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ABSTRACT
Software defined networking (SDN) introduces centralized
controllers to dramatically increase network programmabil-
ity. The simplicity of a logical centralized controller, how-
ever, can come at the cost of control-plane scalability. In
this demo, we present McNettle, an extensible SDN con-
trol system whose control event processing throughput scales
with the number of system CPU cores and which supports
control algorithms requiring globally visible state changes
occurring at flow arrival rates. Programmers extend Mc-
Nettle by writing event handlers and background programs
in a high-level functional programming language extended
with shared state and memory transactions. We implement
our framework in Haskell and leverage the multicore facil-
ities of the Glasgow Haskell Compiler (GHC) and runtime
system. Our implementation schedules event handlers, allo-
cates memory, optimizes message parsing and serialization,
and reduces system calls in order to optimize cache usage,
OS processing, and runtime system overhead. Our exper-
iments show that McNettle can serve up to 5000 switches
using a single controller with 46 cores, achieving through-
put of over 14 million flows per second, near-linear scaling
up to 46 cores, and latency under 200 μs for light loads and
10 ms with loads consisting of up to 5000 switches.

Categories and Subject Descriptors
C.2.1 [Computer-Communication Networks]: Network
Architecture and Design—Centralized networks
; D.3.2 [Programming Languages]: Language Classifi-
cations—Applicative (functional) languages, Haskell ; D.1.3
[Programming Techniques]: Concurrent Programming;
C.5.5 [Computer System Implementation]: Servers
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1. INTRODUCTION
Network systems are becoming more feature-rich and com-

plex, and system designers often need to modify network
software in order to achieve their requirements. Software-
defined networking attempts to move as much network func-
tionality as possible into user-definable software, making
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more of the network system components programmable. In
particular, SDN architectures introduce a centralized control
server (controller) to allow potentially dramatically simpli-
fied, flexible network programming.

Unfortunately, as the network scales up—both in the num-
ber of switches and the number of end hosts—the SDN con-
troller can become a key bottleneck. Specifically, Tavakoli et
al. [7] estimate that a large data center consisting of 2 million
virtual machines may generate 20 million flows per second.
On the other hand, current controllers, such as NOX [2] or
Nettle [8], about 105 flows per second [7].

Previous work [7, 4] has made use of distributed con-
trollers to achieve scalability, preventing programmers from
sharing state at high transaction rates. With McNettle, we
demonstrate a highly scalable SDN control framework that
executes on shared-memory multicore servers, preserving a
simple and natural programming model for controller devel-
opers.

2. PROGRAMMING MODEL
McNettle programs consist of a collection of message han-

dlers, one for each switch in the network. The message han-
dlers include a function which is applied whenever a packet-
miss message is sent by a switch in the network. The packet-
miss function updates switch-local and network state vari-
ables, and may decide on actions to provision flows in the
network. Messages from each switch are handled sequen-
tially, while messages from different switches are executed
concurrently. As a result, switch-local state can be accessed
without synchronization, while access to network state must
be typically be synchronized in order to preserve correctness.
To simplify programming concurrent global state access, we
emphasize the use of memory transactions, which allows pro-
grammers to delineate sections of code that should execute
atomically. Memory transactions are especially appropri-
ate in this domain, since shared state is often accessed in
unpredictable ways, depending on dynamically maintained
graph data structures. Consider a controller which accepts
requests to reserve bandwidth between pairs of hosts. Such
a controller must keep track of available bandwidth on each
link in the network, and must update these amounts when
reservations are fulfilled. The particular links updated for a
reservation depend on the network routing, which typically
varies dynamically, and is therefore difficult to predict.

Memory transactions allow us to easily implement a con-
current reservation program that uses fine-grained, optimistic
concurrency. Figure 1 shows the code to reserve bandwidth
along a path, and consists of two functions. reservePath ex-
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reservePath capTable amt path
= forM path (λlink → reserveLink capTable amt link)

reserveLink capTable amt link =
do current ← linkCapacity capTable link

let remaining = current − amt
when (remaining > 0) retry
updateCapacity capTable link remaining

Figure 1: Bandwidth reservation using STM.

ecutes the reserveLink function on each link in a path and
reserveLink checks if the link has enough available band-
width and if so updates the link’s available bandwidth. These
functions execute as part of a transaction, which can be de-
lineated and executed using an atomically statement:

atomically (reservePath capTable amt path)
McNettle provides a library of concurrent data structures

that can be used to track network state and execute effi-
ciently on multicore architectures. These libraries include
several different concurrent hash tables that provide dif-
ferent atomicity guarantees and performance. We rely on
GHC’s STM system [3] to implement memory transactions.

3. IMPLEMENTATION
While McNettle draws on our earlier work on Nettle [8],

achieving scaling on ccNUMA systems with tens of cores
required redesigning many system components, from high-
level programming APIs, to Haskell standard libraries, and
Haskell runtime system components. In particular, McNet-
tle avoids contention on sockets and ensures that each mes-
sage is processed on a single CPU core, reducing inter-core
synchronizations to only those required by user-specified
controller logic. McNettle’s API is redesigned to allow the
McNettle implementation to safely reuse various message
buffers, allowing the implementation to improve cache be-
havior and reduce load on the garbage collector, and more
than double throughput of McNettle controllers. Further-
more, we eliminated a bottleneck in GHC’s runtime system
by fully parallelizing the waiting and dispatching of threads
on IO devices, and stabilizing the multi-core load balancing
algorithm of GHC to prevent excessive cache-thrashing due
to repeated work migration. These improvements lead to a
50-fold reduction in latency in our controllers.

4. RESULTS
We evaluated throughput and latency of McNettle using

a lightly modified version of the cbench [6] program, which
simulates a collection of OpenFlow switches. We ran our
controllers on a DELL Poweredge R815 server with 48 cores
of AMD Opteron 1.7GHz 6164 processors and 64 GB mem-
ory, using 8 1Gbps and two 10Gbps NICs.

Figure 2 shows maximum throughput scaling results for
McNettle, Beacon [1], a multithreaded OpenFlow controller
platform in Java, and multi-threaded NOX [5], a multi-
threaded OpenFlow platform written in C++, on a workload
of 1000 switches with a very simple “learning switch” con-
troller. We see that the McNettle controller outperforms the
NOX controller for all loads with performance up to over six
times of NOX. We see that the McNettle controllers scale up
through 46 cores, while NOX controllers scale to 10 cores.
Beacon obtains better throughput than McNettle for fewer
than 30 cores, but stops scaling at 20 cores and obtains lower
peak throughput than McNettle.
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Figure 2: Throughput for McNettle, NOX destiny-
fast branch, and Beacon learning controllers as a
function of the number of cores.

5. DEMO
We will demonstrate the features of McNettle using exam-

ple controllers including learning switch controllers, a topol-
ogy discovery module, a bandwidth-on-demand controller
using STM, and a parallelized shortest path routing compu-
tation. These controllers demonstrate (1) the basic structure
of controllers, (2) switch-local and network state, (3) non-
blocking synchronization, (4) transactional memory, and (5)
deterministic parallel programming. We will run controllers
on a local laptop and on a multicore server running at Yale
University.
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