SaLSa)
[1] strives to avoid scanning the complete set of sorted objects.
First, the authors suggest an optimal sorting function, which or-
ders the points according to their minimum coordinate value among
all dimensions. Second, during the filter-scan process, this method
checks whether all points in the remaining dataset are dominated by
a so-called stop object that can be determined in O(1) time from
the data accessed so far. However, the performance of this method
is drastically affected by the data distribution and increasing di-
mensionality; in high-dimensional problems, the pruning power of
the stop object is limited. All sort-based techniques (SFS, LESS,
SaLSa) suffer from the large number of computations required dur-
ing the filter-scan step, as every read point should be compared with
the skyline points in the buffer.

The aforementioned algorithms do not require that the input data
have been indexed. On the other hand, a set of other techniques
[3, 23, 14, 19, 18, 15] exploit data indexes to accelerate skyline
queries. [3] first proposed simple algorithms that use B-trees or
R-trees for skyline evaluation. Then, two progressive processing
methods, Bitmap and Index, were proposed in [23]. Bitmap en-
codes all data into a bitmap structure so that the skyline can be iden-
tified quickly by a bitwise and operation. Index partitions the en-
tire data into several lists, indexes each list by a B-tree and uses the
trees to find the local skylines, which are then merged to a global
one. [14] observes that the nearest neighbor (NN) object to the ori-
gin must be in the skyline and uses an R-tree to find the NN, and
then segments the remaining data into overlapping partitions based
on the NN. The next nearest neighbors are then iteratively found in
each partition. Multiple traversals of the R-tree are required to re-
move duplicates at the overlapping regions. The branch and bound
skyline (BBS) algorithm introduced in [19] avoids these pitfalls by
prioritizing accesses at partially dominated nodes of the R-tree. The
algorithm is shown to be I/O optimal and superior to the method of
[14]. [15] proposed a ZBtree that encodes and clusters all objects
with the help of a Z-order curve, which is compatible with the dom-
inance relation. As we discussed in the introduction, index-based
approaches have certain limitations that make them useful only for
special cases.

Recently, some studies [5, 4, 8, 18, 28, 27] went beyond sky-
line evaluation for totally ordered numerical domains and consider
partially ordered domains involving categorical or nominal dimen-
sions. Most of them adopt a partial-to-total domain mapping mech-
anism and then apply existing total order methods, which however
suffer from the complex and large size of partially ordered domains
[5, 13]. Finally, a lattice skyline (LS) algorithm, introduced in [18],
uses a lattice structure to answer skyline queries with dimensions
drawn from low-cardinality domains. This method becomes in-
efficient if the number or size of the domains is large and is not
applicable if more than one high-cardinality domain is present. In



this paper, our focus is on totally ordered domains of high cardinal-
ity. In Section 6, we discuss how our methods can be adapted for
partially ordered domains.

To tackle the curse of dimensionality, several proposals extended
or adapted the definition of skyline in order to consider dimen-
sional subspaces in the dominance relationships between objects
[31, 24, 7, 17, 6]. In addition, a top-k query that considers dom-
inance relationships was proposed in [30]. Moreover, efforts have
been devoted to dynamic skyline search [9, 21], probabilistic sky-
line computation [20, 16, 12], skyline computation over uncertain
data, and skyline queries over data streams [22]. Skyline queries
have also been studied in metric spaces [9], or parallel [29, 25] and
distributed [26] environments.

3. SKYLINE PROCESSING USING OSP
Our objective is to improve the performance of sort-based skyline
algorithms (e.g., [1, 10, 11]). Recall that these algorithms topo-
logically pre-sort the data based on a monotone function, which
requires that if object o precedes o′ in the order, then o′ cannot
dominate o. The sorted dataset is scanned; if an object is not domi-
nated by any other that precedes it then it is guaranteed to be in the
skyline. Thus, each accessed object is compared with all skyline
points found so far and potentially added to the skyline set. If there
is no space in memory to fit the new skyline object, then it is writ-
ten to a temporary file. After the first pass, the skyline objects in
the buffer are reported and the algorithm is repeated for the tempo-
rary file. Our goal is to minimize the computational cost of testing
whether the currently read object is in the skyline, during scans.

For this purpose, this section first introduces our Object-based
Space Partitioning (OSP) scheme and defines partition-wise domi-
nance and other associated properties. A detailed analysis estimates
the pruning power of our OSP strategy in dominance tests; that
is the expected number of skyline objects in the buffer compared
with the currently accessed point. An efficient tree implementation
of our recursive OSP scheme is then introduced, which facilitates
partition-wise dominance checking. Thereafter, three skyline algo-
rithms for skyline processing based on OSP are presented.

Without loss of generality, we assume that lower values have
higher preference in all dimensions; i.e., object o dominates object
o′, denoted by o � o′, iff ∀i ∈ [1, d], oi ≤ o′i and ∃j ∈ [1, d], oj <
o′j . Table 1 shows the frequently used notation in the paper.

Symbol Interpretation
O, o object-set, object
d dimensionality

Ho+i (Ho−i ) Superior (inferior) halfspace w.r.t. obj. o and dim. i
Ao(V ) d-bit address of partition V w.r.t. obj. o
Lo(o′) Locating partition of o′ w.r.t. obj. o
Do(o′) partitions that dominate or equal Lo(o′)
Uo(o′) partitions that are dominated by Lo(o′)
m partitioning tree depth
β max. number of objects in partition tree leaves

Table 1: Notation

3.1 Object-based Space Partitioning (OSP)
Consider a set O of objects in a d-dimensional space Rd. Given
an object o = {o1, o2, . . . , od} in O, for any dimension i ∈ [1, d],
Rd can be divided into two halfspaces, Superior Halfspace Ho+i
and Inferior Halfspace Ho−i , by the hyperplane Ri= oi, such that
∀o′ ∈ Ho+i , o′i < oi and ∀o′ ∈ Ho−i , o′i ≥ oi. Therefore, the
space Rd can be divided into 2d partitions using o and any object
o′ ∈ O\o must lie in explicitly one of them. Formally:

DEFINITION 1. Given a skyline object o inRd, namely the ref-
erence, o divides Rd into 2d separate partitions by d hyperplanes
{R1, R2, . . . , Rd}, where Ri = oi, and the address of any parti-
tion V , is a d-bit number Ao(V ), such that for every dimension i,
Ao(V )[i]=0, iff V⊂Ho+i ; Ao(V )[i]=1, iff V⊂Ho−i . Furthermore,
the partition that contains an object o′∈O\o is called the locating
partition of o′ w.r.t. o and denoted by Lo(o′).

Based on Definition 1 and given a reference skyline object o, we
can define a disjoint partitioning of the space into 2d regions, and
give them addresses from 0 to 2d − 1. In practice, the partition
address of any object o′ w.r.t. o can be directly computed by com-
paring its coordinates with those of o. Since o is a skyline point,
the partition with address 00. . .0 must be empty. In addition, all
objects in the partition with address 11. . .1 (besides o’s duplicates)
must be dominated by o, thus they are not skyline points. Finally,
the objects in all other partitions are incomparable with the refer-
ence object o. Therefore, in practice, we only need to consider the
partitions with addresses in [1,· · ·,2d−2]. These 2d−2 partitions are
organized by a tree, as depicted in Figure 1(b) for the data of Figure
1(a). In this 2D example, where attributes are price and milage in a
database with used cars, the reference skyline object is C1; objects
C6–C10 are dominated by C1 and are therefore pruned (they are in
partition with address 11). Objects C2 and C4 are incomparable to
C1 and in partition with address 01, whereas objects C3 and C5 are
also incomparable to C1 and in partition with address 10.
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Figure 1: An example on Object-based Space Partitioning

We now define dominance between partitions V,W which be-
long to the same OSP (see Definition 1), as follows.

DEFINITION 2. If partitions V and W belong to the same OSP
S based on o, V dominates W , denoted by V �W , iff ∀i∈ [1, d],
Ao(V )[i]≤Ao(W )[i] ∧ ∃j ∈ [1, d], Ao(V )[j]<Ao(W )[j]. Other-
wise, V does not dominate W , denoted by V�W . Further, V and
W are incomparable iff V�W ∧W�V .

For example, in a 3D space OSP, the partition with address 001
dominates the partition with address 011 and it is incomparable
with partition 100. We write V �W to represent that V �W or
V =W . Immediately, the conclusions below can be derived from
the above definitions.

THEOREM 1. Given o, o′, o′′ ∈ O, if o′ � o′′, then Lo(o′) �
Lo(o′′).

PROOF. o′ �o′′ ⇒ o′i ≤ o′′i in every dimension i. So, in di-
mension i and w.r.t. o, o′ and o′′ must either be (i) in the same
halfspace (o′, o′′ ∈Ho+i or o′, o′′ ∈ Ho−i ) or (ii) in different half-
spaces: o′ ∈ Ho+i and o′′ ∈ Ho−i ). Case (i) implies Ao(o′)[i] =
Ao(o

′′)[i] and case (ii) implies Ao(o′)[i] < Ao(o
′′)[i]. There-

fore, Ao(o′)[i] ≤ Ao(o
′′)[i] holds in any dimension i. Hence,

Ao(Lo(o′))[i]≤Ao(Lo(o′′))[i] in any dimension i and Lo(o′)�
Lo(o′′).

LEMMA 1. V �W , iff (i) Ao(V )<Ao(W ) and (ii) (Ao(V ) |
Ao(W ))=Ao(W ).



PROOF. Condition (ii) implies that ∀i∈ [1, d], Ao(V )[i]≤Ao(W )[i]
and condition (i) implies ∃j ∈ [1, d], Ao(V )[j] < Ao(W )[j]. So,
V�W and the inverse derivation is obvious.

COROLLARY 1. V is incomparable toW , iff (Ao(V ) |Ao(W ))>
max{Ao(V ), Ao(W )}.

PROOF. From bit-wise operation principles, we know that (Ao(V ) |
Ao(W )) ≥ max{Ao(V ), Ao(W )}, so we should prove that V is
incomparable toW , iff (Ao(V ) |Ao(W )) 6= max{Ao(V ), Ao(W )}.
This holds due to Lemma 1.

LEMMA 2. If V and W are incomparable, then ∀v ∈ V, ∀w ∈
W , v and w are incomparable.

PROOF. If V and W are incomparable then V�W∧W�V . Let
v ∈ V,w ∈W . V �W⇒∃i∈[1, d], Ao(V )[i]>Ao(W )[i]⇒∃i ∈
[1, d], Ao(v)[i]>Ao(w)[i]⇒wi < oi < vi⇒v�w. Symmetrically,
we can show that W �V ⇒∃i∈ [1, d], vi < oi < wi ⇒w � v.
Hence, v and w are incomparable.

Lemma 2 implies that the pairwise dominance tests among in-
comparable partitions can be safely ignored. Conversely, any ob-
ject o′ may be dominated by some objects in the dominating par-
titions of Lo(o′) (including Lo(o′)), as indicated by Theorem 1,
and the pairwise dominance tests for objects in them against o′ are
necessary, if we wish to check whether o′ is a skyline object.

DEFINITION 3. The dominating partition set Do(o
′) and the

dominated partition set Uo(o
′) of any object o′ ∈ O\o w.r.t. o are

defined as:

Do(o
′) = {V ∈ S | V � Lo(o′)}

Uo(o
′) = {V ∈ S | Lo(o′) � V }

Suppose that the object o′ is not worse than o in k dimensions,
or equivalentlyAo(o′) (or Lo(o′)) holds k 1-bits. Then, |Do(o

′)|=
2k − 1 and |Uo(o

′)|=2d−k−1. If we have organized the already
found skyline points in an OSP w.r.t. o, then to determine if a can-
didate oc ∈ O that is currently accessed is in the skyline, it is
sufficient that it passes all dominance tests with skyline objects in
the partitions of Do(oc). Lemma 1 inspires a sequential access-
ing order to facilitate progressive partition-wise dominance tests
against the candidates and safely skip all incomparable partitions
according to Corollary 1. The skyline objects in the partitions of
Do(oc) are expected to be much fewer than the overall number of
skyline points found so far, therefore our method is expected to
have big computational savings over previous skyline techniques
that compare the accessed objects with the complete skyline set in
the buffer.
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Figure 2: Object-based Space Partitioning Skyline Trees

Recursive Object-based Space Partitioning (ROSP) Definition
1 gives us the basic object-based partitioning scheme to divide the
space Rd into 2d non-overlapping partitions w.r.t. a skyline ref-
erence o. Any object o′ ∈ O can then be identified to lie in ex-
actly one of these partitions. The 2d − 2 considered partitions
are indexed by a partition tree, as shown in Figure 2(a). In fact,
this OSP scheme w.r.t. a skyline object can be recursively applied
to each partition and all the properties and derivations presented
above hold for each subsequent partitioning. The partitions can be

organized by a hierarchical partition tree, as shown in Figure 2(b).
Specifically, each internal node contains the reference skyline ob-
ject, which subdivides the partition represented by this node. For
any object o′, we can iteratively compare it with the reference ob-
ject in the partition where it belongs at each level of the tree and
ultimately find the finest-level partition where it belongs. During
this tree traversal, for each node, corresponding to a reference ob-
ject o, we need to check whether o′ passes all dominance tests over
its dominating partitions Do(o

′). If o′ is not pruned during this pro-
cess and finally reaches a leaf locating partition, we can be sure that
o′ belongs to the skyline of O. We call this partition tree skyline
tree and use it to hierarchically index all skyline objects.

As an example of this recursive OSP scheme, consider the points
shown in Figure 3(a). Assume that object C1 is used at the level-0
partitioning. Partitions 01 and 10 by C1, are divided again, using
the skyline objects C16 and C11, respectively. The corresponding
ROSP partition skyline tree is shown in Figure 3(b). Candidate
skyline object C* is first compared with C1 and found to belong
to partition 10. Then it is compared with C11 and sent to its sub-
partition 10 containing C5 and C15. After being compared with
these objects, it is found to be a new skyline object and it is in-
serted in that partition. Similarly, C# is compared to C1, C16, and
finally leaf objects C4, C14. In this 2D example, note that a can-
didate skyline object is compared to only one object per-tree level,
until it reaches a leaf partition, where it is compared with all objects
contained there. In higher dimensionality cases, an object o′ may
have to be compared with multiple partitions per level, as its dom-
inating partition set Do(o

′) has greater size than one. This means
that multiple paths of the skyline tree are traversed in general. In
the next section, we theoretically estimate the number of required
comparisons for uniform data distributions.
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Figure 3: Recursive Object-based Space Partitioning Example

3.2 Partition-wise Dominance Tests Estimate
For simplicity, assume that there is a large number of objects in the
d-dimensional space Rd, uniformly and independently distributed
(UI assumption). This implies that if the space is partitioned by a
skyline object o which is on or near enough to the main diagonal,
each indexed partition over the OSP partition skyline tree, as shown
in Figure 2(a), contains the same number of skyline objects. In
other words, a new skyline candidate oc falls in any one of these
partitions with the same probability 1/(2d−2). Based on Theorem
1, it is sufficient that oc passes all dominance tests with objects in
the partitions in Do(oc), in order to verify if oc is in the skyline.
The expected ratio of existing skyline points to be compared with
the current candidate oc is given by the following theorem.

THEOREM 2. Under UI assumption and with the help of an
OSP w.r.t. skyline object o, the average dominance test ratio R(d)

for a skyline candidate oc, is O( 3d−2d+1+1
(2d−2)2

) < O(( 3
4
)d).



PROOF. Assuming thatAo(oc) holds k 1-bits, where k ∈ [1, d−
1], we have |Do(oc)| = 2k − 1. There are Ckd partitions whose ad-
dresses contain exactly k 1-bits. So, the average number of fetched
partitions for oc from the total of 2d−2 partitions is

∑d−1
k=1

1
2d−2

(2k−
1)Ckd . According to the binomial theorem in math,

∑d
k=0 C

k
d2k =

3d and
∑d
k=0 C

k
d1k = 2d. Then

∑d−1
k=1

1
2d−2

Ckd (2k − 1) =

1
2d−2

(
∑d
k=0 C

k
d2k−

∑d
k=0 C

k
d1k−2d+1) = 3d−2d+1+1

2d−2
. There-

fore, the average dominance test ratio R(d) for oc is, R(d) =
1

(2d−2)

∑d−1
k=0

1
2d−2

2kCkd = 3d−2d+1+1
(2d−2)2

< O(( 3
4
)d)

Now suppose that a recursive partitioning scheme is used instead
of OSP and the existing skyline objects are indexed with the help
of a ROSP skyline tree. Suppose that the depth of recursive parti-
tioning of the space Rd is m (that is, the tree has m levels). Each
non-leaf partition still has the same average dominance test ratio
R(d) for a skyline candidate among its 2d − 2 sub-partitions. In
other words, there are aboutR(d)i(2d−2)i skyline objects to com-
pare with the candidate at level i. Among all skyline objects in a
partition at the leaf level, there are about

∑m−2
i=0 R(d)i(2d− 2)i +

βR(d)m−1(2d−2)m−1 ones to compare with the candidate, where
β is the size of the leaf partition. Therefore, the fraction of fetched

objects in this partition is
∑m−1

i=0 R(d)i(2d−2)i+βR(d)m−1(2d−2)m−1∑m−1
i=0 (2d−2)i+β(2d−2)m−1 =

O(R(d)m−1).
THEOREM 3. Under UI assumption and using a ROSP skyline

tree with heightm, the average pairwise dominance test ratioR(∗)
for any skyline candidate is O(R(d)m) < O(( 3

4
)dm).

PROOF. Immediate, as ROSP search is equivalent to performing
dominance tests using a simple OSP, where each partition has a
fraction O(R(d)m−1) of the total skyline points. Hence, R(∗) =
O(R(d)m) < O(( 3

4
)dm).

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
0
5

10
15
20
25
30
35
40
45
50

Dimensionality(d)

A
ve

ra
ge

 D
om

in
an

ce
 T

es
t R

at
io

(%
)

R(d)
real R(d) over OOSP
R(*)
real R(*) over ROSP

Figure 4: Average Dominance Test Ratio with d,m = 3

Figure 4 evaluates our analysis, by showing the average dom-
inance test ratio together with the actual results obtained on uni-
form datasets with 1M+1K skyline objects. Each presented real
result is the average value of the recorded ratios for the remaining
1K skyline objects, after indexing 1M objects using a skyline tree
(OSP or ROSP tree). Different values of the problem dimension-
ality are tested. This graph illustrates the accuracy of our analysis
and shows the great pruning power of managing current skyline
points using an OSP or ROSP tree. Observe that the percentage
of skyline objects that are fetched for dominance tests against the
candidate reduces when d increases. In addition, the ROSP scheme
performs better than the basic OSP tree, as expected from our anal-
ysis. For instance, the dominance tests against a candidate involve
only about 50% of the indexed objects when d = 2, about 35%
when d = 3, and less than 10% when d = 8, in the OSP scheme.
If d = 8 and we use a ROSP tree with three levels, the savings in
comparisons are huge (98%).

In the worst case, the skyline candidate oc is always in a partition
whose address holds (d−1) 1-bits and 2d−1 partitions should be
checked; in this case the ratio is 2d−1

2d−1
≈ 0.5 for a basic OSP tree,

and 0.5m if we use a ROSP tree. Obviously, this is still much better
than comparing all current skyline objects.

The above analytical results are derived under the UI assump-
tion for points in Rd. In practice, the data may be anticorrelated
or skewed and most of the indexed partitions may be empty, result-
ing in an unbalanced indexing tree. This is why the ratio for the
experimental results in Figure 4 is greater than the ratio in the anal-
ysis, in high dimensional spaces; when d ≥ 10, the skyline objects
are not evenly distributed in all partitions. Obviously, the choice
of the reference objects in the partitioning greatly impacts the tree
structure and the performance. In the worst case, the ROSP tree de-
generates to a list and then our dominance test strategy is similar to
the exhaustive dominance test method used by previous techniques
(e.g., LESS [11]). To overcome this problem, we employ a ran-
dom guessing strategy for the reference object in each partitioning.
Additionally, we use a Left-Child/Right-Sibling tree structure for
implementing the ROSP tree, which facilitates efficient dominance
tests.

3.3 Left-Child/Right-Sibling Skyline Tree
As shown in Figure 5, the skyline objects can be indexed by a left-
child/right-sibling (LCRS) tree based on their partition addresses
w.r.t. the ROSP scheme. This implementation serves two purposes:
(i) high space efficiency, since many partitions are empty and need
not be indexed, and (ii) efficient sequential accessing of partitions
and objects in a breadth-first fashion.

C1

C16

C4

C14

C11

C2 C3 C5

C12 C13 C15C# C*

Figure 5: A LCRS tree for the data of Figure 3(a)

DEFINITION 4. A node e in the LCRS tree is a 4-tuple
<o, pa,child,sb>, where o is a skyline object (which may subdi-
vide this node partition if the node is not a leaf); pa is the address
of the partition represented by this node; child is a pointer to the
non-empty leftmost sub-partition; sb is a pointer to the right (i.e.,
next) non-empty sibling partition.

Obviously, the root node is the first reference object to partition
Rd, so its pa should be 0 and sb is null. Sibling nodes ordered
in ascending partition address pa. Figure 5 illustrates a LCRS tree
for the data of Figure 3(a). Note that in this example, the tree has
four levels (as opposed to the exemplary ROSP tree of Figure 3(b),
which has only 3 levels), because we apply recursive partitioning
until there is only one object remaining at each partition.

As for any node e in the LCRS tree, all objects in its child
sub-tree together with its node object e.o are in the same partition
and share the same partition address w.r.t. its parent node object
ô. Consider a candidate skyline object o with address Aô(o). If
(Aô(o) | e.pa) = e.pa, it is clear that the partition represented by
node e is in Dô(o) and e.pa ≤ Aô(o). Therefore, objects in the
sub-tree of e including its reference object e.o should be compared
with the candidate o to detect whether o is dominated by any of
them. Otherwise, node e will be directly skipped over and all ob-
jects in its child sub-tree together with this node object e.o will be



ignored. Therefore, the dominance tests for any candidate o can be
easily implemented based on a preorder tree traversal of the LCRS
tree, as we discuss in detail in the next section.

The LCRS tree can easily be adapted to a LCRS partitioning
tree, if some leaf nodes e, except from their reference object e.o,
also keep all the objects in the corresponding partition (without re-
cursively re-partitioning them further). For example, the children
of C16 in Figure 5 could be leaf nodes that contain all objects in
the corresponding partitions (i.e., {C4,C#,C14} and {C2,C12}, re-
spectively, like the ROSP tree of Figure 3(b)). Such an adaptation
is used by our algorithms which are presented in the remaining of
this section.

3.4 LCRS Tree Growth
In this section, we show how to manage the skyline objects dy-
namically with the help of a LCRS tree. We describe in detail how
candidate points are compared with the existing ones in the tree and
how the tree grows as new skyline points are discovered.

Algorithm 1: PreOrderDominate(e, o, pa, isL)
Input: e: LCRS tree node; o: candidate; pa: L(o)’s address;

isL: whether e is on o’s locating path
Output: whether o is dominated by some skyline point
begin1

if (e.pa | pa) = pa then � check dominating node2
Pa := Ae.o(o) � compute Ae.o(o)3
if Pa = 2d − 1 then �o is in the partition 11 · · · 14

return true �e.o � o5
inSL := isL ∧ (e.pa = pa) �whether o definitely is in e6
if e.child ∧ e.child.pa ≤ Pa then7

if PreOrderDominate(e.child, o,Pa, inSL) then8
return true �o is dominated by a descendant of e9

else if inSL then �insert o as e.child10
e.child :=<o,Pa, null, e.child>11
return false12

if e.sb ∧ (e.sb.pa ≤ pa) then13
if PreOrderDominate(e.sb, o, pa, isL) then14

return true �o is dominated by a sibling of e15
else if isL ∧ (e.pa < pa) then � insert o as e.sb16
e.sb :=<o, pa, null, e.sb>17

return false18
end19

As discussed before, every node e in the tree should be accessed
and compared with the candidate o if its partition address e.paw.r.t.
its parent node object ô satisfies two conditions: (i) e.pa ≤ Aô(o)
and (ii) (Aô(o) | e.pa) = e.pa. Therefore, for a candidate object
o, we perform a preorder traversal to the tree, as described by Algo-
rithm 1. Whether a sub-tree of e or one of e’s sibling nodes needs
to be accessed depends on the two conditions. In specific, for each
visiting node e there are two cases against the candidate o with the
locating partition address pa w.r.t. e’s parent node object ô.

• Case 1 (lines 2∼12): (e.pa | pa) = pa. In this case, node e
is a dominating partition node for the candidate o. The algo-
rithm must first check whether this node’s object e.o domi-
nates o by computing o’s partition address Pa w.r.t. e.o (line
2). If o is not pruned (line 5), then the algorithm is recur-
sively run for e.child. Here, the method first checks whether
node e is in the locating partition of o, indicated by variable
inSL together with isL (line 6). isL indicates whether the
visiting node e is in the locating path (path from root to the
final locating node) inherited from the recursive calling at the
parent. If isL = false, we perform dominance tests for o
with e and e.child, but o cannot be inserted into the sub-tree
of e (in such case, the recursion on e.child (line 8) will re-

turn false). Otherwise, i.e., isL = true, e is o’s locating
partition (i.e., inSL = true) and e.child.pa is smaller than
o.pa, the algorithm is recursively called for e.child (line 8)
and possibly o will be inserted in that sub-tree. However, if
e does not have a child with e.child.pa < o.pa, then o will
be inserted to the tree as the leftmost child of e and linked to
that child with a sibling pointer (lines 10∼12).

• Case 2 (lines 13∼18): (e.pa | pa) 6= pa. In this case, node
e is skipped over and control is passed to its sibling e.sb, if a
sibling e.sb exists and satisfies condition (i). Otherwise, the
sibling is created dynamically and o is inserted there (line
17).

This preorder traversal is not terminated until the candidate o is
(i) dominated by object or (ii) inserted into e as a new skyline ob-
ject. The special variable isL is used to indicate whether the can-
didate o is in a node that has the same address as o w.r.t. its parent.
If so, the candidate can be inserted under that node. Otherwise, the
node is skipped.

To comprehend the functionality of PreOrderDominate, consider
the LCRS tree of Figure 5 and consider candidate object C*. First,
C* is compared with the root object C1 and we attempt to insert it to
its child C16, since in the root run of the algorithm C*.pa=C1.pa=00
and C1 does not dominate C*. C16 is incomparable with C* (Case
2), so C16 is skipped over and control is passed to its sibling C11.
C11 is in the same partition as C*, w.r.t. C1 (Case 1). So, these
two are compared and C*’s address w.r.t. C11 is computed. C11
is in the locating path of C*, so we call the procedure for the child
of C11, that is C3 (line 8). Continuing in this fashion, C* even-
tually reaches C15, and since they are incomparable and there are
no more siblings of C15 to check, C* is inserted as C15’s sibling
and the algorithm terminates, having decided that C* is a new sky-
line object. Similarly, the candidate C# is compared successively
with the root object C1, C16, and eventually reaches C4. Since
C4 and C# are incomparable, in this recursion the algorithm will
reach lines 10 ∼ 12 because for the child C14 of C4, we have
C14.pa = 10 >C#.pa = 01. Therefore, C# is inserted as a left-
most the child of node C4 and the original child of node C14 will be
linked as the sibling of C#; then, the algorithm terminates, having
decided that C# is a new skyline object.

3.5 OSP Skyline Algorithms
In this section, we propose two algorithms that are based on the
LCRS tree and the growth procedure described in Section 3.4. When
describing these two algorithms, we assume that the skyline is small
enough to fit in memory. The case where the skyline grows larger
than the available memory is discussed in Section 3.7.

The first method, OSPSOnSortingFirst (Algorithm 2), is a straight-
forward application of the LCRS tree growth procedure. It follows
the sort-based paradigm of the state-of-the-art skyline algorithms
[10, 11, 1]. The data are first topologically sorted, such that each
object cannot be dominated by all objects behind it in the ordered
dataset. We then have to set a skyline object as the root of the tree;
the first object in order is guaranteed to be in the skyline. In or-
der to increase the chances for balanced level-0 partitions, instead
of selecting the first object as reference, we may choose a random
skyline point, by performing a scan over the data. We investigate
the effectiveness of such an approach in the Section 5. Then, OS-
PSOnSortingFirst scans the remaining objects and applies the Pre-
OrderDominate procedure with pa = 0 and isL = true. Finally,
SL is reported as the skyline tree.

Our second method, OSPSOnPartitioningFirst, does not rely
on sorting, but attempts to partition the dataset and solve indepen-



Algorithm 2: OSPSOnSortingFirst(O)
Input: O: dataset;
Output: SL: LCRS Skyline Tree
begin1

SortO by a topological monotone function F2
sfirst := a skyline object inO3
SL :=<sfirst, 0, null, null> �initialize SL4
foreach o ∈ O\sfirst do � check all other objects inO5

PreOderDominate(SL, o, 0, true)6
return SL7

end8

dent problems, hinted by Theorem 1 and Lemma 1. Specifically,
the main idea is to dynamically partition the datasetO, while grow-
ing the LCRS tree. Algorithm 3, which is the pseudocode of our
second method, is an adapted version of PreOrderDominate, which
was presented in Section 3.4.

We know that the objects in a partition with a larger address can-
not dominate objects in ones with smaller address. So, if we grow
the tree starting with the partitions with the smaller addresses, we
can use it to effectively prune the partitions dominated by them, as
the process continues. The details of this method are as follows.
First (lines 2∼8), we recursively divide the current leftmost child
partition SO of a dynamically defined LCRS partition tree1 until
it contains no more than a maximum number of objects (β in line
3 of Algorithm 3). Then, we compute the local skyline tree SL
for the objects in SO. Thereafter, SL filters all partitions Uo(SO)
dominated by it among all current sibling nodes (line 9). Finally,
we recursively call the algorithm by setting as SO its sibling, or
backtrack the recursion tree to the next partition in order if there
are no more siblings. While partitioning SO at line 7, the algo-
rithm prunes all dominated objects by the reference r. Note that
the reference object r at the partitioning of SO should be a skyline
object. To find such an object, it suffices to search only within the
partition (a linear scan is required), since points there dominated by
other partitions should have been filtered earlier (as we will explain
shortly).

Algorithm 3: OSPSOnPartitioningFirst(SO)
Input: SO: LCRS Partition Tree
Output: SL: LCRS Skyline Tree
begin1

if SO = null ∨ |SO.O| = 0 then return null2
if |SO.O| ≤ β then3

return OSPSOnSortingFirst(SO.O)4
r :=a skyline object in SO.O5
SL :=<r,SO.pa, null, null>6
partition SO w.r.t. r, prune all r’s dominating objects7
SL.child :=OSPSOnPartitioningFirst(SO.child)8
FilterDominatedPartitions(SO.sb,SL)9
SO := SO.sb10
SL.sb :=OSPSOnPartitioningFirst(SO)11
return SL12

end13

If the leaf node capacity β in line 3 is set to 1, the partitions are
recursively subdivided until one object is contained and that object
is definitely as a skyline object. In general, smaller β results in
deep partitioning, which helps to prune more data and reduce the
cost compared to sorting. On the other hand, a small β incurs more
partitioning that can increase the I/O cost. The effect of β on the
1The LCRS partition tree is similar to the LCRS skyline tree, but
each leaf node contains a set of objects fromO instead of a skyline
object o.

performance is evaluated in Section 5.
The filtering process of line 9 is implemented by Algorithm 4. If

the tested sibling partition SO is dominated by the root node of SL,
the objects in it will be filtered by SL using PreOderDominate with
isL = false (lines 3∼6), since we only need to apply dominance
tests over SL, but the surviving objects may not be inserted into
SL. The method recursively accesses the sibling partitions of SO
in order, checking all dominated partitions (line 7). If a partition
becomes empty, then it will be discarded in order to avoid redun-
dant nodes in the partition tree (lines 8∼9). After the completion
of this filtering process, any objects dominated by some skyline ob-
jects in SL will be discarded in all dominated partitions which are
siblings of SO. Observe that the current local skyline SL will not
be processed again until we backtrack to the sibling partitions of its
parent.

Algorithm 4: FilterDominatedPartitions(SO,SL)
Input: SO: LCRS partition; SL: skyline tree pre-sibling of SO
Output: SO: LCRS partition filtered using SL
begin1

if SO = null then return2
if (SO.pa | SL.pa) = SO.pa then �SL � SO3

foreach o ∈ SO.O do4
if PreOderDominate(SL, o,SO.pa, false) then5

remove o from SO.O6
FilterDominatedPartitions(SO.sb,SL)7
if |SO.O| = 0 then8

delete SO from LCRS partition tree; SO := SO.sb9
end10

As an example, consider a 3D dataset O = {o0, o1, · · · , o9}.
Assume that β as 3. First, the algorithm will pick a skyline object r
from O; assume that r = o0. Using r, the algorithm partitions the
dataset into three subsets: P001={o1, o3, o4}, P011={o5, o6}, and
P101={o2, o7, o8, o9}, with addresses 001, 011, and 101, respec-
tively. Partition P001 will be processed first and since its size is
not greater than β, its skyline tree will be directly computed using
the OSPSOnSortingFirst algorithm (Algorithm 2). Assume that the
returned local skyline tree S001 consists of o1, o3, o4, as shown in
the 2nd step of Figure 6. In the next step, we filter the sibling par-
titions P011 and P101 of P001, using S001, since both of them are
dominated by partition P001. Assume that none of the objects in
them can be discarded. In the next step, we continue processing the
next sibling node P011 using the same process and return the local
skyline tree S011 containing o5 and o6. This tree is linked as sibling
of S001. We then invoke the filtering process, but there is nothing to
be done by it, as P011 does not dominate P101. In the last step, we
process partition P101. Since it contains more than β objects, it is
re-partitioned using o2 into three partitions containing o7, o8, and
o9, respectively. After processing these three partitions, the algo-
rithm will backtrack to the root and terminate, returning the skyline
tree. Figure 6 shows how the skyline tree grows progressively as
Algorithm 4 is applied on this dataset.

OSPSOnPartitioningFirst can be faster than OSPSOnSortingFirst
because it avoids sorting and in addition it examines the data in a
more principled order, attempting to prune objects as soon as sky-
line points are found in their dominating partitions.

3.6 Discussion
In this section, we first discuss how the proposed algorithms can
seamlessly incorporate the early termination optimization of SaLSa
[1] (called limiting). Then, we analyze their space requirements and
expected processing time.

In our LCRS Skyline Tree, we can keep two additional minimal
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Figure 6: LCRSSTree growing over OSPSOnPartitioningFirst

max-coordinate values in each node e (used by SaLSa[1]) among
all skyline objects in (i) the sub-tree rooted at e and (ii) e’s sib-
ling subtree, denoted by Te and Te.sb, respectively. Hence, the stop
condition of SaLSa can be applied to each node using both Te and
Te.sb. If the stop condition with Te is satisfied when visiting node
e, the dominance tests in (i) can be safely omitted. Similarly com-
paring to e’s sibling subtree can be skipped using Te.sb. By testing
the termination condition on the root node of the LCRS Skyline
Tree, OSPSOnSortingFirst can terminate, as early as possible. OS-
PSOnPartitioningFirst applies the same idea in each partition and
when compares partitions dominating each other.

During search, only the current LCRS skyline tree SL must be
kept in memory for both algorithms. In addition, the depth of the
recursive calling in partition-wise dominance tests is bounded by
the maximum path length, which is bounded by the size of the sky-
line r. Hence, the space complexity of the algorithms is O(r). For
an arbitrary candidate oc, if it is not a skyline object, it must be
dominated by one skyline object among Do(oc) at each level of the
LCRS skyline tree SL. Therefore, the expected number of dom-
inance tests for it is O(R(∗)|SL|) under UI. In the worst case,
where SL degrades to a linked list, the time complexity of our
methods is the same as that of previous approaches, i.e., O(nr),
where n is the size of the dataset. However, as discussed in Section
3.2, we expect the number of dominance tests to be much lower,
namely O(n ·R(∗) log r), if the tree is balanced.

3.7 OSPS on Bounded Memory
A closer look on OSPSOnPartitioningFirst reveals that, during the
execution of the algorithm, we can report and remove from mem-
ory the part of the computed local skyline tree that has already been
used to filter objects in the partitions that it dominates. In this sec-
tion, we devise an external skyline algorithm based on this idea to
handle the case where the skyline tree grows larger than the avail-
able system memory. The details of this extended version of OSP-
SOnPartitioningFirst are given by Algorithm 5.

Here, a temporary file T is utilized for gradually collecting the
local skyline tree nodes swapped out of the memory. If the exam-
ined partition does not fit in memory, it is re-partitioned using one
of its skyline objects and the algorithm is recursively applied to its
leftmost subpartition (lines 15∼17). Otherwise, OSPSOnPartition-
ingFirst is applied to return the skyline tree SL only involving the
processed partition SO. Obviously, SL is a subtree of the overall
skyline tree and can be directly written to the result file T (line 7).
The algorithm traces back the path from the root that leads to SL
(using Parent pointers) and uses SL to filter all the partitions that
are siblings to any node in this path (lines 9∼12). The key dif-
ference from OSPSOnPartitioningFirst is in this filtering strategy.
Recall that OSPSOnPartitioningFirst only filters the dominated par-
titions among the siblings of the processed partition SO. Here, SL
first filters all its dominated sibling partitions (line 8). Then, the
parent node object and the reference object which divides the par-
ent partition are pushed into SL (line 10). This dynamically grown
skyline tree SL filters all dominated partitions at the parent level

Algorithm 5: OSPSOnOverflowingMemory(SO)
Input: SO: LCRSPTree
Output: T : file where skyline is written
begin1

if SO = null then return2
if |SO.O| ≤ β then �SO.O fits in memory3
Cur := SO, Parent := SO.parent, SO := SO.sb4
Cur.sb := null �retrieve SL only in Cur5
SL :=OSPSOnSortingFirst(Cur)6
output SL to file T �store local skyline tree7
FilterDominatedPartitions(SO,SL)8
while Parent do �go up to filter ancestral siblings using SL9
SL :=<Parent.o,Parent.pa,SL, null>10
FilterDominatedPartitions(Parent.sb,SL)11
Parent := Parent.parent12

remove SL from memory13
else �recursively partition overflowing SO14
r :=a skyline object in SO.O15
partition SO w.r.t. r, prune all r’s dominating objects in SO and16
output r into temporary file T
OSPSOnOverflowingMemory(SO.child)17

OSPSOnOverflowingMemory(SO)18
end19

(line 11), and progressively checks all partitions that are dominated
by nodes in the path that links the root with SL. Then, SL can be
removed from memory (line 13) to make space for the next parti-
tion, as the skyline objects in SL have already been used to filter
any possible object in O that they can dominate. Having finished
with SL, the recursion will continue to process the next sibling of
the current partition (line 18) or backtrack to the sibling of its par-
ent. When all partitions are processed, the final skyline tree will
have been collected into the skyline file T .

4. SKYLINE UPDATES
The skyline may change due to subsequent updates to the database,
and hence should be incrementally maintained to avoid re-evaluation
from scratch. The LCRS skyline tree facilitates such skyline up-
dates efficiently. In this section, we discuss how insertions and
deletions are handled by an existing skyline tree. An insertion to
the dataset may cause the deletion of some skyline objects which
are dominated by the new object. Similarly, a deletion of a skyline
object may result in new objects becoming part of the skyline.

4.1 Insertion
When a new object oint is inserted, the first thing to do is to tra-
verse the skyline tree SL to see if it is dominated by an existing
skyline object. If oint cannot be pruned, then it should be inserted
into SL. However, in this case, oint may dominate some objects on
the existing skyline which now have to be removed. To accomplish
both tasks, we can easily extend the PreOderDominate algorithm
(Algorithm 1) as follows. First, we perform preorder traversal as in
the original algorithm until we find out that oint can be pruned or
insert oint as a new skyline object. In the second case, we traverse
the tree upwards from the new leaf that contains oint and identify
the partitions at each level, which are dominated by oint. Skyline
objects in these partitions are accessed (with the help of the tree)
and any object found to be dominated by oint is deleted from the
tree. If a deleted object is in a non-leaf tree node, instead of explic-
itly deleting the node (requiring expensive tree re-organization), we
can simply mark it as “non-skyline” object and not use it for filter-
ing (but only for re-direction) in subsequent uses of the tree.

4.2 Deletion



The deletion of an existing object odel ∈ O is handled as follows.
If odel is not a skyline object, no further processing is required.
Otherwise, we access the objects dominated by odel in topological
sort order and apply the PreOderDominate algorithm (Algorithm 1)
for each of them using the existing tree (we remove odel from the
tree prior to this).

5. EXPERIMENTAL EVALUATION
In this section, we experimentally evaluate the performance of the
proposed algorithms by comparing them with LESS [11] and SaLSa
[1] as well as ZUpdate [15], using both synthetic and real datasets.
All algorithms in Table 2 were implemented in C++ and all exper-
iments were conducted on a Linux 2.6.22 Server with Intel Xeon
2.50GHz CPU and 8GB RAM.

Algorithm Description
LESS Linear Elimination Sort for Skyline [11]
SaLSa Sort and Limit Skyline algorithm [1]

OSPSSF OSP Skyline using Sorting First (Sec. 3.5)
OSPSSF-1st OSPSSF using first skyline object (Sec. 3.5)
OSPSSF-lim Variant of OSPSSF with limiting (Sec. 3.6)

OSPSPF OSP Skyline on Partitioning First (Sec. 3.5)
OSPSPF-lim Variant of OSPSSF with limiting (Sec. 3.6)

OSPSOM OSP Skyline on Bounded Memory (Sec. 3.7)
ZUpdate Skyline Update in Z order [15]

OSPSInsert OSP Skyline Update at Insertion (Sec. 4.1)
OSPSDelete OSP Skyline Update at Deletion (Sec. 4.2)

Table 2: Description of the algorithms

5.1 Experiment Settings
Three types of synthetic datasets, anti-correlated (AC), uniform
and independent (UI) and correlated (CO) distributions, are gen-
erated to model different scenarios according to the methodology
in [3]. Due to the space limitation, some results on CO are not
reported.2 The data dimensionality (d) varies from 2 to 22 and the
data cardinality (n) ranges from 10K to 1M to evaluate the scalabil-
ity of the proposed algorithms. All dimensions are totally ordered
domains which are normalized to a [0, 1000]d space. Accordingly,
three real datasets are adopted in our evaluation, denoted by NBA,
Household, and Color,3 which follow AC, UI and CO distributions,
respectively. NBA contains 19,181 statistics from regular seasons
during 1946–2008, each of which corresponds to the statistics of
an NBA player’s performance in 21 aspects (such as points scored,
rebounds, assists, field goals made, etc). However, we only con-
sider 10 ones among 21 statistics in our evaluation since others
may be missing in some records (e.g., steals were not recorded be-
fore 1973). Household consists of 127,931 data, each representing
the percentage of an American family’s annual expenses on 6 types
of expenditures (e.g., electricity, gas, phone, etc). Color is a 9-
dimensional dataset containing 68,040 objects, each representing
the first three moments of the RGB color distribution of an image.

Three monotone functions, Sum (the sum of all coordinates), En-
tropy [11] and minC [1], are used for sorting the datasets in the
different algorithms. LESS uses Entropy, SaLSa uses minC, and
our sort-based method uses Sum by default. We use an EF window
that fits 200 objects in the first sorting pass of LESS in our experi-
ments. In addition, both LESS and SaLSa (with backward strategy
[1]) are always completed in a single pass, when sufficient memory

2Results on CO are similar to those on UI and AC.
3These datasets are collected from www.nba.com, www.ipums.org,
and kdd.ics.uci.edu, respectively.

can be available for sorting and storing the results, and the buffer
size in OSPSOM, β, is set to 10,000 objects by default, but to 1 ob-
ject in OSPSPF. A ZBtree [15] is created using bulk loading to be
tested for skyline updates. Our methods for insertion and deletion
are adapted to work on the ZBtree (i.e., for searching all dominated
objects by the deleted skyline object). All the settings are similar
to those of ZUpdate in [15] on the evaluation of skyline updates.
All results reported are the average performance over 20 iterations
unless specified otherwise.

5.2 Experimental Results on Synthetic Datasets

5.2.1 The Effect of Guessing First Skyline Object
We first investigate the difference of using the first skyline object
in the sort-order as the first partitioning object in our sort-based
method OSPSSF (described in Section 3.5). We compare two ver-
sions of the algorithm; OSPSSF, where we use a random skyline
object for the top partitioning, and OSPSSF-1st, where we use the
first object in the topological sort order (all data are sorted by Sum
during execution). A random skyline point can be identified if we
randomly pick an object o inO and then scan the ordered file back-
wards from the position of o until the beginning of the file. If o is
found to be dominated by a predecessor o′, then we set o = o′ and
continue the comparisons backwards from this point.

Figure 7 plots the elapsed time against the data dimensionality
from 2 to 22 among 100K objects for OSPSSF and OSPSSF-1st.
The percentage of skyline objects in the result is plotted in the same
figures, but indicated by the right y-axis. In most cases, using a ran-
dom object leads to an improvement in the performance of OSPSSF
in both AC and UI datasets (similar results hold for CO). In addi-
tion, we found out that the performance of OSPSSF-1st is greatly
impacted by the sorting function, whereas using a random skyline
object in OSPSSF is more robust. On the other hand, finding a
random skyline object has additional overhead, as it may require
an additional scan over the data, while it makes no difference on
UI and CO datasets of low dimensionality. In summary, choosing
the level-0 partitioning skyline object carefully pays off only for
anti-correlated data or high dimensional problems.

Interestingly, the elapsed time does not grow with the increas-
ing size of the skyline and dimensionality in AC. It fluctuates and
becomes almost flat in high dimensional datasets, where there are
more skyline objects. The punning power of ROSP in dominance
tests grows as the dimensionality increases.
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Figure 7: Effect of guessing scheme on OSPSSF (n=100K)

5.2.2 The Effect of Partition Buffer Size
Recall that a bounded buffer with the parameter β is used to con-
trol partition data loading for local skyline computation in OSP-
SPF (Algorithm 3) and OSPSOM (Algorithm 5). Figure 8 depicts
the effect of different buffer sizes β on both algorithms on 12-
dimensional datasets with 1M objects. For OSPSPF, as shown in



Figure 8(a), a small buffer size does not greatly impact its perfor-
mance. With increasing buffer size, the cost increases very slowly
until the buffer size reaches 1M. A steep growth occurs for β=1M,
since OSPSPF in this case becomes an instance of OSPSSF, which
must sort the entire dataset first. Therefore, we directly set β = 1
for the main-memory OSPSPF algorithm in all experiments, i.e.,
the dataset is recursively divided until one skyline object is con-
tained in each partition. On the other hand, the results are different
for the secondary memory algorithm OSPSOM, as shown in Fig-
ure 8(b). With smaller buffer size (e.g., less than 10,000 objects),
the elapsed time increases significantly in all datasets. Especially
the running time on the AC dataset ticks to more than 2,000 sec-
onds for a buffer size of one object and to about 1,840 seconds for
β = 100 (these values are out of the plot range). With β larger than
10,000, the costs decrease slowly and become flat. OSPSOM with
β = 1M is equivalent to an instance of OSPSPF which outputs all
skyline objects into the temporary file T . In the remaining experi-
ments, we assume a memory bound of β = 10, 000 for OSPSOM.
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Figure 8: Effect of buffer size (d=12, n=1M)

5.2.3 The Effect of Dimensionality
We study the performance of our proposed methods against SaLSa
and LESS, as shown in Figure 9. All reported results are with
datasets of 2–22 dimensions and fixed cardinality (n=100K). We do
not plot the percentage of skyline points here, since the values are
the same as those in Figure 7. The plots show that all our proposed
methods greatly outperform SaLSa and LESS in all datasets, but
none of them systematically dominates the others. With increasing
dimensionality and growth of skyline objects, the execution time
of SaLSa and LESS grows at very high levels, however, the cost
of our methods grows only slightly. We should mention that for
low dimensional UI and CO datasets (e.g., less than 5 dimensions),
SaLSa and LESS may outperform some of our proposed methods
(such as OSPSSF and OSPSOM) but they are worse than the vari-
ants of our methods with the limiting strategy (i.e., OSPSSF-lim
and OSPSPF-lim). This is because OSPSSF and OSPSOM require
to scan the entire set of ordered objects, but SaLSa can halt earlier
and LESS may filter more objects using the EF window. Obvi-
ously, OSPSSF-lim and OSPSPF-lim share the ability of SaLSa to
stop earlier. Among our proposed skyline methods, OSPSPF-lim
comes first, OSPSPF comes second, and then come OSPSSF-lim,
OSPSOM, and OSPSSF in order of average performance. Never-
theless, note that OSPSOM assumes a limited memory scenario for
our system, whereas the remaining algorithms use unlimited mem-
ory to hold the skyline.

5.2.4 The Effect of Data Cardinality
The next experiment evaluates the performance of our methods
against LESS and SaLSa with different data sizes (n=10K up to 1M
in log scale), as shown in Figure 10. The percentage of skyline ob-
jects for each dataset is listed below the x-axis points. The elapsed
time of all algorithms increases as data cardinality grows. All our
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Figure 9: Effect of dimensionality (n=100K)

methods are orders of magnitude faster than LESS and SaLSa. For
AC datasets, it seems that the performance of OSPSOM depends
on the percentage of skyline points. The higher the percentage of
skyline objects out of the entire dataset, the longer time it takes
for OSPSOM to terminate. This is because more objects should
be swapped out to the temporary file T . From the main-memory
algorithms, OSPSPF-lim is the best performing one.
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Figure 10: Effect of cardinality(d=12)

5.2.5 Skyline Updates
In this experiment, we compare the cost of updates using our sky-
line tree versus the update cost on a sophisticated index like the ZB-
tree [15]. In specific, we compare the cost of applying delete and
insert operations to O while maintaining the skyline in an LCRS
tree (we denote these operations by OSPSDelete and OSPSInsert,
respectively) with the cost of the corresponding operations on the
maintenance of the ZBtree (denoted by ZUpdate-del and ZUpdate-
ins). Figure 11 illustrates the results. All experiments were con-
ducted on datasets with fixed cardinality (n=1M) for various data
dimensionalities (2–22). Compared with deletions, insertions are
lightweight operations since they do not need to retrieve all objects
dominated by the processed candidates from the source datasets.
On the ZBtree, ZUpdate-del needs to access all nodes which con-
tain points dominated by the processed candidates and then tra-
verses its skyline ZBtree for dominance tests. Thus, the amount of
redundant comparisons among indexing nodes, including the un-
dominated objects in them, weigh on its performance. In addi-
tion, all updating operations require expensive skyline ZBtree up-
date costs. However, our methods only need to retrieve all points
dominated by the deleted one and then perform dominance tests for
them, using our efficient LCRS tree SL. The great pruning power
of the LCRS tree SL in dominance tests can be used for skyline
updates, as discussed in Section 3.2 and Section 4.1. This is why
the cost of our methods does not increase with dimensionality. On
the other hand, the time for ZBtree updates fluctuates.

5.3 Experimental Results on Real Datasets
Our experimental results on the three real datasets are presented in
Table 3. Observe that LESS and SaLSa spend much longer time
than all our proposed methods for skyline retrieval. For instance,
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Figure 11: Skyline updating cost (n=1M)

the elapsed times of all our algorithms are bounded by 0.5 sec-
onds, whereas LESS needs about eight seconds and SaLSa requires
about ten seconds to complete skyline computation for the NBA
dataset. On Household and Color datasets, SaLSa performs bet-
ter than LESS and both of them are still inferior to all our methods.
Consistently to our previous experiments, all of our proposed meth-
ods including the variants with limiting strategy work well on these
three real datasets. OSPSOM is still the most expensive among our
methods and OSPSPF with limiting scheme is the most efficient
version of object-based space partitioning skyline algorithms.

NBA Household Color
Algorithm n=19,181; d=10 n=127,931; d=6 n=68,040; d=9

skyline% = 57.8 skyline% = 4.51 skyline% = 2.25
LESS 8.207 14.743 0.503
SaLSa 10.120 10.221 0.428

OSPSSF 0.442 0.556 0.116
OSPSSF-lim 0.425 0.538 0.102

OSPSPF 0.432 0.460 0.072
OSPSPF-lim 0.384 0.456 0.068

OSPSOM 0.458 0.783 0.132

Table 3: Elapsed time (sec) on real datasets

6. EXTENSIONS
This section discusses interesting extensions to the object-based
space partitioning scheme that we proposed in this paper, demon-
strating the versatility of our solutions for computing k-dominant
skylines and performing parallel skyline computation coherently
in high dimensional spaces. We also discuss how our methods can
be adapted to compute skylines in partially ordered domains.

6.1 k-dominant Skyline Queries using OSP
By relaxing the dominance condition to consider k from the total
of d dimensions, the k-dominant skyline query retrieves a repre-
sentative subset of skyline objects. We say that o k-dominates o′,
denoted by o �k o′, if there is a k sized subset dimensions, such
that o dominates o′ in the corresponding subspace. [6] show that
the transitive property does not hold for the k-dominance relation;
i.e., there could be o �k o′, o′ �k o′′, and o 6�k o′′. The reason
for this is that different k dimensional subsets could be used for
o �k o′ and o′ �k o′′. This adds to the complexity of k-dominant
skyline computation. However, from [6], we know that for an ob-
ject o ∈ O to be in the k-dominance skyline, o should also be
part of the conventional skyline considering all dimensions. This
implies that it is sufficient to detect whether a candidate is in the
k-dominate skyline using our LCRS tree SL instead of the entire
dataset O. We now highlight the properties, based on the defini-
tion of k-dominance, which facilitate k-dominance tests using the
LCRS tree SL.

• For any node e ∈ SL, its reference object e.omust k-dominate
all objects in its child nodes whose partition address contains
at least k 1-bits

• For any node e ∈ SL, all objects in its child partitions with
address containing less than (d− k) 1-bits must k-dominate
its reference object e.o

• For any node e ∈ SL, any object o ∈ O with address
Ae.o(o) containing at least (k) 1-bits must be k-dominated
by its reference object e.o

• For any node e ∈ SL, any object o ∈ O with address
Ae.o(o) containing less than (d− k) 1-bits must k-dominate
its reference object e.o

We can design an algorithm that computes k-dominant skylines,
by traversing the tree and pruning skyline objects using the above
properties. More specifically, for each encountered node, we di-
rectly apply the pruning rules to eliminate nodes in SL that are
k-dominated.

6.2 Parallel Skyline Evaluation using OSP
The conventional technique for parallel skyline evaluation is to par-
tition the entire dataset to several servers, compute the local sky-
lines in each partition and then merge them. Intuitively, a care-
ful workload assignment strategy can reduce the size of local sky-
lines and improve the efficiency of their merging. Our object-based
space partitioning scheme is a natural method for this purpose, as
it implies the dominance relations among partitions and the dom-
inance tests among incomparable partitions can be omitted effec-
tively. A straightforward strategy is to divide the dataset with re-
spect to an object and then group all incomparable partitions to bal-
ance the workload at different servers. At the same time, a LCRS
partition tree among all distributed servers is constructed to avoid
the communications between incomparable servers. Another ad-
vantage of workload assignment based on the object-based space
partitioning scheme is that it can handle arbitrary data distributions
by dynamically splitting the data space. We note that here we only
sketch a method for deriving an appropriate partitioning scheme for
parallel computation, in the same spirit as the space-partitioning ap-
proach proposed in [29]. Specific optimizations are out of the scope
of this paper and they are subject for future work.

6.3 Skyline Evaluation on POD using OSP
So far, we have assumed that the domains of all dimensions define
a total order. In practice, we may have dimensions with partially
ordered domains, where the values of two objects can be incom-
parable. For example, consider a categorical dimension with four
values {grey, red, green, white}, such that grey is preferable to red
or green, red or green is preferable to white, but there is no clear
preference between red and green. In this case, a partially ordered
domain (POD) {(grey), (red, green), (white)} is defined for this di-
mension. If two objects have incomparable values in a dimension
with POD, then by definition they are incomparable (i.e., one does
not dominate the other).

In this section, we discuss how our OSP indexing method can be
extended for data with dimensions having POD. Basically, we em-
ploy the same OSP scheme described in Section 3.1, but this time
we also use the partition with address 00 . . . 0,4 where we store ob-
jects which are incomparable to the reference object o in the PODs.

4Recall that this partition is normally disregarded; it is empty since
the reference object is a skyline object.



We call this the Partially Incomparable Partition (PIP) w.r.t. the
reference o.

For each object o′ ∈ PIP w.r.t. o, we extend Definition 1, to
define its partial partition address Ao(o′): for each dimension
i, if oi < o′i or oi and o′i are incomparable, then Ao(o′)[i]=1;
otherwise, Ao(o′)[i]=0. Accordingly, the objects in PIP are par-
titioned into partial locating partitions based on their partial par-
tition address. The dominating and dominated partition sets of an
object o′ (i.e., Do(o

′) and Uo(o
′), respectively) are then extended

to include the dominating and dominated partial locating partitions
in the PIP . In other words, the object o′ ∈ PIP w.r.t. o may
be dominated by (resp. dominate) some objects in the dominating
(resp. dominated) partitions of its partial locating partition.

Therefore, during PreOderDominate, each object o′∈PIP w.r.t.
the reference object e.o of a LCRS skyline tree node e, should
do dominance tests with objects in the partitions of Do(o

′) and
it could finally be inserted into PIP . PIP could dynamically be
re-partitioned, like normal partitions. In the adapted version of OS-
PSOnPartitioningFirst for PODs, the local LCRS skyline tree SL
for PIP is created first, but the filtering process for PIP is differ-
ent compared to regular partitions, since some objects in SL may
be dominated by objects in its sibling partitions that follow. Due to
this, nodes may have to be deleted in the SL constructed during the
progress of the algorithm. For deleted nodes, we can use the trick
mentioned in Section 4.1 (i.e., mark them as “non-skyline”, instead
of explicitly deleting them to avoid expensive re-organization of
the tree). By applying these changes to the algorithms, we can use
them if some dimensions have partially ordered domains.

7. CONCLUSIONS
In this paper, we proposed an efficient set of skyline evaluation

algorithms that are based on the idea of organizing the discovered
skyline points in a tree which defines a recursive space partitioning.
With the help of this tree, each candidate skyline object only needs
to be compared for dominance with a small subset of the existing
skyline points. The nice feature of this technique is that the ratio of
skyline points to be compared with a candidate decreases with the
dimensionality of the problem. This makes our solutions scalable
to the dimensionality, a feature that all previously proposed skyline
algorithms lack.

By accessing the data in a particular (topological-sort) order, we
guarantee that each object that is inserted to the tree is a skyline ob-
ject and cannot be pruned by objects accessed later. This ensures ef-
ficient updates into the tree, as data reorganization is avoided. Our
first algorithm directly applies this idea after having pre-sorted the
data. Our second method partitions the dataset recursively, while
constructing the tree and achieves better performance because it
avoids sorting. Finally, we propose a version of the partitioning-
based algorithm, which is appropriate for the case where the sky-
line is larger than the available memory.

Our experimental results confirm that dominance checks dom-
inate the cost of skyline computation and show that our methods
are orders of magnitude faster than the state-of-the-art, for prob-
lems of high-dimensionality and anti-correlated data. In the future,
we plan to identify and compare more appropriate heuristics for se-
lecting the skyline objects that define the space partitioning, as the
choice of these objects has significant effect in the performance.
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