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ABSTRACT

The generation of RDF data has accelerated to the point
where many data sets need to be partitioned across mul-
tiple machines in order to achieve reasonable performance
when querying the data. Although tremendous progress has
been made in the Semantic Web community for achieving
high performance data management on a single node, cur-
rent solutions that allow the data to be partitioned across
multiple machines are highly inefficient. In this paper, we
introduce a scalable RDF data management system that is
up to three orders of magnitude more efficient than popular
multi-node RDF data management systems. In so doing,
we introduce techniques for (1) leveraging state-of-the-art
single node RDF-store technology (2) partitioning the data
across nodes in a manner that helps accelerate query pro-
cessing through locality optimizations and (3) decomposing
SPARQL queries into high performance fragments that take
advantage of how data is partitioned in a cluster.

1. INTRODUCTION
The proliferation of RDF (Resource Description Frame-

work [2]) data is accelerating. The reasons for this include:
major search engines such as Google (RichSnippets) and Ya-
hoo (SearchMonkey) displaying Webpages marked up with
RDFa more prominently in search results (thereby encourag-
ing increased used of RDFa), popular content management
systems such as Drupal offering increased support for RDF,
and more data sets becoming available to the public (espe-
cially from government sources) in RDF format. Although
the increased amount of RDF available is good for Semantic
Web initiatives, it is also causing performance bottlenecks
in currently available RDF data management systems that
store the data and provide access to it via query interfaces
such as SPARQL.

There has been significant progress made around the re-
search effort of building high performance RDF data man-
agement systems that run on a single machine. This started
with early work on Sesame [9], Jena [33], 3store [18], and
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RDFSuite [7], and continued through many new systems
that have been proposed in the last few years [12, 4, 24, 32,
29, 25, 15]. These systems have demonstrated great perfor-
mance on a single machine for data sets containing millions,
and, in some cases, billions of triples. Unfortunately, as
the amount of RDF data continues to scale, it is no longer
feasible to store entire data sets on a single machine and
still be able to access the data at reasonable performance.
Consequently, the requirement for clustered RDF database
systems is becoming increasingly important.

There has been far fewer research progress made towards
clustered RDF database systems. Those that are currently
available, such as SHARD [27], YARS2 [19], and Virtu-
oso [26] generally hash partition triples across multiple ma-
chines, and parallelize access to these machines as much as
possible at query time. This technique has proven to work
well for simple index lookup queries, but for more involved
queries, such as those found in popular RDF benchmarks,
efficiency is far from optimal. This is because these systems
have to ship data around the network at query time in order
to match complex SPARQL patterns across the RDF graph.
These (potentially multiple) rounds of communication over
the network can quickly become a performance bottleneck,
leading to high query latencies. Furthermore, these systems
use storage layers that were not originally designed for RDF
data, and are therefore less efficient on a single node than
the state-of-the-art RDF storage technology cited above.

In this paper, we describe the design of a horizontally
scalable RDF database system that overcomes these limita-
tions. We install a best-of-breed RDF-store on a cluster of
machines (in this paper we use RDF-3X [24] since we found
this to be the fastest single-node RDF-store in our internal
benchmarking) and partition an RDF data set across these
data stores. Instead of randomly assigning triples to parti-
tions using hash partitioning, we take advantage of the fact
that RDF uses a graph data model, so we use a graph parti-
tioning algorithm. This enables triples that are close to each
other in the RDF graph to be stored on the same machine.
This results in a smaller amount of network communication
at query time, since SPARQL queries generally take the form
of graph pattern matching [3] and entire subgraphs can be
matched in parallel across the high performance single-node
RDF stores.

In order to maximize the percentage of query process-
ing that can be done in parallel, we allow some overlap of
data across partitions, and we introduce a method for au-
tomatic decomposition of queries into chunks that can be
performed independently, with zero communication across
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partitions. These chunks are then reconstructed using the
Hadoop MapReduce framework. We leverage recent work
on HadoopDB [5] to handle the splitting of query execution
across high performance single-node database systems and
the Hadoop data processing framework.

After presenting the architecture of our system (Section
3) along with our algorithms for data and query partitioning
(Sections 4 and 5), we experimentally evaluate our system
against several alternative methods for storing and querying
RDF data, including single-node database systems and scal-
able clustered systems. Overall, we find that our techniques
are able to achieve up to 1000 times shorter query latencies
relative to alternative solutions on the well-known LUBM
RDF benchmark.

In summary the primary contributions of our work are the
following:

• We introduce the architecture of a scalable RDF datab-
ase system that leverages best-of-breed single node
RDF-stores and parallelizes execution across them us-
ing the Hadoop framework.

• We describe date partitioning and placement techniqu-
es that can dramatically reduce the amount of network
communication at query time.

• We provide an algorithm for automatically decompos-
ing queries into parallelizable chunks.

• We experimentally evaluate our system to understand
the effect of various system parameters and compare
against other currently available RDF stores.

Although this paper focuses on RDF data and SPARQL
queries, we believe that many of our techniques are appli-
cable to general graph data management applications, es-
pecially those for which subgraph matching is an important
task.

Furthermore, while our system is primarily designed for
the largest RDF data sets, we will also show that even for
smaller data sets, the techniques introduced in this paper
are highly relevant. This is because some of the more com-
plicated tasks that people want to do with RDF (such as
inference) perform orders of magnitude faster if the entire
working dataset can be held in memory. A dataset that
would normally be disk-resident can be partitioned into the
main memory of a cluster of machines using the horizontally
scalable architecture described in this paper. Consequently,
for some of these tasks, we observe super linear speed-up in
our experiments, as more nodes are added to a cluster and
disk-resident data are stored entirely in distributed memory.

2. BACKGROUND

2.1 RDF
The “Resource Description Framework,” [2] or RDF, is a

data model that was proposed by the W3C as a standard
for representing metadata about Web resources, and has be-
come a popular data model for releasing public data sets on
the Internet. Its schema-free model makes RDF a flexible
mechanism for describing entities in way that many differ-
ent data publishers (located across the Internet) can add
arbitrary information about the same entity, or create links
between disparate entities.
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Figure 1: Example RDF Graph Data from DBpedia.

RDF uses a graph data model, where different entities are
vertexes in the graph and relationships between them are
represented as edges. Information about an entity is repre-
sented by directed edges emanating from the vertex for that
entity (labeled by the name of the attribute), where the edge
connects the vertex to other entities, or to special “literal”
vertexes that contain the value of a particular attribute for
that entity.

Figure 1 shows a sample RDF graph, taken from the fa-
mous DBpedia RDF dataset1. For example, edges in the
graph indicate that the entity (“Messi”) is of type “foot-
baller”, was born in Rosario, and plays striker for FC Barcel-
ona. Each of the entities that “Messi” is connected to in this
graph can have their own set of connections; for example,
FC Barcelona is shown to be connected to the Barcelona
entity through the region relation.

Most RDF-stores (systems that are built to store and
query RDF data) represent RDF graphs as a table of triples,
where there is one triple for each edge in the RDF graph.
The triple takes the form < subject, predicate, object >,
where the subject is the entity from which the (directed)
edge emanated, the predicate is the label of the edge, and
the object is the name of the entity or literal on the other
side of the edge. Many RDF-stores store the triples in a re-
lational database, using a single relational table containing
three columns. The triple table for the example RDF graph
in Figure 1 can be found in the appendix (Section A).

2.2 SPARQL
As explained in the official W3C Recommendation docu-

mentation for SPARQL [3], “Most forms of SPARQL queries
contain a set of triple patterns called a basic graph pattern.
Triple patterns are like RDF triples except that each of the
subject, predicate and object may be a variable. A basic
graph pattern matches a subgraph of the RDF data when
RDF terms from that subgraph may be substituted for the
variables.” Hence, executing SPARQL queries generally in-
volves graph pattern matching. For example, the query in
Figure 2 returns the managers of all football (soccer) clubs
in Barcelona. This example tries to find entities in the data
set that have at least two edges emanating from them: one
that is labeled “type” and connects to the “footballClub”
entity, and one that is labeled “region” and connects to the
“Barcelona” entity. Entities that match this pattern are re-
ferred to using the variable name ?club (the ? character is
used to indicate pattern variables). For these entities, we
look for edges that connect to them via the “manages” label
and return both sides of that edge if such an edge exists.

1
We made some simplifications to the actual DBpedia data in order

to make this example easier to read. Most notably, we replaced the
Universal Resource Identifiers (URIs) with more readable names.
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Barcelona?manager

manages
region

footballClub

?club

type

SELECT ?manager ?club
WHERE{  
?manager  manages  ?club  .   
?club     type     footballClub .         
?club     region   Barcelona   . }

Figure 2: Example SPARQL Query.

If the RDF data is stored using a relational “triples” ta-
ble, SPARQL queries can be converted to SQL in a fairly
straightforward way, where the triples table is self-joined
for each SPARQL condition, using shared variable names
as the join equality predicate. For example, the SPARQL
query above can be converted to the following SQL:

SELECT A.subject, A.object
FROM triples AS A, triples AS B, triples AS C
WHERE B.predicate = "type" AND B.object = "footballClub"

AND B.subject = C.subject AND C.predicate = "region"
AND C.object = "Barcelona" AND C.subject = A.object
AND A.predicate = "manages"

A more complicated SPARQL query is presented as Ex-
ample 1 in the appendix.

In general, SPARQL graph patterns that involve paths
through the RDF graph convert to subject-object joins in
the SQL, and patterns that involve multiple attributes about
the same entity involve subject-subject joins in the SQL (the
above example has both types of joins). Although other
types of joins are possible, subject-subject and subject-object
joins are by far the most common.

3. SYSTEM ARCHITECTURE
As described in Section 2.2, SPARQL queries tend to take

the form of subgraph matching. This type of data access is
therefore the motivating use-case for which we are architect-
ing our system. RDF data is partitioned across a cluster of
machines, and SPARQL graph patterns are searched for in
parallel by each machine. Data may need to be exchanged
between machines in order to deal with the fact that some
patterns in the data set may span partition boundaries. We
use Hadoop to manage all parts of query processing that
require multiple machines to work together.

The high level architecture diagram is presented in Fig-
ure 3. RDF triples that are to be loaded into the system
get fed into the data partitioner module which performs a
disjoint partitioning of the RDF graph by vertex. As will be
described in the next section, we default to using a popular
open source graph partitioner that runs on a single machine
(our master node); for RDF datasets that are too large to
be partitioned by a single machine, we can plug in a dis-
tributed graph partitioning solution instead. The output of
the partitioning algorithm is then used to assign triples to
worker machines according to the triple placement algorithm
we will describe in the next section. Each worker machine
contains an installation of a pluggable state-of-the-art RDF-
store, and loads all triples it receives from the triple placer.

In order to increase the number of queries that are possible
to be run completely in parallel, it is beneficial to allow
some triples to be replicated on multiple machines. The data
replicator on each worker node determines which triples are
on the boundary of its partition, and replicates these triples
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Graph
Partitioner

Triple
Placer

Data Partitioner

Query 
Processer

Master
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Data
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Data
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Data
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Figure 3: System Architecture.

(according to the n-hop guarantee we present later) using a
Hadoop job after each new batch of triples are loaded.

The master node also serves as the interface for SPARQL
queries. It accepts queries and analyzes them closely. If it
determines that the SPARQL pattern can be searched for
completely in parallel by each worker in the cluster, then it
sends the pattern to each node in the cluster for processing.
If, however, it determines that the pattern requires some co-
ordination across workers during the search, it decomposes
the query into subgraphs that can be searched for in iso-
lation, and ships these subgraphs to the worker nodes. It
then hands off the rest of the query, including the query
processing needed to reconstruct the original query graph,
to Hadoop to complete.

The following sections describe the load and query steps in
detail. We assume that data is read-only after being loaded
(updates are left for future work).

4. DATA PARTITIONING
When data is partitioned across multiple machines, the

particular partitioning algorithm can make a large difference
in the amount of data that needs to be shipped over the
network at query time. Take the following example that
returns the names of the strikers that have played for FC
Barcelona:

SELECT ?name
WHERE { ?player type footballPlayer .

?player name ?name .
?player position striker .
?player playsFor FC_Barcelona . }

If data was partitioned using a simple hash partitioning
algorithm, it is trivial to perform it in parallel without any
network communication (except at the very end of the query
to collect results). In particular, if data was hash partitioned
by RDF subject (which, as described above, is how clustered
RDF-store implementations are generally designed), then it
is guaranteed that all triples related to a particular player
are stored on the same machine. Therefore, every machine
in the cluster can process the query (completely in parallel)
for the subset of players that had been hash partitioned to
that machine, and the results can be aggregated together
across machines at the end of the query.

The type of query that hash partitioning by subject excels
at are SPARQL queries that contain a graph pattern form-
ing a “star”, with a single center vertex (that is usually a

1125



variable), and one or more edges emanating from this center
vertex to variable or constant vertexes. The above example
is exactly this type of query.

While star queries are fairly common in SPARQL work-
loads, most benchmarks and realistic workloads contain ad-
ditional queries that attempt to match more complicated
SPARQL patterns. Consider Figure 2 from Section 2.2. The
query forms a short path (of length two) through the RDF
data. No matter how the data is hash partitioned across ma-
chines, the query cannot be performed completely in parallel
without network communication because the three patterns
do not share a common subject, predicate nor object. Con-
sequently, data shuffling will be necessary at query time, and
if any pattern of the query happens to be unselective, the
network may be overwhelmed by intermediate results.

We therefore choose to g
¯
raph partition RDF data across

machines instead of simple hash partitioning by subject,
predicate, or object. This allows vertexes that are close to-
gether in the RDF graph to be stored on the same machine
(unless they are near a partition boundary) and graph pat-
terns that contain paths through the graph of length two or
above can mostly be performed in parallel (as long as some
correction is taken for RDF graph subsets on the partition
boundaries that could span multiple machines).

Since every RDF triple describes a particular edge in the
RDF graph (i.e., the number of RDF triples in a data set is
equal to the number of edges in a RDF graph), the most
obvious way to perform graph partitioning is via “edge-
partitioning” a RDF graph into disjoint subsets. Unfortu-
nately, such an approach complicates the execution of star
queries since vertexes on the boundary of a partition might
have some edges on one machine and some edges on another
machine, thereby causing additional network communica-
tion at query time relative to simple hash partitioning.

Therefore, since star queries are quite common, we parti-
tion a RDF graph by vertex, such that each machine in a
cluster receives a disjoint subset of RDF vertexes that are
close to each other in the graph. Once the RDF graph has
been partitioned, we assign triples to machines. The most
obvious way to do this is to place each triple on the machine
that owns the subject vertex for that triple; however, we will
discuss some alternatives to this approach below.

Our graph partitioning scheme consists of two major steps.
We first divide vertexes of an RDF graph into disjoint par-
titions. Then we assign triples to partitions based on the
original RDF graph, the output of vertex partitioning, and
other parameters. We discuss in depth these two steps in
the next two sections.

4.1 Vertex Partitioning
To facilitate partitioning a RDF graph by vertex, we re-

move triples whose predicate is rdf:type (and other similar
predicates with meaning “type”). These triples may gen-
erate undesirable connections, because if we included these
“type” triples, every entity of the same type would be within
two hops of each other in the RDF graph (connected to each
other through the shared type object). These connections
make the graph more complex and reduce the quality of
graph partitioning significantly, since the more connected
the graph is, the harder it is to partition it. In fact, we
find that removing the bias to place objects of the same
type on the same machine can sometimes improve query per-
formance, since this causes entities of popular types to be

spread out across the cluster, which allows queries involv-
ing these types to be executed in parallel in an equitable
fashion2.

Vertex partitioning of graphs is a well-studied problem
in computer science, and we therefore can leverage previ-
ously existing code to do the partitioning for us. In our
current prototype, we use the METIS partitioner [1] for this
purpose; however, we expect to switch to a more scalable
partitioner in the future. We input the RDF graph as an
undirected graph to METIS, specify the desired number of
partitions (which is usually the number of machines in the
cluster), and METIS outputs partitions of vertexes that are
pairwise disjoint.

4.2 Triple Placement
After partitioning the vertexes of the RDF graph into dis-

joint partitions, the next step is to assign triples from the
RDF data set into these partitions. As mentioned above,
the most straightforward way to implement this is to sim-
ply check the subject for each triple and place the triple
in the partition that owns the vertex corresponding to that
subject.

It turns out, however, that allowing some triples (partic-
ularly those triples whose subject is on the partition bound-
ary) to be replicated across partitions can significantly re-
duce the amount of network communication needed at query
time to deal with the fact that SPARQL query patterns can
potentially span multiple partitions. Of course, this leads to
a fundamental trade-off between storage overhead and com-
munication overhead. Less triple replication reduces storage
overhead (and also I/O time if a query requires that all data
per partition needs to be scanned) but incurs communica-
tion overhead. More replication results in higher storage
overhead, but it cuts down the communication cost, and it
can, in some cases, make the query executable completely
in parallel across partitions without any additional commu-
nication.

Since we are using Hadoop as the query execution layer in
our system to do the coordination of query processing across
machines, there can be a dramatic performance difference
between queries that can be processed completely in parallel
without any coordination (where the use of Hadoop can be
circumvented) and queries that require even a small amount
of coordination (where Hadoop needs to be fired up). This is
because Hadoop usually has at least 20 seconds of start-up
overhead, so query time can increase from a small number of
seconds (or even less) for completely parallelizable queries,
to at least 20 seconds for queries that require data exchange.

To specify the amount of overlap, we define a directed n-
hop guarantee as follows: For a set of vertexes assigned to a
partition, a directed 1-hop guarantee calculates all vertexes
in the complete RDF graph that are connected via a single
(directed) edge from any vertex already located within the
partition, and adds this set of vertexes along with the edges
that connect them to the original set of vertexes in the par-
tition. A directed 2-hop guarantee starts with the subgraph
that was created by the directed 1-hop guarantee and adds
another layer of vertexes and edges connected to this new
subgraph. This works recursively for any number of hops.
(A formal definition of the directed n-hop guarantee is given

2
Similar logic applies for why parallel databases tend to partition

large tables equitably across a cluster instead of trying to fit each
table onto a single machine.
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in Section B in the appendix). The triples corresponding to
the edges added by the directed n-hop guarantee are placed
at that partition (even if they already exist elsewhere). Note
that the directed 1-hop guarantee yields no triple replication
(it is the same as the “straightforward” triple placement al-
gorithm mentioned above).

A potential problem with using a directed n-hop guar-
antee is that vertexes that correspond to an object in one
RDF triple and as a subject or object in another triple (and
that exist on the edge of a partition) can potentially result
in their associated triples being allocated to different parti-
tions (without replication). For example, triples (s, p, o) and
(o, p′, o′) where the subject of one triple is equal to the ob-
ject of another triple are not guaranteed to end up in same
the partition if only one hop is guaranteed (however they
will end up in the partition that “owns” vertex s under a 2-
hop guarantee). Furthermore, triples (s, p, o) and (s′, p′, o)
are not guaranteed to end up in the same partition (even
though they are connected via the same object) no matter
how large the n-hop guarantee is.

Since it is not unusual for a SPARQL query to include
such an “object-connected” graph pattern, in many cases it
is preferable to use an undirected n-hop guarantee, so that
triples connected through an object will end up in the same
partition. (A formal definition of the undirected n-hop guar-
antee is given in Section C in the appendix). For instance,
the SPARQL query in Figure 2 can be performed completely
in parallel if data is partitioned using an undirected 1-hop
guarantee (the whole query pattern is within one undirected
hop from the ?club vertex). Each partition performs the
subgraph match for the clubs that are owned by that node,
knowing that all information about the manager and city
of each club can be found within one (undirected) hop of
that club and are therefore stored in the same partition. An
undirected hop guarantee results in additional triple repli-
cation (relative to a directed hop guarantee), but it is able
to yield improved performance on a wider range of queries3.

We implement the triple placement algorithm (whether
directed or undirected) in a scalable fashion using Hadoop
jobs. The original RDF graph, along with the initial assign-
ment of vertexes to partitions (from the graph partition-
ing algorithm) are partitioned across the Hadoop cluster.
For each hop in the n-hop guarantee, a Map phase iterates
through all triples in order to generate a list of vertexes that
are directly connected with each other, and sends this list
along with the current vertex-to-partition mapping to a Re-
duce phase which receives, for each vertex, both its direct
connections and also the set of nodes it is currently mapped
to, and adds these direct connections to these set of nodes
(thereby supplementing the current vertex-to-partition map-
ping). MapReduce pseudocode for triple placement is given
in Figure 13 in the appendix.

For both the directed and undirected n-hop guarantees, in
order to avoid returning duplicate results due to the repli-
cation of triples across partitions, we distinguish between
triples that are owned by a partition (i.e., the subject of
these triples is one of the base vertexes of that partition)

3Of course, there are plenty of queries for which an undi-
rected hop guarantee provides no additional benefit over a
directed hop guarantee. For example, Figure 1 from the ap-
pendix can be performed completely in parallel if data is
partitioned using any kind (directed or undirected) of two-
hop guarantee.

and triples that were replicated to that partition to satisfy
the n-hop guarantee. We do this by explicitly storing the
list of base vertexes on each machine. To unify the format,
we store this list of base vertexes in triple format. For each
base vertex v in the vertex partition, we add a triple (v,
‘<isOwned>’, ‘Yes’). We will show in Section 5 that repre-
senting this list as triples will simplify query execution.

Triple patterns involving rdf:type appear very frequently
in SPARQL queries; therefore, for each vertex that is added
in the last round of the n-hop guarantee generation, we also
add the triple emanating from this vertex containing its
rdf:type if such a triple exists (even though this is techni-
cally an additional hop). The overhead for this is typically
low, and this further reduces the need for cross-partition
communication.

High degree vertexes (i.e., vertexes that are connected
to many other vertexes) cause problems for both the reg-
ular graph partitioning scheme (since well connected graphs
are harder to partition) and for the n-hop guarantee (since
adding these vertexes causes many edges to be dragged along
with them). One potential optimization to avoid this prob-
lem is to ignore these high degree vertexes during the parti-
tioning and n-hop guarantee triple placement steps. Before
the graph partitioning, the data would be scanned (or sam-
pled) in order to find the degree of each vertex, and then the
average degree for each type (rdf:type) is calculated. If the
average exceeds a threshold (the default is three standard
deviations away from the average degree across all types),
vertexes from that type are excluded from graph partition-
ing (and therefore all triples whose subject is equal to a
vertex from that type are removed). After partitioning, the
dropped vertexes are added to the partitions based on which
partition contains the most edges to that vertex.

During triple placement, high-degree vertexes bring far
more triples into the hop guarantee than other vertexes do.
The overlap between partitions grows exponentially when
high-degree vertexes are connected to each other but as-
signed to different partitions. A similar optimization can
help with this problem as well: the hop guarantee can be
weakened so that it does not include triples of high-degree
types (which is defined identically to the previous para-
graph). The query processing algorithm must be made aware
that triples of high-degree types are not included in the hop
guarantee, and graph patterns involving these types require
additional communication across partitions.

5. QUERY PROCESSING
In our system, queries are executed in RDF-stores and/or

Hadoop. Since query processing is far more efficient in RDF-
stores than in Hadoop, we push as much of processing as
possible into RDF-stores and leave the rest for Hadoop.
Data partitioning has a big impact on query processing.
The larger the hop guarantee in the data partitioning al-
gorithm, the less work there is for Hadoop to do (in some
cases, Hadoop can be avoided entirely).

If a query can be answered entirely in RDF-stores with-
out data shuffling in Hadoop, we call it a “PWOC query”
(parallelizable without communication). Figure 4 sketches
the algorithm to determine whether a query is PWOC given
an n-hop guarantee. The concept of “distance of farthest
edge” (DoFE) in the algorithm is a measure of centrality in
a graph. Intuitively, the vertex in a graph with the smallest
DoFE will be the most central in a graph. We will call this
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This algorithm assumes an undirected n-hop guarantee and
the input query G = {V,E} is an undirected graph.
Algorithms for directed hop guarantees and incomplete hop
guarantees (high degree vertex removal) are given in Figures
14 and 15 in the appendix.

function IsPWOC(Input: G, n, Output: Boolean)

core=v, s.t. DoFE(v,G)≤DoFE(v′, G), ∀v′ ∈ V
return (DoFE(core, G) ≤ n)

function DoFE(Input: G, Vertex v, Output: Int)

∀e = (v1, v2) ∈ E, compute

min(distance(v, v1), distance(v, v2)) + 1,

denoted by dist(v, e)

return dist(v, e) s.t. dist(v, e) ≥ dist(v, e′) ∀e′ ∈ E

Figure 4: Determining whether a Query is PWOC
(Parallelizable Without Communication.)

vertex the “core” in function IsPWOC.
Since partitions overlap in the triples they own, the is-

sue of duplicate results in query processing needs to be
addressed. One naive approach to deal with this problem
would be to use a Hadoop job to remove duplicates after
the query has completed. Instead, our system adopts an
owner-computes model [21] popular in parallel graph com-
putation. Recall from Section 4.2 that we add triples (v,
‘<isOwned>’, ‘Yes’) to a partition, if v was one of the “base”
vertexes assigned to that partition by the disjoint partition-
ing algorithm. For each query issued to the RDF-stores, we
add an additional pattern (core, ‘<isOwned>’, ‘Yes’), where
core is found in the function IsPWOC. In this way, each
partition only outputs the subgraph matches whose binding
of the core is owned by the partition.

If a query is not PWOC, we decompose the query into
PWOC subqueries. We then use Hadoop jobs to join the
results of the PWOC subqueries. The number of Hadoop
jobs required to complete the query increases as the num-
ber of subqueries increases. Therefore, our system adopts
the query decomposition with the minimal number of sub-
queries as a heuristic to optimize performance. This re-
duces to the problem of finding minimal edge partitioning
of a graph into subgraphs of bounded diameter, a problem
that has been studied well in the theory community [8, 6,
20, 14]. Although more optimal algorithms are known, we
use a brute-force implementation in our prototype, since the
SPARQL graphs we have worked with contain 20 or fewer
triple patterns.

Take, for example, the example SPARQL query presented
in Section 2.2 (Figure 2). For this example, the DoFEs for
manager, footballClub, Barcelona and club are 2, 2, 2 and 1,
respectively (if we are using an undirected hop guarantee).
club will be chosen as the core because it has the smallest
DoFE. Another SPARQL query is presented in Example 1
in the appendix. For that query, the DoFEs for footballer,
pop, region, player and club are 3, 3, 2, 2 and 2, respec-
tively if we are using an undirected hop guarantee. Any of
region, player or club may be chosen as the core. If we are
using a directed hop guarantee, only player has a DoFE of
2. Suppose our data partitioning uses an undirected 1-hop
guarantee. Figure 2 will be considered a PWOC query be-
cause the DoFE for club is the same as the hop guarantee.
A triple patten (?club, ‘<isOwned>’, ‘Yes’) will be added to
the query which is then issued to the RDF-stores. However,
Example 1 is not a PWOC query and therefore decomposed

into PWOC subqueries (see Section D in the appendix for
the resulting subqueries). Player and region are chosen as
cores in the subqueries because they both have DoFE 1.
After the two subqueries are executed in the RDF-stores,
the intermediate results are joined on club and region by a
Hadoop job. For a directed or undirected 2-hop guarantee,
both examples are PWOC queries.

In general, the above described query decomposition only
needs to be done to check for graph patterns that could po-
tentially span multiple partitions. However, even when the
hop guarantee is not large enough to make the entire query
PWOC, the internal vertexes for a partition (i.e. nodes that
are not along the edge of a partition, which have more hops
within local reach than the hop guarantee) can be checked
directly without decomposition (and extra network commu-
nication) as if the query were PWOC. Section F.3 in the
appendix explains this optimization further and experimen-
tally studies its effects.

6. EXPERIMENTS
In this section, we measure the performance of our sys-

tem on the Lehigh University Benchmark (LUBM) (the most
widely used benchmark of the Semantic Web community).
For comparison, we also measure the performance of a sim-
ple hash partitioning version of our system, another hori-
zontally scalable RDF-store (SHARD[27], which also uses
hash partitioning), and RDF-3X[24] running by itself on a
single node. The specifications of our 20-node cluster, along
with some additional technical details and background on
RDF-3X and SHARD, are given in Appendix E.

We will refer to the prototype of the system described in
this paper as “graph partitioning”. As mentioned in Sec-
tion 3, our system involves installing a fast RDF store on
each machine, attempting to parallelize SPARQL queries
over RDF data partitioned across these machines as much
as possible, and using Hadoop to manage any redistribution
of data that needs to occur at query time. For Hadoop,
we used version 0.19.1 running on Java 1.6.0. We kept the
default configuration settings. For the state-of-the-art RDF
store, we used RDF-3X 0.3.5. This allows for a direct com-
parison of RDF-3X containing all data running on a single
node, and a parallelized version of RDF-3X that we intro-
duced in this paper. In this section, we experiment with
both undirected 1-hop and 2-hop guarantees, with the high-
degree vertex optimization described at the end of in Section
4.2 turned on. In Appendix F, we also experiment with di-
rected hop guarantees, how performance scales with cluster
size, and measure the contribution to performance of various
optimizations.

The setup for the “hash partitioning” version of our sys-
tem that we experiment with is identical to “graph par-
titioning” above (many RDF-3X nodes sitting underneath
Hadoop), except that the data is hash partitioned by RDF
subject instead of using the graph partitioning algorithm de-
scribed in this paper. These results are included in the ex-
periments to approximate the “best case scenario” for mod-
ern hash-partitioned scalable RDF-stores if they had used
storage optimized for RDF (which is not the case today).

6.1 Benchmark
The Lehigh University Benchmark (LUBM)[17] features

an ontology for the university domain, synthetic OWL and
RDF data scalable to an arbitrary size, and fourteen exten-
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sional queries representing a variety of properties. In these
experiments, we generate a dataset with 2000 universities.
The data size is around 50 GB in N-Triples format and con-
tains around 270 million triples. As a measurement of query
complexity, Figure 8 in the appendix shows the number of
(self-)joins in each query of the benchmark. In a nutshell,
out of the 14 queries, 12 have joins, of which all 12 have at
least one subject-subject join, and 6 of them also have at
least one subject-object join.

6.2 Data Load Time
Figure 5 shows the load time for the four systems. Hash

partitioning takes the least time because it requires mini-
mal pre-processing and loads in parallel. Graph partitioning
takes 4 hours and 10 minutes in total, most of which is spent
on triple placement. Loading into RDF-3X is much faster
for graph partitioning than loading it all on a single node
since each node only needs to load a little more than 1/20th
as much data, and RDF-3X’s load time does not scale lin-
early. SHARD’s high load time is due to format conversion,
and could probably be optimized with additional effort.

System Load Time
RDF-3X 2.5h
SHARD 6.5h

Hash Partitioning 0.5h

Graph Partitioning
Vertex Partitioning: 1h
Triple Placement: 3h

Loading into RDF-3Xs: 10min

Figure 5: Load Time.

6.3 Performance Comparison
Figure 6 shows the execution time for LUBM in the four

benchmarked systems. Except for query 6, all queries take
more time on SHARD than on the single-machine deploy-
ment of RDF-3X. This is because SHARD’s use of hash par-
titioning only allows it optimize subject-subject joins. Every
other type of join requires a complete redistribution of data
over the network within a Hadoop job, which is extremely
expensive. Furthermore, its storage layer is not at all opti-
mized for RDF data (it stores data in flat files).

To analyze the performance of our system, we first divide
the queries into two groups. Queries 1, 3, 4, 5, 7, 8, 10, 11
and 12 run for less than 1 second on single-machine RDF-
3X, so we call them “fast queries”; queries 2, 6, 9, 13 and 14
run for more than 10 seconds on single-machine RDF-3X,
so we call them “slow queries”.

For fast queries (queries that require little more than a few
index lookups), the large size of the data set is not problem-
atic since the data size is significantly reduced before a scan
is required, so adding more machines and partitioning data
across them does not improve the performance. Therefore,
it is slightly better to run these queries on a single machine
than in parallel on multiple machines, due to the network
communication delay needed to get these parallel queries
started and aggregate results. These “fast” queries take a
minimum 0.4 to 0.5 seconds on the multi-machine imple-
mentations just for this communication.

For slow queries (queries that require scans of large amounts
of intermediate data), the single machine implementation
sees significant scalability limitations, and partitioning the
data across multiple machines dramatically improves perfor-
mance. The improvement ranges from 5 times (query 9) to
500 times (query 2) faster. The reason for the super-linear
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Figure 6: LUBM Execution Time.
speedup is explained further in Section F.1 (in short, parti-
tioning allows the working set to be held in memory rather
than on disk).

Changing the hop guarantee for the graph partitioning
technique from 1-hop to 2-hop only has a significant effect
for three queries (2, 8 and 9) since the 1-hop guarantee is
sufficient to make most of the queries PWOC on this bench-
mark. This is explored further (along with reports on data
sizes after triple replication) in Section F.2 in the appendix.
The 2-hop guarantee is sufficient to turn all joins into PWOC
joins, since no SPARQL query in the benchmark has a graph
pattern diameter larger than 4. This allows all queries to be
performed completely in parallel for the 2-hop graph parti-
tioning implementation.

Comparing graph and hash partitioning allows one to di-
rectly see the benefit of our proposed graph partitioning
technique. Hash partitioning is only able to avoid network
communication for queries containing only subject-subject
joins (or no joins at all). However, for queries with subject-
object joins, the hash partitioning approach has to ship data
across the network to perform the join, which adds signifi-
cant latency for data redistribution and Hadoop processing.
Additional subject-object joins result in additional joins,
which result in further slowdown. For instance, queries 8,
11 and 12 have only one subject-object join and take up
to 90 seconds; while queries 2, 7 and 9 have two or three
subject-object joins and take up to 170 seconds.

For queries with no subject-object joins (1, 3, 4, 5, 6, 10,
13 and 14), where all joins are PWOC joins for both hash
partitioning and graph partitioning, hash partitioning some-
times performs slightly better than graph partitioning, since
the graph partitioning algorithm requires an additional join
per query to filter out subgraph matches that are centered
on a vertex that is not a base vertex of a partition (the
technique that removes duplicate results).

Note the log-scale of Figure 6. Running the benchmark
takes SHARD 1340 times longer than our graph partitioning
implementation.

7. RELATED WORK
Pregel[22] is a parallel graph computation framework. A

typical Pregel computation consists of a sequence of super-
steps separated by global synchronization points when mes-
sages are passed between machines (similar to how we divide
work between individual databases and cross-node commu-
nication inside Hadoop). Pregel does not use the multi-hop
guarantees we use in this paper to improve parallelism.

Parallel Boost Graph Library(PBGL)[16] and CGMgraph
[10] optionally implement something similar to a 1-hop guar-
antee. For example, PBGL is a C++ library for distributed
graph computation. It includes the concept of bidirectional
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graphs that require that the set of edges incoming to a given
vertex are accessible in constant time, in addition to the
outgoing edges (which is essentially the same as the undi-
rected 1-hop guarantee presented in this paper). However,
this previous work does not generalize the hop-guarantee,
implement any of the optimizations that we present in this
paper, nor present an algorithm for maximizing the paral-
lelization of queries given a general hop-guarantee.

SUBDUE[13] is a knowledge discovery system that also
uses something akin to a one-hop guarantee. Since it is a
KDD system, it does not guarantee accurate output.

Our work on searching for patterns in graphs leverages
previous work on pushing this effort into database systems
[28]. Our join-based approach for pattern matching is re-
lated to work by Cheng et. al. [11] and our distance calcu-
lations are related to recent work by Zou et. al. [34].

Weaver et. al. [31] present an approach for calculating
graph closure under RDFS semantics using parallel compu-
tation. The work by Urbani et. al. [30] works similarly, but
uses MapReduce to perform this calculation. Neither work
focuses on processing general SPARQL queries.

Several attempts have been made to use MapReduce for
SPARQL querying [27, 23]. As we showed in the experi-
ments, these techniques are unable to leverage graph parti-
tioning and have storage layers that are not optimized for
RDF data. Therefore, these systems, while horizontally scal-
able, are quite inefficient.

8. CONCLUSIONS AND FUTURE WORK
In this paper, we presented a scale-out architecture for

scalable RDF data management that leverages state-of-the-
art RDF-stores and the popular MapReduce framework. Ba-
sed on the graph nature of RDF data, we proposed a graph-
oriented data partitioning scheme to exploit the spacial lo-
cality inherent in graph pattern matching. By pushing most
or even all of query processing into fast single-node RDF
stores which operate in parallel, our system is able to per-
form up to three orders of magnitude faster than other at-
tempts at horizontally scalable RDF data management. For
future work, we plan to add a workload-aware component to
our graph partitioning technique, and explore how updates
can be handled efficiently by our architecture.
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APPENDIX

A. EXAMPLE DATA AND SPARQL QUERY
Figure 1 in Section 2 showed an example RDF graph.

This graph can be converted to triple format (for storage in
a typical RDF-store) in the following way:

subject predicate object
Lionel Messi type footballer
Lionel Messi playsFor FC Barcelona
Lionel Messi born Rosario
Lionel Messi position striker

Xavi type footballer
Xavi playsFor FC Barcelona
Xavi born Barcelona
Xavi position midfilder

FC Barcelona region Barcelona
Barcelona, Spain population 5,500,000
Josep Guardiola manages FC Barcelona

Example 1. The following SPARQL query (that can be
run over the above dataset) attempts to find football players
playing for clubs in a populous region (population of at least
2 million) that also happens to be the region where he was
born. (Such a player might have significant advertising value
as a product spokesman in that region.) The graph version
of the query is shown in Figure 7.

SELECT ?player ?club ?region

WHERE { ?player type footballer .

?player playsFor ?club .

?player born ?region .

?club region ?region .

?region population ?pop .

FILTER (?pop > 2,000,000) }

footballer

?region?club

?player ?pop

playsFor

region

born population

type

Figure 7: Example 1 in a Graph.

B. FORMAL DEFINITION OF THE DIREC-

TED N-HOP GUARANTEE

Definition 1. Let G = {V,E} be a graph; and W ⊂ V .
Pn, the directed n-hop guarantee for W , Pn ⊂ G is defined
recursively as follows:
(1) P0 = {V0, E0} where V0 = W and E0 = ∅ is the directed
0-hop guarantee for W .
(2)If Pn = {Vn, En} is the directed n-hop guarantee for W ,
then Pn+1 = {Vn+1, En+1} is the directed (n+1)-hop guar-
antee for W where
Vn+1={v|(v′, v) ∈ E, v′ ∈ Vn} ∪ Vn,
En+1={(v, v′)|(v, v′) ∈ E, v ∈ Vn, v

′ ∈ Vn+1} ∪ En.

C. FORMAL DEFINITION OF THE UNDI-

RECTED N-HOP GUARANTEE

Definition 2. Let G = {V,E} be a graph; and W ⊂ V .
Pn, the undirected n-hop guarantee for W , Pn ⊂ G is de-
fined recursively as follows:
(1) P0 = {V0, E0} where V0 = W and E0 = ∅ is the undi-
rected 0-hop guarantee for W 4.
(2)If Pn = {Vn, En} is the undirected n-hop guarantee for
W , then Pn+1 = {Vn+1, En+1} is the undirected (n+1)-hop
guarantee for W where
Vn+1={v|(v, v′) ∈ E or (v′, v) ∈ E, v′ ∈ Vn} ∪ Vn,
En+1={(v, v′)|(v, v′) ∈ E, v ∈ Vn, v

′ ∈ Vn+1} ∪
{(v′, v)|(v′, v) ∈ E, v ∈ Vn, v

′ ∈ Vn+1} ∪ En.

D. QUERIES ISSUED TO RDF-STORES
Section 5 discussed how SPARQL queries are decomposed

and sent in pieces to be performed in parallel by the RDF-
store on each partition. The specific SPARQL that is sent
to the RDF-stores for the two examples from that section
are given here.

For the SPARQL query in Figure 2, the following query
is issued to the RDF-stores:

SELECT ?manager ?club

WHERE { ?manager manages ?club .

?club type footballClub .

?club region Barcelona .

?club isOwned Yes .}

For Example 1 from Appendix A, the query is decomposed
into two subqueries:

Subquery 1:

SELECT ?player ?club ?region

WHERE { ?player type footballer .

?player playsFor ?club .

?player born ?region .

?player isOwned Yes .}

Subquery 2:

SELECT ?club ?region

WHERE { ?club region ?region .

?region population ?pop .

?region isOwned Yes .

FILTER (?pop > 2,000,000) }

E. MORE EXPERIMENTAL DETAILS
In this section we describe the configuration of our ex-

perimental cluster, and give some additional details about
RDF-3X and SHARD which we use as comparison points in
our experiments.

E.1 Experimental Setup
Except for the single-machine experiments, each of the

systems we benchmark are deployed on a 20-machine clus-
ter. Each machine has a single 2.40 GHz Intel Core 2 Duo

4
Since the 0-hop guarantee contains no edges, it contains no triples,

and is therefore never used in practice.
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processor running 64-bit Red Hat Enterprise Linux 5 (ker-
nel version 2.6.18) with 4GB RAM and two 250GB SATA-
I hard disks. According to hdparm, the hard disks de-
liver 74MB/sec for buffered reads. All machines are on the
same rack, connected via 1Gbps network to a Cisco Catalyst
3750E-48TD switch.

E.2 RDF-3X
RDF-3X[24] is a state-of-the-art single-node RDF-store.

It builds indexes over all possible permutations of subject,
predicate and object. These indexes are highly compressed
and leveraged by the query processor to perform efficient
merge joins (as described in Section 2.2, relational triple
store implementations of RDF-stores require many self-joins).
The query optimizer in RDF-3X employs a cost model based
on RDF-specific statistics to make the optimal choice for join
orders. Its recent release also supports online and batch up-
dates. We use RDF-3X version 0.3.5 in our experiments.

E.3 SHARD
SHARD[27] is an open-source, horizontally scalable triple-

store system. Its data processing and analytical frameworks
are built using the Cloudera Distribution of the Hadoop im-
plementation of the MapReduce formalism.

The system persists data in flat files in the HDFS file
system such that each line of the triple-store text file rep-
resents all triples associated with a different subject. The
query processing engine in SHARD iterates over the triple-
store data for each clause in the input SPARQL query, and
incrementally attempts to bind query variables to literals in
the triple data, while satisfying all of the query constraints.
Each clause of the SPARQL query is processed in a separate
MapReduce operation.

For our experiments, we keep the default configurations
of Hadoop and SHARD.

E.4 Number of Joins in LUBM Queries
As a measurement of query complexity, Figure 8 shows

the numbers of joins, subject-subject joins (s-s joins) and
subject-object joins (s-o joins) in each query of the bench-
mark if the query were to be executed using SQL over a
relational DBMS using the standard triple-store representa-
tion of one table with three columns (one for each: subject,
predicate, and object) discussed in Section 2. Each “join”
is a self-join of the triples table.

Query #joins #s-s joins #s-o joins
1 1 1 0
2 6 3 3
3 1 1 0
4 4 4 0
5 1 1 0
6 0 0 0
7 3 1 2
8 4 3 1
9 6 3 3
10 1 1 0
11 2 1 1
12 3 2 1
13 1 1 0
14 0 0 0

Figure 8: Number of Joins in the Queries.

F. ADDITIONAL EXPERIMENTS
In this section, we measure how performance scales as

the number of machines in the cluster increases, experiment
with directed hop guarantees, and measure the contribution
to performance of various optimizations.

F.1 Varying Number of Machines
To explore the performance of our system as we vary the

number of machines in the cluster, we run LUBM (2000) on
clusters with 1, 5, 10, and 20 worker machines. We bench-
mark the optimized undirected 2-hop guarantee version of
graph partitioning.

Figures 9 presents the results for the interesting queries5.
We normalize execution time using the single-machine im-
plementation as the baseline (all lines start at 1) and calcu-
late the relative performance for the multi-machine cluster.
We also include a line showing a theoretical system that
achieves linear speedup (0.2, 0.1 and 0.05 for 5-, 10- and 20-
machine clusters, respectively) for comparison. Except for
query 9, all queries presented in this figure exceed linear
speedup. This is because scaling out the cluster causes the
working dataset on each machine to be small enough to fit
into main memory, which dramatically reduces the needed
disk I/O.

Query RDF-3X 5 machines 10 20
2 428.77 1.98 1.25 0.84
6 1628.31 32.46 16.72 8.83
9 11.97 12.6 4.03 2.34
13 91.94 0.74 0.59 0.55
14 281.88 25.97 12.75 6.76
Query Performance in Raw Numbers.
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Figure 9: Speedup as More Machines are Added.

F.2 Parameter Tuning
To evaluate how different parameters influence our graph

partitioning technique, we experiment in this section with
the six parameter configurations listed in Table 1. “Un-
two-hop-on” is the configuration we used in Sections 6 and
F.1. For the sake of comparison, we also include the hash
partitioning results in this section.

We first explore the impact of parameters on the data
size. Figure 10 shows the triple counts and the normalized
counts relative to hash partitioning (which has zero stor-
age overhead since each triple exists in only one partition).
The high-degree vertex optimization techniques do not make

5
The response time for “fast queries” as defined in Section 6 is dom-

inated by start-up costs and more machines do not improve the per-
formance. We therefore call fast queries “uninteresting”.
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Name Guarantee High-degree
Optimizations

un-two-hop-on undirected-two-hop on
un-two-hop-off undirected-two-hop off
un-one-hop-on undirected-one-hop on
un-one-hop-off undirected-one-hop off
dir-two-hop-off directed-two-hop off
dir-one-hop-off directed-one-hop off

Table 1: Parameter Configurations.

Configuration Total Triples Ratio to Hash
Hash Partitioning 276M 1
dir-one-hop-off 325M 1.18
un-1-hop-on 330M 1.20
un-1-hop-off 333M 1.21

dir-two-hop-off 329M 1.19
un-2-hop-on 338M 1.22
un-2-hop-off 1,254M 4.54

Figure 10: Total Triple Counts.

much of a difference when there is only a 1-hop guarantee,
but make a dramatic contribution to reducing the exponen-
tial data explosion problem for the undirected 2-hop guaran-
tee. The undirected 2-hop guarantee with the optimizations
turned on only stores an extra 20% of triples per partition,
but turning off the optimizations results in nearly a factor of
5 data explosion. Directedness also helps keeping the data
size in check since fewer triples must be replicated through
the n-hop guarantee.

We next explore how parameters influence query perfor-
mance. Figure 11 presents the performance of each config-
uration on the LUBM benchmark. The first thing to note
is that data explosion caused by unchecked hop guarantees
is not only a storage size problem, but it also affects perfor-
mance. This is because larger numbers of triples per parti-
tion causes the query processor to scan larger intermediate
datasets which slows down performance (for the same reason
why RDF-3X scales poorly if it is run on a single machine).
This is best seen by comparing un-two-hop-off and un-two-
hop-on, which use identical query plans, but un-two-hop-off
needs to store many more triples per partition, which re-
sults in a significant slowdown in performance for the same
“slow” queries that the single-node RDF-3X implementa-
tions struggled on in Section 6.3.

Reducing the undirected hop guarantee from two to one
causes three queries (2, 8 and 9) to become non-PWOC.
These queries are therefore slower than their counterparts
in the two-hop guarantee, but they still outperform hash
partitioning by up to 50% because one-hop still requires less
data to be shipped over the network than hash partitioning.
For the rest of the queries, un-one-hop-on/off and un-two-
hop-on guarantees have similar performance.

Although a directed hop guarantee tends to store less data
in each partition, it leads to more non-PWOC queries. Com-
pared to the undirected one hop guarantee, the directed one
hop guarantee has three more non-PWOC queries (7, 11 and
12) and hence much worse performance on these queries. For
query 7, even the directed two hop guarantee fails to make it
PWOC. Hence for this benchmark, undirected hop guaran-
tees are clearly better. But for other benchmarks, especially
where the high degree optimization is less effective (because
high degree vertexes are accessed more frequently the query
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Figure 11: Performance of Different Configurations.

workload), a directed hop guarantee would likely perform
better relative to a undirected guarantee.

F.3 Hop Radius Table
For queries where the hop guarantee is not large enough

to make the query PWOC, it is still possible to reduce the
network communication that occurs during query decompo-
sition and execution in Hadoop. In general, each partition
contains a subgraph of the original graph. Informally, a n-
hop guarantee ensures that for each vertex in a partition,
all vertexes that are reachable within n hops of that vertex
in the original graph are stored locally on the same ma-
chine in which the partition resides (either because these
vertexes were originally part of the partition, or because
they were replicated over to that machine to satisfy the hop
guarantee). Vertexes close to the boundary of the partition
subgraph are likely not going to be able to rely on reaching
vertexes farther away than the hop guarantee. However, the
vertexes around the center of the subgraph may have access
to complete sets of vertexes that are a more than n hops
away. To distinguish these two different cases and quan-
tify the position of a vertex in a subgraph, we define a hop
radius.

Definition 3. Let G = {V,E} be a graph, and Pn be the
n-hop guarantee for W , P ′

m be the m-hop guarantee for {v},
where v ∈ W ⊂ V and m ≥ n. If P ′

m ⊆ Pn, then m is a hop
radius for v in partition Pn.
Informally, a hop radius is a hop guarantee for a vertex in-

stead of a partition. We maintain a table on each partition
that lists the hop radius for each vertex (which is always
more than or equal to the hop guarantee). All vertexes in
this table that has a hop radius larger than or equal to the
DoFE of a query can be checked directly for a match be-
tween the SPARQL subgraph and a subgraph in the actual
RDF data using that vertex as the “core”. These vertexes
can be checked completely in parallel, as if the query were
PWOC. Only the remaining vertexes need to be checked via
the query decomposition process described in Section 5.

We now explore the effects of this optimization the system.
We only show results for non-PWOC queries here because
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PWOC queries need not use a hop radius table. As can be
seen in Figure 12, queries 8 and 9 perform roughly 20 seconds
when a hop radius table is used to indicate which parts of
the graph can be checked for subgraph matching completely
locally on individual nodes, thereby reducing the interme-
diate results that need to be shipped over the network for
the query decomposition algorithm. However, some queries
are not bottlenecked by network communication, and there-
fore perform similarly with or without hop radius table (e.g.
queries 11 and 12).
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Figure 12: Improvement with Hop Radius Table.

G. TRIPLE PLACEMENT ALGORITHM

Let G = {V,E} be input graph. Let R be the vertex to
machine assignment, namely, a binary relation (V,N). n is
the undirected hop guarantee.

function TriplePlacement(Input:edges E, binary relation R,

Output: placement (E,N) with undirected n-hop guarantee )

B0 = R
for i from 1 to n

{Ai,Bi} = OneHopExpansion(E, Bi−1)
return A1 ∪A2 ∪ ... ∪An

function OneHopExpansion(Input:edges E, binary relation

(V,N), Output: binary relations A (E,N), B (V,N))

A = ∅, B = ∅
Map: Input: (v1, v2) OR (v, partition id)

if input is (v1, v2)
emit (v1, (v1, v2)) and (v2, (v1, v2))

else
emit (v, partition id)

Reduce: Input: (v, partition ids I ∪ edges E′)
for each (v1, v2) ∈ E′ and each i ∈ I

add ((v1, v2), i) to A
if v1 = v

add (v2, i) to B
else

add (v1, i) to B

return {A,B}

Figure 13: Triple Placement Algorithm in MapRe-
duce for Undirected Hop Guarantee.

H. PWOC ALGORITHMS

This algorithm assumes a directed n-hop guarantee and the
input query G = {V,E} is a directed graph.

function IsPWOC(Input: G, n, Output:Boolean)

core=v, s.t. DoFE(v,G)≤DoFE(v′, G), ∀v′ ∈ V

return (DoFE(core, G) ≤ n)

function DoFE(Input: G, Vertex v, Output: Int)

∀e = (v1, v2) ∈ E, compute

distance(v, v1) + 1, denoted by dist(v, e)

return dist(v, e) s.t. dist(v, e) ≥ dist(v, e′), ∀e′ ∈ E

Figure 14: Determining whether a Query is PWOC
with Directed Hop Guarantee.

This algorithm assumes an undirected n-hop guarantee and
the input query G = {V,E} is an undirected graph. The
optimizations for high-degree vertexes are turned on.

function IsPWOC(Input: G, n, Output: Boolean)

mark every vertex in G that is typed
unmark every vertex G that is typed high degree
core=v, s.t. DoFE(v,G)≤DoFE(v′, G), ∀v′ ∈ V
return (DoFE(core, G) ≤ n)

function DoFE(Input: G, Vertex v, Output: Int)

∀e = (v1, v2) ∈ E, compute
min(Distance(v, v1), Distance(v, v2)) + 1,
denoted by dist(v, e)

return dist(v, e) s.t. dist(v, e) ≥ dist(v, e′), ∀e′ ∈ E

function Distance(Input: G, Vertexes v, w, Output: Int)

if v is unmarked

if w is v’s neighbor in G

return 1

else

return infinity

else

return the length of shortest path between v and w,

of which all vertexes must be marked except w

Figure 15: Determining whether a Query is PWOC
with Optimizations for High-Degree Vertexes.
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