
Scalable SMT-Based Verification of GPU Kernel Functions ∗

Guodong Li
School of Computing, University of Utah

UT, USA
ligd@cs.utah.edu

Ganesh Gopalakrishnan
School of Computing, University of Utah

UT, USA
ganesh@cs.utah.edu

ABSTRACT
Interest in Graphical Processing Units (GPUs) is skyrocket-
ing due to their potential to yield spectacular performance
on many important computing applications. Unfortunately,
writing such efficient GPU kernels requires painstaking man-
ual optimization effort which is very error prone. We con-
tribute the first comprehensive symbolic verifier for kernels
written in CUDA C. Called the ‘Prover of User GPU pro-
grams (PUG),’ our tool efficiently and automatically ana-
lyzes real-world kernels using Satisfiability Modulo Theo-
ries (SMT) tools, detecting bugs such as data races, in-
correctly synchronized barriers, bank conflicts, and wrong
results. PUG’s innovative ideas include a novel approach
to symbolically encode thread interleavings, exact analysis
for correct barrier placement, special methods for avoiding
interleaving generation, dividing up the analysis over bar-
rier intervals, and handling loops through three approaches:
loop normalization, overapproximation, and invariant find-
ing. PUG has analyzed over a hundred CUDA kernels from
public distributions and in-house projects, finding bugs as
well as subtle undocumented assumptions.

Categories and Subject Descriptors: D.2.4 [Software
Engineering]: Software/Program Verification—Formal meth-
ods

General Terms: Reliability, Verification

Keywords: CUDA, GPU, Formal Verification, Concur-
rency, Satisfiability Modulo Theories (Decision Procedures)

1. INTRODUCTION
There is an explosive growth of interest in Graphical Pro-

cessing Units (GPU) for speeding up computations occur-
ring at all application scales [10, 14]. GPUs are used in
iPhones for video processing, and on desktop computers
for extracting features from medical images. All future su-
percomputers will employ GPUs. The main attraction of

∗Supported in part by Microsoft, SRC TJ 1847.001, and
NSF CCF 0935858.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
FSE-18, November 7–11, 2010, Santa Fe, New Mexico, USA.
Copyright 2010 ACM 978-1-60558-791-2/10/11 ...$10.00.

GPUs is that when properly programmed, they can yield any-
where from 20 to 100 times more performance compared to
standard CPU based multi-cores. Unfortunately, obtaining
this performance requires heroic acts of programming; to
name a few: (i) one must keep all the fine-grained GPU
threads busy; (ii) one must ensure coalesced [14] data move-
ments from the global memory (that is accessed commonly
by CPUs and GPUs) to the shared memory (that is accessed
commonly by the GPU threads); and (iii) one must mini-
mize bank conflicts when the GPU threads step through the
shared memory. Data races and incorrect barrier placements
are frequently introduced during CUDA programming. Few
tools are available to verify CUDA programs. The emu-
lator that comes with GPUs assumes concrete inputs and
executes only a miniscule fraction of all possible schedules.
Bugs often escape, either crashing or deadlocking the GPU
hardware, often requiring a hardware reboot.

GPU kernels are comprised of light-weight threads. Their
Single Instruction Multiple Data (SIMD) organization bears
little resemblance to thread programs written in C/Java
with their heterogeneous and heavy-weight threads, and use
of synchronization primitives such as locks/monitors. This
requires a fundamentally new approach for analyzing CUDA
kernels. This paper’s main result is that while Satisfiabil-
ity Modulo Theories (SMT [22]) techniques are a natural
choice for analyzing CUDA kernels, many innovations are
essential before such analysis can scale. Efficient techniques
for encoding concurrent interleavings and analyzing barrier
placement must be developed. One must try to exploit the
“mostly deterministic” style of programming and avoiding
interleaving generation. It is efficient to divide up the anal-
ysis over barrier intervals. Finally, techniques for efficiently
handling loops (rather than simply unrolling them) must be
developed. We now begin with a few CUDA examples and
elaborate our innovations.

Illustration of CUDA. A CUDA kernel is launched as an
1D or 2D grid of thread blocks. The total size of a 2D grid
is gridDim.x × gridDim.y. The coordinates of a (thread)
block are 〈blockIdx.x, blockIdx.y〉. The dimensions of
each thread block are blockDim.x and blockDim.y (assum-
ing 1D or 2D blocks in this paper). Each block contains
blockDim.x × blockDim.y threads, each with coordinates
〈threadIdx.x, threadIdx.y〉. These threads can share in-
formation via shared memory, and synchronize via barri-
ers (syncthreads()). Threads belonging to distinct blocks
must use the much slower global memory to communicate.
This paper focuses on shared memory races. Consider a sim-

ple example of a CUDA kernel to add b to all the elements
of a shared array a of size N:

void __global__ kernel (int *a, int b) {
int idx = blockIdx.x * blockDim.x + threadIdx.x;
if (idx < N) a[idx] = a[idx] + b;}

Basically, each thread accesses a different array location
and adds b to it in parallel; there are no data races. Now
imagine the programmer wanting to update each array lo-
cation with b added to the previous array location. The
programmer may not simply change the last line to a[idx]

= a[idx-1] + b; because there will be data races between
adjacent threads. The programmer may however change the
code to the following:

void __global__ kernel1 (int *a, int b) {
__shared__ int temp[N];
int idx = blockIdx.x * blockDim.x + threadIdx.x;
if (idx < N) temp[idx] = a[idx-1] + b;
__syncthreads(); // A barrier
if (idx < N) a[idx] = temp[idx];}

What if the barrier is removed from this code? Obviously
the accesses of a[idx] and a[idx − 1] by different threads
may cause a race. This can be detected by examining the
symbolic models of two threads as following, where private
variables in a thread are superscripted by the thread id, bid
and bdim are the short hands for blockIdx and blockDim

respectively. Threads t1 and t2 are assumed to be in the
same block. Formally, a race occurs if predicate t1.x 6= t2.x ∧
idt1 < N ∧ idt2 < N ∧ idxt1−1 = idxt2 holds. As all variables
have symbolic values, we can consult with a constraint solver
to determine whether this predicate is satisfiable. If so, then
the solver would return a concrete counter example. If the
barrier is present then we only need to check whether the
writes to a[idxt1] and a[idxt2] conflict. Since t1.x 6= t2.x
implies idxt1 6= idxt2 for t1.x < bdim.x and t2.x < bdim.x,
these two writes will not result in a race.

thread t1 thread t2
idxt1 = bid.x ∗ bdim.x+ t1.x idxt2 = bid.x ∗ bdim.x+ t2.x
if (idxt1 < N) read a[idxt1 − 1] if (idxt2 < N) read a[idxt2 − 1]
if (idxt1 < N) write a[idxt1] if (idxt2 < N) write a[idxt2]

As another example, the scalarProdGPU (Figure 1) kernel
computes the scalar product of vN pairs of vectors with eN

elements in each vector (both sequential and CUDA parallel
versions are shown). This kernel coalesces global memory
accesses, minimizes bank conflicts, avoids redundant barri-
ers, and reduces serial penalties through tree summation.
Without such hand-crafting steps, kernels such as this will
perform poorly. In this paper, we present our tool PUG that
helps detect bugs introduced during kernel design.

Internal Architecture of PUG. PUG takes a kernel pro-
gram written in C (called Kernel C) as input. It first uses the
Rose Compiler [21] to parse the kernel and generates an im-
mediate format, then produces an SMT expression according
to the configuration information supplied (e.g. the proper-
ties to be checked or the number of threads). We consider
only two threads with symbolic identifiers (IDs) for race and
synchronization checking. Users must specify the number of
threads for assertion (user-defined property) checking. The
PUG generated SMT expressions are processed by an SMT
solver (currently Yices [24]) for satisfiability checking. If

the expression is satisfiable, the solver will return a concrete
counter-example; otherwise the kernel is deemed free of the
bugs targeted by our analysis.

Organization. We now list some of our novel contributions,
each of which is later elaborated in its own section.
• PUG employs a C front-end based on the LLNL Rose [21]
framework (with customized extensions). It handles many
CUDA C features including: (i) arrays and records, (ii) loops,
conditional statements and function calls, (iii) variable aliases
due to pointer expressions, and (iv) lexical scopes. Many
features such as heap allocation and recursive calls are not
allowed in CUDA, simplifying our translation. § 2
• We contribute a novel approach to capture all possible
interleavings between CUDA threads as compact SMT for-
mulae. In practice, working with this SMT representation is
far more efficient than explicitly enumerating all schedules.
§ 3
• We propose a way to model the semantics of barriers ex-
actly. We generate SMT formulae that help verify that de-
spite the presence of branches and loops, all barriers are well
synchronized. § 4
•While we have the ability to model all possible concurrent
interleavings, it is preferable to avoid resorting to this ap-
proach whenever possible. Our observation that enables this
optimization is based on the fact that in many cases, the
existence of races between a given pair of variables is pred-
icated on the existence of conflicts on other variables. The
existence of conflicts can be checked over just one canonical
interleaving – say the one that simply runs one thread till it
blocks and then switching over to another. This helps dra-
matically improves the overall efficiency. We propose a way
to further scale up this approach by analyzing one barrier
interval (the portion before and after __syncthreads()) at
a time. This divide-and-conquer approach also helps boost
efficiency. § 5.
• The translation of loops can become extremely involved
– especially if the loops are nested and they employ non-
linear strides. Our multi-pronged attack is as follows: (i) we
normalize loops through program transformation into a unit-
stride loop; (ii) we over-approximate loop computations; and
(iii) we can automatically discover compensating invariants
that compensate for non-linear loop strides frequently found
in practice. § 6.
• For many kernels, an SMT tool may generate a false alarm
(false bug report) when it cannot determine how the ker-
nel formal parameters are constrained by the main program
(caller). For example, PUG assures that the matrix multi-
plication kernel in the CUDA Programming Guide [7] works
only when the size of matrix B is greater or equal to the
block size. PUG is able to reveal such undocumented as-
sumptions.
• We have obtained very encouraging results using PUG on
real examples. As one example of its multiple uses, with
respect to scalarProdGPU, we could obtain many valuable
analysis results using PUG: (i) One may not remove the

void scalarProdSeq // Sequential version
(float *d_C, float *d_A, float *d_B, int vN, int eN) {
1: for(int vec = 0; vec < vN; vec++){
2: int vBase = eN * vec; int vEnd = vBase + eN;
3: double sum = 0;
4: for(int pos = vBase; pos < vEnd; pos++)
5: sum += d_A[pos] * d_B[pos];
6: d_C[vec] = (float)sum;
7: }}

// Parallel version: Nvidia CUDAZone site
__global__ void scalarProdGPU (float *d_C, float *d_A,

float *d_B, int vN, int eN) {
1: __shared__ float acc[ACC_N];
2:
3: for(int vec = blockIdx.x; vec < vN; vec += gridDim.x) {
4: int vBase = eN * vec; int vEnd = vBase + eN;
5:
6: for(int i = threadIdx.x; i < ACC_N; i += blockDim.x){
7: float sum = 0;
8: for(int pos = vBase + i; pos < vEnd; pos += ACC_N)
9: sum += d_A[pos] * d_B[pos];
10: acc[i] = sum;
11: }
12:
13: for(int stride = ACC_N / 2; stride > 0; stride >>= 1) {
14: __syncthreads();
15: for(int i = threadIdx.x; i < stride; i += blockDim.x)
16: acc[i] += acc[stride + i];
17: }
18:
19: if(threadIdx.x == 0) d_C[vec] = acc[0];
20: }}

Figure 1: Scalar Product: Sequential and CUDA
Parallel Versions

barrier on line 14 (it will result in a data race), but this
single barrier suffices to remove all races with respect to the
variables d A, d B, d C and acc. (ii) It is formally guaran-
teed that no bank conflicts (by different threads) occur in
this example for all possible values of vN , eN and ACC N ;
(iii) Analysis by PUG helped us confirm the assumption that
ACC N must be a power of two; (iv) We could establish the
equivalence of this kernel to scalarProdSeq for small in-
stances of the problem parameters.

We have also encountered examples where some kernels
have benign races; i.e., they are still functionally correct.
PUG has caught some serious (but non-obvious) bugs in
beginner examples. It has also handled many large examples
from the CUDA SDK site.§ 7 All these examples and PUG
itself are freely downloadable [16].

2. ENCODING SERIAL CONSTRUCTS

prog ::= 〈var decl | fun decl〉; program
var decl ::= [mdv] ty idv[= exp] variable
fun decl ::= ty idf (〈ty idv〉,) = block function
block ::= {〈stmt〉;} basic block
stmt ::= if exp block [else block] conditional

| for(exp; exp; exp) block loop
| block
| var decl
| exp expression
| idf (〈exp〉,) function call

ty int | ty ∗ | ty[] | type
mdv shared | global modifier

Figure 2: Summary syntax of Kernel C

This section describes the encoding of serial constructs; it
gives the formal semantics of a kernel assuming no concur-
rency. Concurrency is handled in the next section.

The main syntax of Kernel C is given in Figure 2, and are
illustrated by the kernel examples given so far. The nota-
tion 〈term〉separator (used in fun decl , block , etc.) denotes a
sequence of term’s separated by separator. Expression exp
represents usual C expressions including assignments. Iden-
tifiers idf and idv represent names of functions and variables
respectively. Shared and global variables reside in the GPU
and the CPU respectively. A variable declared without mod-
ifier is local to each thread. We now present the encoding
of sequential program structures.

Basic Statements. Our encoding assigns SSA indexes to
variables. Specifically, the following translation function Γ
constructs a logical formula from single statements and ex-
pressions, where next and cur return the next and the cur-
rent SSA indices of a variable respectively, and v] ([i] 7→ x)
denotes the update of array v by setting the element at i to
x. We also give below a simple example of applying Γ.

Γ(e1 op e2)
.
= Γ(e1) op Γ(e2)

Γ(v := e)
.
= vnext(v) = Γ(e)

Γ(v[e1] := e2)
.
= vnext(v) = vcur(v)([Γ(e1)] 7→ Γ(e2))

Γ(v)
.
= vcur(v)

int k = 0;
int a[3];
int i = a[1] + k;
a[0] = i * k;
i++;

Γ
→

k1 = 0 ∧
i1 = a0[1] + k1 ∧
a1 = a0([0] 7→ i1 ∗ k1) ∧
i2 = i1 + 1

Branches. The SSA indices of the variables updated in the
two clauses of a conditional statement “if c blk1 else blk2“
should be synchronized so that subsequent statements have
a consistent view of their values. The following example
gives an illustration: i1 = i0 is added into the first clause
so that later on i0 is invisible and only variable i1 will be
referred. Here notation ite stands for “if then else”.

if i > 0 {
j = i ∗ 10;
k = j − i;
}
else
i = j + k;

Γ
→

ite (i0 > 0,
j1 = i0 ∗ 10 ∧ k1 = j1 − i0 ∧
i1 = i0,
i1 = j0 + k0 ∧
j1 = j0 ∧ k1 = k0

)

Such synchronization is done at the join node by inserting
the following formula into Γ(blk1) (and similarly to Γ(blk2)),
where cur(blk, v) returns v’s last SSA index in blk.

vj = vi for i = cur(blk1, v), j = cur(blk2, v)
such that i < j

Variable Aliasing.
Variables may be aliased due to the use of pointers or ref-

erences. Typically, when the formal parameters of a func-
tion are of pointer or reference types, the parameters are
the aliases of the incoming actual arguments. When con-
verting the programs, we map an alias to its corresponding
variable and use the variable rather than the alias. For the
alias updated in different paths, we add an ite expression
at the join. Note that most aliases in CUDA kernels occur
at function entry.

int a[3]; int *i = a;
int j = i[1] + a[2];
i[0]++;

Γ
→ j1 = a0[1] + a0[2] ∧

a1 = a0([0] 7→ a0[0] + 1)

However we do not model complicated pointer operations
(e.g. pointer dereference) although it can be implemented
by using a global array to represent the shared memory.
Since typical CUDA programs exhibit very limited pointer
arithmetic operations, PUG does not encounter this problem
in practice.

Scopes and Function Calls. Each basic block has its
own scope. A variable should be distinguished from another
one with the same name but in a different scope. For this, a
variable is prepended by its scope number: nv indicates that
v is in scope n. The scope numbers of top level variables are
skipped. When a function is inlined, its body constitutes
a new scope. In the following example, the top level code
consists of a “if” statement, whose left clause (a basic block)
contains a call to f . Note that j is passed as a pointer.

int f (int i, int* j) {
int k = i - j;
return (i * k);
}
if (i > 10) {
int i = 2;
int j = f(i, j);
}

Γ
→

¬(i0 > 10) ∨
1i1 = 2 ∧ 2i1 = 1i1 ∧
2k1 = 2i1 − 1j1 ∧
1j1 = 2i1 ∗ 2k1

3. ENCODING CONCURRENCY
A variable with modifier shared is “shared” for all threads

within a block. Private variables have no modifiers. We now
illustrate the translation of shared variable updates.

2-thread translation of shared updates.
Suppose we have to translate a shared assignment v =

1. Note that two threads are being allowed to concurrently
perform this assignment. Our approach is to treat v as an
array indexed by Schedule IDs (SID∈ {0, 1, 2, . . .}). (If v
were an array, we would simply add one more dimension to
v indexed by SID.) An SID has the same root name as the
variable, but has a subscript and a superscript. It is like a
timestamp and combines two pieces of information: which
thread is accessing it (superscript), and where in the code
the access is occurring (subscript, forming the single static
assignment or SSA index [19]). With these, the translation
of v = 1 is as follows:

v = 1
Γ
→ v[vt11] = 1 ∧ v[vt21] = 1

Here, the SIDs vt11 and vt21 range over {0, 1}. To say that
t1 accesses (writes) into v first, we can throw in the con-
straint vt11 < vt21 . To say that either access order is possible,
we do not throw in any constraint. Now, things get more
interesting when we translate v = v + 1:

v = v + 1;
Γ
→

v[vt12] = v[vt11] + 1 ∧ v[vt22] = v[vt21] + 1
∧ (vt12 > vt11) ∧ (vt22 > vt21)∧
v[vt11] = v[vt11 − 1] ∧ v[vt21] = v[vt21 − 1]

and further vt11 , vt21 , vt12 , and vt22 should be pairwise distinct
and must belong to the set {0, . . . , 3}.

First, let us look at the “pairwise distinct” requirement.
This can be elegantly modeled by using an un-interpreted
function f . More specifically, consider two variables l and
m that range over vt11 , vt21 , vt12 , and vt22 . Then we can say
f(l) 6= f(m). Since f is a function, this forces l 6= m.

Now what about the rest of the constraints? It is clear
that v[vt12] = v[vt11] + 1 and v[vt22] = v[vt21] + 1 model how
“assignment works.” It is also clear that vt12 > vt11 and vt22 >
vt21 model that the L-value is updated only after the R-
value is obtained. Now what about the R-value itself? This
depends on “who wrote v last.” This is precisely why we
include v[vt11] = v[vt11 − 1] and v[vt21] = v[vt21 − 1]. It is
interesting that this system, in one fell swoop, models all
the six schedules possible.
Example: Suppose vt11 = 0, vt12 = 3, vt21 = 1, and vt22 = 2.
Then we have expressed these constraints: v[3] = v[0] + 1 ∧
v[2] = v[1] + 1 ∧ v[1] = v[0]. In this example, we are
modeling the following schedule that, overall, increments v
by 1, and not 2: (i) v[1] = v[0] models that thread t2 also
“enjoys” the initial value of v in addition to t1 (we take
v[−1] to be the initial value of v, which is what t1 gets);
(ii) v[2] = v[1]+1 models that thread t2 now does the update
of this v; (iii) finally v[3] = v[0]+1 models that t1 now takes
the value it had read “long ago,” is incrementing that value,
and depositing it into v.

An Advanced Example Showing Barrier Encoding.
We now illustrate advanced features of our encoding scheme

through an example (details in [16]). In this kernel, k is al-
located in the shared memory.

__global__ kernel (unsigned int* k) {
unsigned int s[2][3] = {{0,1,2},{3,4,5}};
unsigned int i = threadIdx.x;
unsigned int j = k[i] - i;
if (j < 3)

{ k[i] = s[j][0]; j = i + j; }
else

s[1][j && 0x11] = k[i] * j;
__syncthreads();
k[j] = s[1][2] + j;

}

TRANS(t) ≡
st1[0] = λi ∈ {0, 1, 2}.i ∧ st1[1] = λi ∈ {0, 1, 2}.i+ 3) ∧
it1 = t ∧ jt1 = k[kt0][i

t
1]− i

t
1 ∧

ite(jt1 < 3, k[kt1] = k[kt1 − 1]] ([it1] 7→ st1[j
t
1][0]) ∧ jt2 = it1 + jt1

∧ st2 = st1,
st2 = st1] ([1][jt1#0x11] 7→ k[kt2][i

t
1]× j

t
1) ∧

jt2 = jt1 ∧ k[kt1] = k[kt1 − 1])
k[bar0] = k[bar0 − 1] ∧
k[kt3] = k[kt3]] ([jt2] 7→ st2[1][2] + jt2)

TRANS(t1, · · · , tn) ≡
∧

i∈[1,n] TRANS(ti)

ORDER(t1, · · · , tn) ≡
(1)

∧
i∈[1,n](k

ti
0 < {kti1 , k

ti
2 } < bar0 < k

ti
3)

(2) bar0 < l ∧
∧

i∈[1,n], j∈[0,3](k
ti
j < l) where l = 4n+ 1.

(3) rank(bar0) = 0 ∧
∧

i∈[1,n], j∈[0,3](rank(k
ti
j) = 4i+ j)

• To capture the semantics of barriers, we assign them a
single SID (e.g., bar0 in our example) and constrain them
with respect to SIDs of all threads.
• Each thread t has a private copy of local variables like v.
They are referred to by vt. Since its value is independent of
the schedule, there is no SID associated with it.
• We can now derive inequalities to model all these facts
(the cases under ORDER are the numbers we refer to here):
(1) the program order within each thread must be respected;
(2) all the SIDs of all threads constitute a natural number

interval [0, 4n+1] where n is the number of threads; and (3)
all the SIDs must be distinct.

A valid schedule of the given example for two threads is
depicted below (note that k is the only shared variable):

kt10 = 0 ∧ kt11 = 1 ∧ kt20 = 2 ∧ kt21 = 3 ∧ kt22 = 4 ∧
kt12 = 5 ∧ bar0 = 6 ∧ kt23 = 7 ∧ kt13 = 8

Race Detection. In [16] we present an approach to detect
races by encoding Access IDs into the formulas. It guaran-
tees that all valid schedules are investigated, a race exhibit-
ing in any particular schedule will not be missed. However
it does not scale well [17]; thus we have replaced it with the
method described in §5, which needs to consider only one
schedule as Feng and Leiserson [9] did for multi-threaded
programs represented by series-parallel DAGs.

4. CONDITIONAL BARRIERS AND CROSS-
BRANCH CONFLICTS

s1

write k[i];
bar;

s3

s4 · · ·
?

¬p1

QQs
p1

?

�
��+

¬p2

?
p2

s0

s1;
bar;

s2;
bar;
s3;

s4;

�
�	

p
@@R
¬p

@
@R ��	

(a) (b)

Figure 3: Example CFGs.

The presence of conditional statements makes it impera-
tive that we have the precision of the SMT technology when
we check whether all barriers are well-synchronized. It also
influences the determination of whether races occur. Work
such as [1] which rely purely on static analysis can gener-
ate too many false alarms in codes where there are many
conditionals.

To illustrate these ideas, consider the control-flow graph
(CFG) given in Figure 3(a). This diagram shows how state-
ments s1 through s4 are situated in some example program
(in (a) s2 itself is shown expanded in terms of write k[i]

followed by the barrier bar). At first glance, this appears ill-
synchronized: one thread may take the s1 to s4 path encoun-
tering no barriers while another may take the path through
p1 encountering a barrier. Our SMT techniques can deter-
mine whether these paths are feasible, and flag an error if so.
PUG’s approach to checking for well synchronized barriers
is as follows: either (i) two branches must execute the same
number of barriers; or (ii) all threads must make the same
decision on the condition.

In Figure 3(a), if all threads make the same decision on
condition p1 , i.e. ∀t1, t2 : pt11 = pt21 , then all threads will
execute the same branch, which is synchronization safe even
if the two branches contain different numbers of barriers. In
Figure 3(b), both the left and the right branch contains only
one barrier, thus they are considered well synchronized.

Now assume that all barriers are well synchronized. We
must now check for conflicting accesses that occur in pro-
grams involving conditionals. If for instance the formula
(it1 = it2) ∧ pt11 ∧ pt21 is true in Figure 3(a), both threads
can take the p1 branch and conflict on the same k location,
causing a race.

A more general analysis is captured by the CFG in Figure
3(b). The conflict check includes the following expressions
(here 6∼ denotes non-conflicting). Also let us use p ? s to de-
note an expression s guarded by path condition p. Now, this
CFG may be regarded as consisting of two barrier intervals:
the first one containing s0, p ? s1 and ¬p ? s2, and the second
one containing s4 and ¬p ? s3. Conflict freedom requires the
pairwise comparison of the elements in each barrier interval:

pt2 ⇒ st10 6∼ s
t2
1 ¬pt2 ⇒ st10 6∼ s

t2
2

pt1 ∧ ¬pt2 ⇒ st11 6∼ s
t2
2 ¬pt2 ⇒ st14 6∼ s

t2
3

5. EXPLOITING SERIALIZABILITY AND
BARRIER INTERVALS

CUDA programmers often intend to write deterministic
programs whose final results are independent of the concur-
rent schedule. Thus it is natural to seek analysis methods
that also try to avoid having to generate schedules. Our
insights are explained with respect to a simple example:

thread t1 thread t2
write k[i]; read v;
. . . ; . . . ;
write v; read k[j];

Let us ignore write v and read v for the moment. Sup-
pose k is the only shared variable. Now if both i and j are
(control- and data-) dependent only on thread-local vari-
ables, then their values are the same in all schedules. In
that case, in order to check whether write k[i] and read k[j]
conflict, it suffices to examine only one arbitrary schedule
that respects program order.

Now suppose j depends on a shared variable v. Then j’s
value in thread t2 may be different in different schedules.
However in this case there exists a conflict on v. Further-
more, this conflict can be detected by executing v’s accesses
according to one schedule (any schedule) that simply re-
spects the program order. If we find two accesses within the
same barrier interval that conflict, we are done detecting
the conflict. This conflict does not go away under another
schedule. For this reason we say that k’s conflict is reduced
to v’s.

Theorem (Serializability). Consider each pair of ac-
cesses to shared variables where one access in the pair is
a write. Suppose these access pairs can be shown to be non-
conflicting. Then the entire code containing these accesses
is race free and can be serialized.
PUG implements such conflict checks and is able to elimi-
nate generating concurrency schedules in our realistic exam-
ples. We now show how the ideas in this theorem apply to
programs that are decomposed in terms of barrier intervals.

Barrier Intervals (BI) and Incremental Modeling.
CUDA intra-block thread executions exhibit a regular pat-

tern: {t1, · · · , tn} execute → barrier → {t1, · · · , tn} execute
→ · · · . Since an access before a barrier will never conflict

with an access after this barrier, we may focus on the ac-
cesses between two consecutive barriers (so called a barrier
interval or BI). If the accesses in a BI are non-conflicting, we
build a transition constraint by serializing (sequentializing)
them; then we move on to the next BI and hope to repeat
this treatment. This approach also goes hand in hand with
our SMT solver Yices’s [24] incremental SMT solving facil-
ity that reuses existing conflict clauses in the context when
checking new expressions. As an illustration we consider the
following program where shared variables are marked with a
hat for readability.

1 : jt := ît + t+ 1; 2 : synthreads; 3 : e1 = k̂t [̂it];

4 : k̂t[jt] = e2; 5 : synthreads; 6 : write ît

Let us consider the case of two threads t1 and t2. The
first BI consists of statement 1. Since there are no writes to
shared variables, accesses to î at t1 and t2 are non-conflicting.
Both of them can be set to i[0], i.e. their SIDs can both be
forced to be 0. Using this approach, the transition relation
up to statement 2 can be simplified and rewritten as follows
(the js are private variables):

TRANS(t1, t2)2 ≡ jt11 = i[0] + t1 + 1 ∧ jt21 = i[0] + t2 + 1

Now, the second BI consists of a read and a write to shared

variable k̂. We need to determine whether their addresses
may overlap for different threads. Given TRANS(t1, t2)2 ∧
t1 6= t2, expression jt1 = i[0] is unsatisfiable for t ∈ {t1, t2}.
Therefore the read and write of k̂ do not conflict. Also, we

have jt11 = jt21 . Therefore even the writes to k̂ are non-
conflicting. We can follow the approach used before and
(re-)use the SIDs 0 and 1 for î and ĵ respectively, and write
the translation up to statement 4 as:

TRANS(t1, t2)4 ≡
TRANS(t1, t2)2 ∧

∧
t∈{t1,t2}(Γ(et1) = k[0][jt1])

∧ k[1] = k[0]] ([jt11] 7→ Γ(et12))] ([jt21] 7→ Γ(et22))

Things are fine if we keep the barrier (syncthreads) at
statement 5. Let us remove it and see what happens. Then,
the second BI includes statement write ît. Now, we do not
know what write ît will write into ît. It is possible that
expression jt1 = î can be satisfied. The key observation is
that the conflict between statements 3 and 4 is reducible to
a conflict between statements 3 and 6.

The key point here is that we can keep building constraints
without considering interleavings (just by following a canon-
ical interleaving). If there is any race at all in the program,
we will reach a point where there will be one conflict some-
where. Since we assume conflicts are rare, this optimistic
approach has the ability to process many CUDA kernels
successfully without finding any conflicts (and hence races).

In practice, instead of coalescing the SIDs among multi-
ple threads, PUG builds the transitions in a thread modular
manner: after constructing one single parameterized transi-
tion TRANS(t), it instantiates the SIDs with concrete values
so as to serialize the concurrent execution of all threads.

We give below the entire model of the example kernel in
§3 for n threads. There are two BIs each of which contains
only one write. The serialization makes ti happens before
tj for i < j for each BI. Hence the SIDs of the writes in

t1, t2, . . . , tn in the first BI are 1, 2, . . . , n; and those in the
second BI are n+ 1, n+ 2, . . . , 2n. Clearly this enforces that
(1) within a BI, accesses in thread ti happen before those
in tj for i < j; and (2) in a thread, accesses in BI i happen
before those in BI j for i < j.

TRANS(tx, n) ≡
st1[0] = λi ∈ {0, 1, 2}.i ∧ st1[1] = λi ∈ {0, 1, 2}.i+ 3) ∧
it1 = t ∧ jt1 = k[x− 1][it1]− it1 ∧
ite(jt1 < 3, k[x] = k[x− 1]] ([it1] 7→ st1[jt1][0]) ∧

jt2 = it1 + jt1 ∧ st2 = st1,
st2 = st1] ([1][jt1#0x11] 7→ k[x− 1][it1]× jt1) ∧
jt2 = jt1 ∧ k[x] = k[x− 1])

k[bar0] = k[bar0 − 1] ∧
k[n+ x] = k[n+ x− 1]] ([jt2] 7→ st2[1][2] + jt2)

TRANS(t1, · · · , tn) ≡
∧

x∈[1,n] TRANS(tx, n)

6. LOOP ABSTRACTION
While it is possible to unroll loops for precise checking,

loop unrolling may not scale, especially with nested loops.
Also, the loop bounds may involve symbolic values, mak-
ing it impossible to perform loop unrolling. Consider the
scalar product example shown in Figure 1. The outermost
loop iterates through every pair of vectors. Each iteration
first cycles through vectors with stride ACC_N, then performs
tree-like reduction of the results. In practice, the grid size,
the block size and the stride are large numbers, making it
impractical to unroll, particularly the nested loops. One so-
lution is to downscale the problem size by reducing these
sizes to small numbers while preserving the program’s be-
haviors (this is tedious if done manually). Another solution
– the focus of this section – is to perform loop abstraction
to reduce or even eliminate loop unrolling.

6.1 Loop Normalization
A standard result in program analysis [2] is that if the

stride part of a loop is a linear function of the loop index i
(i.e. of format i = i ± e where e is an expression), then we
can normalize such loops so they have a stride of one. For
example, the loop header

for (int i = lb; i ≤ ub; i += stride)

can be normalized to

for (int i = 0; i ≤ (ub - lb) / stride; i++),

and each reference to i within the original loop is replaced
by i∗stride+ lb. After normalization, the precise value range
of the loop index is [0, (ub − lb)/stride]. When the stride is
not a linear function on the loop index, we do not perform
normalization to avoid making the range imprecise. Con-
sider lines 13-17 of the example in Figure 1. Since the stride
of the loop at line 13 is non-linear, we leave it alone. Since
the stride of the loop at line 15 is linear, we change it. The
transformation results in this code:

for(int stride = ACC_N/2; stride > 0; stride >>= 1) {
__syncthreads();
for(int i’ = 0; i’ < (stride-threadIdx.x)/blockDim.x; i’++) {

int i = i’ * blockDim.x + threadIdx.x;
acc[i] += acc[stride + i];

}}

To determine whether this code is conflict-free (no race on
acc on line 16), we need to check, for threads t1 and t2, two
cases:
• Whether (it1 = it2). Luckily, this is false because i is
initialized to threadIdx.x (different for different threads)
and stays different.
• Or, whether (it1 = stridet2 + it2). This is also false because
it1 < stridet2 holds.

The logical formula for conflict checking incorporates all
this knowledge and also that stride ∈ (0, ACC N/2] and
i ∈ [0, (stride− threadIdx.x)/blockDim.x); it also emerges
unsatisfiable:

∧
t∈{t1,t2}

 stridet > 0 ∧ stridet ≤ ACCN/2 ∧
i′t ≥ 0 ∧ i′ < (stridet − t)/blockDim.x
∧ it = i′t ∗ blockDim.x+ t

∧ (t1 6= t2) ∧ (it1 = it2 ∨ it1 = stridet2 + it2)

Similar analysis can also be applied to the loop at lines 6-11.

6.2 Automatic Refinement
In addition to the loop index, we need to handle the vari-

ables in the loop body. Consider the following example, the
constraints generated for j, l, n and k depend on whether
they are loop carrying.

int m = 0; int k = a;
for(int i = lb; i < ub; i++)
{ int j = i * 2; int l = j + i;
int n = m - l; k = j * k; ... }

A variable is non loop-carrying if (1) it is the loop index
variable, or (2) it is not updated in the loop, or (3) any of
its updates (if there is any) involves only non loop-carrying
variables. We simplify our analysis by generating constraints
only for non loop-carrying variables, and over-approximate
loop-carrying variables to have range (−∞,+∞). In this
example, i, j,m, n are non loop-carrying while k is loop-
carrying. The formula i ∈ [lb, ub) ∧ j = i∗2 ∧ l = j+ i ∧ n =

m − i accurately specifies the value ranges of i, j, l and n,
and k (because it is loop-carrying) is over-approximated by
leaving it unconstrained.

Sometimes over-approximating the range of a loop-carrying
variable may lead to false alarms. If j below is uncon-
strained, then a false race will be reported on s[threadIdx ∗
n+ j].

int j = 1; int n = blockDim.x;
for(int i = n; i > 0; i >>= 1)
{ s[threadIdx * n + j] = ...; j = j * 2; }

To overcome this, PUG incorporates simple rules for syn-
tactically deriving common invariants safely, and automati-
cally adds them to the constraints. For the above example,
PUG derives an invariant i ∗ j = n, which follows from the
relation between ∗2 and right shift (� 1). This implies
j < n and threadIdx∗n+j are different in different threads.
PUG derives invariants for similar simple patterns involving
+ and −, ∗ and /, and so on, but only for the variables used
in the addresses of shared variables.

As another example, invariant j = v+ i∗k can be derived
for the following loop since j can be normalized to have the
same stride as loop index i does.

int j = v;
for (int i = 0; i < ub; i++)
{ ...; j += k;}

6.3 Inter-Iteration Race Checking
Within a loop, accesses to shared variables may conflict

with themselves in previous iterations, thus causing inter-
iteration conflicts. For example, in the following loop,

for(int i = lb; i < ub; i++)
{ __syncthreads(); acc[i+1+tid] += acc[i]; }

access acc[i + 1 + tid] may not conflict with acc[i + 1 + tid]

and acc[i] in the same iteration. However, if the barrier is
removed then acc[i + 1 + tid] may conflict with acc[(i − 1) +

1 + (tid+ 1)], i.e. the access by a neighboring thread in the
previous iteration.
PUG considers two cases:

• The loop body is not barriered. Different threads may
be in different iterations, i.e. i’s values in different
threads may be regarded to be unrelated. If the barrier
is removed in the above example, the constraint for
conflict checks is as follows, which is clearly satisfiable
for t1 6= t2.

it1 ∈ [lb, ub] ∧ it2 ∈ [lb, ub] ∧
(it1 + 1 + t1 = it2 ∨ it1 + 1 + t1 = it2 + 1 + t2)

• The loop body is barriered (e.g. ends with a barrier).
If the body satisfies the synchronization correctness re-
quirement described in § 4, then all threads will always
be in the same iteration. In other words, loop index
variable i should have the same value at all threads
(i.e. it1 = it2) (we say i is single valued); and the
following constraint is unsatisfiable for t1 6= t2.

i ∈ [lb, ub] ∧ (i+ 1 + t1 = i ∨ i+ 1 + t1 = i+ 1 + t2)

Even after i is set to single valued, we may still need to
consider two consecutive iterations. For the following
code, PUG considers the possibility that accesses in s2
at iteration i conflict with those in s1 at iteration i+1.

for(int i = lb; i < ub; i++)
{ s1; __syncthreads(); s2; }

In the scalar product example, the loop in lines 6-11 belongs
to the first case, while the loop in lines 13-17 belongs to the
second case. If the barrier at line 14 in the second loop
is removed, then accesses on acc[i] and acc[stride + i] may
conflict when stridet1 6= stridet2 .

7. IMPLEMENTATION AND EXPERIMEN-
TAL RESULTS

As described earlier, PUG is based on the Rose frame-
work for C program analysis. The user may input a file con-
taining multiple kernels together with the main (CPU side)
program. The kernel to be analyzed is syntactically flagged,
and this kernel alone will be analyzed. Within the kernel of
interest, the user may place assert assertions anywhere in
the code, which will be checked during analysis.

Overall Orchestration of PUG. Given an annotated pro-
gram, PUG works in a push-button fashion and is totally
syntax driven (similar to a precise type checker, more de-
tails in [16]). It first parses the program and triggers rules

for each syntactic category, building constraints in an in-
termediate format. For instance, for handling loops, it first
checks if whether the loop body contains barriers. It then
performs loop normalization and loop refinement, and ana-
lyzes the loop body which may contain multiple BIs. For a
BI, PUG first checks whether there is a race (conflict), if so
then report the bug and terminates. Otherwise it serializes
all the accesses to shared variables and moves to the next
BI.

Expressions in the intermediate language (IL) are con-
verted to Yices’ expressions for satisfiability checking. Yices’
expressions are based on bit vectors (bounded integers). We
found that the correctness of most CUDA kernels relied on
the assumption that no overflows will occur in arithmetic op-
erations. To model this, the user has the ability to request
(through the “+O” flag) whether non-overflow constraints
must be incorporated (for unsigned bit vectors). Setting
the +O flag causes PUG to generate and incorporate these
additional constraints for + and ∗:

IL Expr. Yices Expr. Constraint
e1 + e2 e1 + e2 e1 < 2n − 1 ∧ e2 < 2n − 1
e1 ∗ e2 e1 ∗ e2 e1 < 2n/2 ∧ e2 < 2n/2

e1 / e2 q e2 ∗ q + r = e1 ∧ r < e2
e1 % e2 r e2 ∗ q + r = e1 ∧ r < e2

In addition, since Yices does not provide the “div” and
“mod” operator directly, we implement them using multi-
plication and addition. Some optimizations are performed
when e1 or e2 are constants. For example, 2m∗e2 and e1 / 2m

are converted to e2 � m and e1 � m respectively (� is a
shift operator).
The user may further use two more types of annotations
within the kernel of interest:
• An assume that defines the problem configuration parame-
ters and input constraints (e.g., whether a matrix is assumed
to be square, what the input data constraints are). We cap-
ture this assume class as if it were a flag, “+C”.
• In some examples, the user has to help PUG out by pro-
viding simple loop invariants or simple predicates on shared
variables. These are assumed to be true (for now; future
work will try to semi-automate their formal verification).
These are shown as the “+R” flag. We do not include the
syntactic invariants automatically generated by PUG into
+R (these are guaranteed to be correct invariants).

We performed experiments using PUG on a machine with a
single CPU (Intel Pentium-4 3.60 GHz processor with only 1
GB of memory). Our table of results in Table 1 shows which
examples required these flags for verification to succeed, and
not fail through false alarms. All the examples in this table
are widely cited kernels from the CUDA SDK, and naturally
PUG found them all to be correct. “Pass” in this table as-
serts that (i) All barriers were found to be well synchronized,
and (ii) No races were found. When a benchmark program
(e.g. Reduction) contains multiple kernels, we invoke them
one by one – but in a single run – and report the total time
of this run.

PUG has checked many more CUDA SDK kernels than
shown in Figure 1. While the computation of a large ap-
plication is usually broken into multiple kernels, we have
successfully checked some very large kernels (e.g., Eigenval-
ues, at 2,200 LOC). The translation time into IL and to the
Yices constraints is negligible, and not counted in.

Kernels loc +O +C +R B.C. Time(pass)
Bitonic Sort 65 LO 2.2
MatrixMult 102 * * HI <1
Histogram64 136 LO 2.9
Sobel 130 * HI 5.6
Reduction 315 * HI 3.4
Scan 255 * * * LO 3.5
Scan Large 237 * * LO 5.7
Nbody 206 * HI 7.4
Bisect Large 1,400 * * HI 44
Radix Sort 1,150 * * * LO 39
Eigenvalues 2,200 * * * HI 68

Table 1: Experimental results of checking some SDK
kernel programs for synchronization errors, races
and bank conflicts.

PUG is able to check most programs smoothly. The radix
sort kernel is the most difficult one to analyze since the ad-
dresses of a few shared variable accesses cannot be resolved
locally, i.e. they are control-dependent on the shared arrays
which may be updated by multiple threads. This makes
the checking difficult. In our present attack, we added +C
constraints indicating the the shared arrays are (partially)
sorted to overcome this limitation.

Bank Conflict Checking. A fascinating direction to evolve
PUG is in giving designers feedback on performance met-
rics. Thanks to our use of SMT, we can use the infrastruc-
ture for race checking in order to check for bank conflicts
also. Specifically, access k[i] and k[j] incurs a race when
i = j, and incurs a bank conflict when i%16 = j%16. Col-
umn “B.C.” indicates how serious the bank conflict is, which
is measured by the percentage of the barrier intervals (BI)
containing bank conflicts: HI (High) and LO (Low) denote
≥ 50% and < 50% respectively. Since only two threads are
considered and the loops are not unrolled, these results are
quite preliminary; yet, the promise is clear. We plan to give
more accurate measurement in the future work.

Road-Testing PUG. We took 57 assignment submissions
from a recently completed graduate GPU class taught in our
department. The “Defects” column in the table below

Defects Race Refinement

benign fatal over #kernel over #loop
13 (23%) 3 2 17.5% 10.5%

indicates how many kernels were found to be not well pa-
rameterized – i.e., work only in certain configurations (e.g.
the grids and blocks must have specific sizes). We had to
manually find this out by guessing and trying different +C
settings. This is a promising way to reverse-engineer un-
stated assumptions and provide feedback to a programmer
to improve their kernel.

There were three benign races and two fatal races in these
(presumably tested) codes. These fatal races can be at-
tributed to missing barriers in the loop body or incorrect
indexing at the boundary between two thread data spaces.

While PUG always does its set of automatic loop refine-
ments, we were curious as to how many of these cases could
have passed through without them. When we turned off the
automatic loop invariants, we found that only 17.5% of the
kernels (measured in terms of loops, only 10.5% of the total
number of loops) would have failed (by giving false alarms).

Thus it appears that for small to medium kernels repre-
sented by a class, about 90% of the kernels can be verified
even without loop refinements.

Assertion Checking (Functional Correctness). Users
can specify the properties to be checked using our assume

and guarantee directives. If a precondition assume(P) and
a postcondition guarantee(Q) are specified, formula P ∧¬Q
is added into the constraint. For example, we can specify
the correctness of the bitonic sort kernel

__global__ bitonic (int vals[]) {
...
guarantee(i < j =⇒ vals[i] ≤ vals[j]);

}

Functional correctness check requires accurate models of
the programs. PUG translates the program into a bounded
one by unrolling the loops dynamically in the incremental
modeling phase. The number of threads must be specified
explicitly. Since CUDA programs are highly symmetric, we
only need to consider a few threads.

The following table shows the SMT solving time in sec-
onds. To speed up the checking we turn off the overflow
detection, assign small values to the loop bounds, and use
smaller bitvectors. Here n denotes the number of threads;
T.O denotes Time Out (> 5 minutes). Correctness is proven
for bug-free programs, and bugged programs are obtained by
disabling some required constraints or specifying false asser-
tions. Correctness check takes much longer time since the
solver needs to prove unsatisfiability (i.e. absence of bugs)
for all cases. In general, the degree of loop unrolling needed
is proportional to the number of threads n, making the solv-
ing time blow up on n.

Kernels n = 2 n = 4 n = 8
Corr. Bug Corr. Bug Corr. Bug

simple reduct. < 1 < 1 2.8 < 1 T.O 4.42
matrix transp. < 1 < 1 1.9 < 1 28 6.5
bitonic sort < 1 < 1 3.7 < 1 T.O 255
scalar product < 1 < 1 6.9 2 T.O 137

This checker identifies several “bugs” in these programs:
(i) the“bitonic sort” is incorrect when the number of threads
is not the power of 2; (ii) the “scalar product” is incorrect
when ACCN is not the power of 2; and (iii) the “matrix
tranpose” is incorrect when the sizes of two input matrixes
are smaller than the block size.

As the property checker does not scale well with respect
to the number of threads, it is intended to be used as a unit
tester/verifier for functional correctness.

Performance Improvement. PUG utilizes Yices’s incre-
mental SMT solving technique to avoid evaluating an ex-
pression multiple times. This technique is primarily used to
manage the built transitions. For example, when the solver
is called for evaluating e over transitions E provided that
path condition C holds, we first assert E and push the con-
text containing E into Yices’ context stack, then assert C
and e to evaluate the entire expression. After that, when we
want to evaluate e1 on E and C1, we pop the context stack
so as to restore the context containing the existing clauses
for E, then we assert C1 and e1. This enables us to avoid
evaluating E again.

We also apply a simple slicing algorithm to exclude useless
transitions from the transition stack. A use-def analysis is

performed to identify the variables which will be used by the
addresses of shared variables. We do not build transitions
for the assignments involving other variables. For instance,
in the scalar product example of Figure 1, no transitions
corresponding to the assignments on line 9 and line 16 will
be added into the transition stack.

Some Limitations of PUG. Present day SMT solvers pro-
vide limited support for real numbers. PUG cannot prove
the functional correctness of many CUDA applications that
operate on float or double numbers. Fortunately, this doesn’t
limit PUG’s conflict checking power because the addresses
of shared variables involves only unsigned integers.

PUG may report false alarms if it fails to derive loop in-
variants for complicated program patterns. In this case, the
user is required to provide sufficient invariants.

PUG cannot handle kernels containing complicated pointer
arithmetic operations. In addition, PUG requires manual
transformation of the source programs to Kernel C format
(e.g. by converting “while” loops to “for” loops and elimi-
nating advanced C++ features).

Other Programs. Although focusing on CUDA kernels,
PUG can be easily extended to other domains such as lock
based multi-threaded programs. It is particularly suitable
for checking such programs over relaxed memory models:
we just need to loosen the constraint on the accesses orders
w.r.t the memory model. The main challenge, however, is
to model involved APIs and system calls. One solution is
to build light-weight models or abstract interpretations for
these APIs as we did for MPI 2.0 [18].

8. CONCLUDING REMARKS
Other Related Work. Traditional testing methods are in-
effective at locating CUDA bugs because they assume con-
crete input values as well as a fixed numbers of threads.
They cannot generate all possible schedules – an exponen-
tially growing number even for short programs. They have
no mechanisms to focus on relevant schedules that trigger
bugs. Interleaving reduction methods such as [12] are inap-
plicable to CUDA. Many past efforts have focused on multi-
threaded programs synchronizing using locks and semaphores
[11]. These methods are inapplicable for kernels.

Symbolic techniques for program analysis go back to works
such as [5] and more recently [6]. Recent exact symbolic
concurrent C program analysis techniques (e.g., [15]) have
not been shown to be effective for vector computations found
in CUDA kernels. In PUG, we do not worry about modeling
recursive functions or heap allocated structures – something
considered in tools such as [15]. Our work is tailored for
CUDA which is very widely used; it will easily apply to
emerging standards (e.g., OpenCL [20]).

Only two CUDA-specific checkers have been reported on
the past. An instrumentation based technique is reported [3]
to find races and shared memory bank conflicts. This is an
ad-hoc testing approach, where the program is instrumented
with checking code, and only those interleavings occurring
in a platform-specific manner are considered. A determin-
ism (i.e. no races) checking tool [23] constructs constraints
from an automaton without considering the communication
(e.g. value passing) among threads. This tool makes many
assumptions on the input programs to facilitate noninterfer-
ence checking, which include: (i) the source program can-
not contain loops, conditional barriers, functions calls and

pointers; (ii) all variables must already in SSA format, etc.
In contrast, PUG works on source programs directly and
does not make these restrictions. PUG is also able to model
communicating programs. Our static race detection is sim-
ilar to the non-interference checking in [23]; our method is
capable of handling more general cases.

SPMD programs are prone to incorrect synchronization
patterns, especially when barriers are within conditional state-
ments. Aiken and Gay [1] proposed a type system to check
global synchronization errors. They check whether program
branches make the same decision and execute the same num-
ber of barriers by recording the single-valued variables that
have the same values among all threads. They may produce
false alarms by rejecting correct programs. PUG is able to
check such global synchronization errors as well. As PUG re-
lies on SMT solving to compare the values of expressions, it
produces more precise results on determining whether dif-
ferent threads make the same decision, thus giving more
accurate reports on synchronization errors.

We have shown many innovative uses of PUG including
providing performance estimates relating to bank conflicts.
Related work on symbolic techniques for performance eval-
uation [13] is of interest here.

Summary of PUG, and Future Work. We presented
the first realistic analyzer for GPU kernels called PUG. PUG
takes an annotated CUDA C program and analyzes a kernel
flagged to be of interest in it (this single kernel may itself
be thousands of lines long). The user specifies the number
of threads (usually two) for which the kernel is to be ana-
lyzed. There is really no way to tell whether two threads are
sufficient for either race checking or for assertion checking.
This can easily be shown to be an undecidable problem as a
special instance of the undecidability of parameterized veri-
fication problem [4]. We are interested in exploring whether
finite cut-off results can be obtained (e.g., [8]). Abstrac-
tion/refinement methods may be another approach.

PUG can be supported by any of the highly developed
SMT solvers available today. Even given the phenomenal
advances in the SMT technology, a straightforward (näıve)
approach of unrolling all loops and solving will not work.
PUG employs a number of innovative approaches for reduc-
ing the analysis complexity.

We have already documented a number of limitations of
PUG. One additional limitation that needs to be overcome
pertains to the calling context of CUDA kernels. The calling
context may most likely determine the assume clauses that a
user has to provide through the “+C” flag. Any method for
obtaining some of these constraints automatically can help
improve the degree of automation. Loop invariant discov-
ery methods that determine the +R annotations will also
enhance the usability of PUG.

9. REFERENCES
[1] Aiken, A., and Gay, D. Barrier inference. In

Symposium on the Principles of Programming
Languages (POPL) (1998).

[2] Allen, R., and Kennedy, K. Optimizing Compilers
for Modern Architectures: A Dependence-based
Approach. Morgan Kaufmann, 2001.

[3] Boyer, M., Skadron, K., and Weimer, W.
Automated dynamic analysis of CUDA programs. In

Third Workshop on Software Tools for MultiCore
Systems (2008).

[4] Clarke, E. M., Grumberg, O., and Peled, D. A.
Model Checking. MIT Press, 2000.

[5] Cobleigh, J. M., Clarke, L. A., and Osterweil,
L. J. Flavers: A finite state verification technique for
software systems. IBM Systems Journal 41, 1 (2002).

[6] Csallner, C., Tillmann, N., and Smaragdakis,
Y. DySy: Dynamic symbolic execution for invariant
inference. In International Conference on Software
Engineering (ICSE) (2008), pp. 281–290.

[7] Cuda programming guide version 1.1.
http://developer.download.nvidia.com/compute/

cuda/1_1/NVIDIA_CUDA_Programming_Guide_1.1.pdf.

[8] Emerson, E. A., and Kahlon, V. Reducing model
checking of the many to the few. In International
Conference on Automated Deduction (CADE) (2000),
pp. 236–254.

[9] Feng, M., and Leiserson, C. E. Efficient detection
of determinacy races in cilk programs. In Parallel
Algorithms and Architectures (SPAA) (1997).

[10] Fermi. http:
//www.nvidia.com/object/fermiarchitecture.html.

[11] Flanagan, C., and Freund, S. N. Type-based race
detection for Java. In Programming Language Design
and Implementation (PLDI) (2000).

[12] Flanagan, C., and Godefroid, P. Dynamic
partial-order reduction for model checking software. In
Symposium on the Principles of Programming
Languages (POPL) (2005), pp. 110–121.

[13] Gulwani, S. Speed: Symbolic complexity bound
analysis. In Computer Aided Verification (CAV)
(2009), pp. 51–62.

[14] Kirk, D. B., and mei W. Hwu, W. Programming
Massively Parallel Processors. Morgan Kauffman,
2010.

[15] Lahiri, S. K., Qadeer, S., and Rakamaric, Z.
Static and precise detection of concurrency errors in
systems code using SMT solvers. In Computer Aided
Verification (CAV) (2009), pp. 509–524.

[16] Li, G., and Gopalakrishnan, G. Technical Report
and PUG Tool Download:
http://www.cs.utah.edu/fv/PUG.

[17] Li, G., Gopalakrishnan, G., Kirby, R. M., and
Quinlan, D. A symbolic verifier for CUDA programs.
In PPoPP, Poster Session (2010), pp. 357–358.

[18] Li, G., Palmer, R., DeLisi, M., Gopalakrishnan,
G., and Kirby, R. M. Formal specification of MPI
2.0: Case study in specifying a practical concurrent
programming API. Sci. Comp. Prog. 75 (2010).

[19] Nielson, F., Nielson, H. R., and Hankin, C.
Principles of Program Analysis. Springer-Verlag, 1999.

[20] OpenCL. http://www.khronos.org/opencl.

[21] The ROSE compiler. http://www.rosecompiler.org/.

[22] Satisfiability Modulo Theories Competition
(SMT-COMP). http://www.smtcomp.org/2009.

[23] Tripakis, S., Stergiou, C., and Lublinerman, R.
Checking non-interference in SPMD programs. In 2nd
USENIX Workshop on Hot Topics in Parallelism
(HotPar) (2010).

[24] Yices: An SMT solver. http://yices.csl.sri.com.

10. REFERENCES
[1] Aiken, A., and Gay, D. Barrier inference. In

Symposium on the Principles of Programming
Languages (POPL) (1998).

[2] Allen, R., and Kennedy, K. Optimizing Compilers
for Modern Architectures: A Dependence-based
Approach. Morgan Kaufmann, 2001.

[3] Boyer, M., Skadron, K., and Weimer, W.
Automated dynamic analysis of CUDA programs. In
Third Workshop on Software Tools for MultiCore
Systems (2008).

[4] Clarke, E. M., Grumberg, O., and Peled, D. A.
Model Checking. MIT Press, 2000.

[5] Cobleigh, J. M., Clarke, L. A., and Osterweil,
L. J. Flavers: A finite state verification technique for
software systems. IBM Systems Journal 41, 1 (2002).

[6] Csallner, C., Tillmann, N., and Smaragdakis,
Y. DySy: Dynamic symbolic execution for invariant
inference. In International Conference on Software
Engineering (ICSE) (2008), pp. 281–290.

[7] Cuda programming guide version 1.1.
http://developer.download.nvidia.com/compute/

cuda/1_1/NVIDIA_CUDA_Programming_Guide_1.1.pdf.

[8] Emerson, E. A., and Kahlon, V. Reducing model
checking of the many to the few. In International
Conference on Automated Deduction (CADE) (2000),
pp. 236–254.

[9] Feng, M., and Leiserson, C. E. Efficient detection
of determinacy races in cilk programs. In Parallel
Algorithms and Architectures (SPAA) (1997).

[10] Fermi. http:
//www.nvidia.com/object/fermiarchitecture.html.

[11] Flanagan, C., and Freund, S. N. Type-based race
detection for Java. In Programming Language Design
and Implementation (PLDI) (2000).

[12] Flanagan, C., and Godefroid, P. Dynamic
partial-order reduction for model checking software. In
Symposium on the Principles of Programming
Languages (POPL) (2005), pp. 110–121.

[13] Gulwani, S. Speed: Symbolic complexity bound
analysis. In Computer Aided Verification (CAV)
(2009), pp. 51–62.

[14] Kirk, D. B., and mei W. Hwu, W. Programming
Massively Parallel Processors. Morgan Kauffman,
2010.

[15] Lahiri, S. K., Qadeer, S., and Rakamaric, Z.
Static and precise detection of concurrency errors in
systems code using SMT solvers. In Computer Aided
Verification (CAV) (2009), pp. 509–524.

[16] Li, G., and Gopalakrishnan, G. Technical Report
and PUG Tool Download:
http://www.cs.utah.edu/fv/PUG.

[17] Li, G., Gopalakrishnan, G., Kirby, R. M., and
Quinlan, D. A symbolic verifier for CUDA programs.
In PPoPP, Poster Session (2010), pp. 357–358.

[18] Li, G., Palmer, R., DeLisi, M., Gopalakrishnan,
G., and Kirby, R. M. Formal specification of MPI
2.0: Case study in specifying a practical concurrent
programming API. Sci. Comp. Prog. 75 (2010).

[19] Nielson, F., Nielson, H. R., and Hankin, C.
Principles of Program Analysis. Springer-Verlag, 1999.

[20] OpenCL. http://www.khronos.org/opencl.

[21] The ROSE compiler. http://www.rosecompiler.org/.

[22] Satisfiability Modulo Theories Competition
(SMT-COMP). http://www.smtcomp.org/2009.

[23] Tripakis, S., Stergiou, C., and Lublinerman, R.
Checking non-interference in SPMD programs. In 2nd
USENIX Workshop on Hot Topics in Parallelism
(HotPar) (2010).

[24] Yices: An SMT solver. http://yices.csl.sri.com.

