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Abstract— Recently spatial crowdsourcing was introduced as 

a natural extension to traditional crowdsourcing allowing for 

tasks to have a geospatial component, i.e., a task can only be 

performed if a worker is physically present at the location of the 

task. The problem of assigning spatial tasks to workers in a 

spatial crowdsourcing system can be formulated as a weighted 

bipartite b-matching graph problem that can be solved optimally 

by existing methods for the minimum cost maximum flow 

problem.  However, these methods are still too complex to run 

repeatedly for an online system, especially when the number of 

incoming workers and tasks increases. Hence, we propose a class 

of approaches that utilizes an online partitioning method to 

reduce the problem space across a set of cloud servers to 

construct independent bipartite graphs and solve the assignment 

problem in parallel. Our approaches solve the spatial task 

assignment approximately but competitive to the exact solution. 

We experimentally verify that our approximate approaches 

outperform the centralized and MapReduce version of the exact 

approach with acceptable accuracy and thus suitable for online 

spatial crowdsourcing at scale. 

Keywords—distributed spatial task assignment; spatial task 

assignment; online partitioning; spatial crowdsouring 

I. INTRODUCTION 

In recent years, crowdsourcing has become popular in 

many research communities (e.g., databases [11], image 

processing [12][13] and NLP [14]) and is commercially used 

in the industry (e.g. Amazon Mechanical Turk [7], 

CrowdFlower [8], CrowdCloud [9] and MicroWorkers [10]). 

The concept of crowdsourcing refers to outsourcing tasks to a 

set of people, known as the workers. Tasks in a crowdsourcing 

system are usually relatively small and require only a 

moderate effort. A typical task involves translating an article 

from one language to another, verifying the information 

written on a business card, or labelling the content of an image. 

Due to the ubiquity of smartphones, the workers nowadays 

are no longer bound to their personal computers to perform 

tasks but can carry a device with an enormous sensing 

capability enabling them to perform their tasks at any location. 

This technical achievement allows for the natural extension of 

traditional crowdsourcing to what is known as spatial 

crowdsourcing [1] where tasks are additionally specified by a 

location. A worker is hence required to be physically present 

at a task location in order to perform the corresponding task. 

An example of a spatial task is to take a picture of a particular 

building or capture a video of a concert. In these scenarios, 

smartphones are used to perform the spatial tasks (e.g., 

capturing a picture, recording a video or audio) and 

simultaneously sense additional information (e.g., location, 

time, direction, speed and acceleration). 

According to the taxonomy of spatial crowdsourcing 

introduced in [1], there are two modes for assigning tasks to 

workers: worker-assigned mode and server-assigned mode. In 

the worker-assigned mode, a worker chooses the best spatial 

tasks autonomously in his/her vicinity with no coordination 

with the server or other workers— thus each worker tries to 

maximize his assignments while minimizing the cost. In the 

server-assigned mode, the assignment is performed by the 

spatial crowdsourcing server (SC-server). In this mode, the 

SC-Server coordinates between all of the workers and tasks in 

order to globally maximize the number of assigned tasks 

while minimizing the total cost for the workers. In this paper, 

we focus on the server-assigned mode. 

From the viewpoint of the requester of a set of tasks, the 

main goal is to have all of the tasks be performed in a short 

amount of time. This consideration brings the problem of the 

assignment of current tasks to available workers in a way that 

maximizes the throughput. Although recent studies [1][2][17] 

have presented techniques to solve this problem, they focused 

on the maximization of the assigned tasks rather than the 

runtime of the assignment in a large-scale setting. Thus, these 

studies only considered a rather small number of tasks and 

available workers at a time so that the assignment can usually 

be performed on a single machine. Generally, the spatial task 

assignment problem is represented as a weighted bipartite 

graph and solved as a weighted b-matching problem. The 

latter problem can be converted to a minimum-cost maximum 

flow problem, which is solved by finding the cheapest 

augmenting paths successively in a weighted network flow 

graph (i.e., a generalization of the Ford Fulkerson Algorithm) 

[1]. In our case, weights (corresponding to the costs associated 

with the tasks) are non-negative and the graph is acyclic, so 

the assignment can be performed in O((m + n log n) n C)  

time where n is the number of nodes in the graph, m is the 

number of edges, and C denotes the maximum edge capacity 

[30]. In this work we aim at a high throughput environment 

(large number of tasks and workers arriving in a short amount 

of time). However, considering the above runtime complexity, 

when the number of incoming tasks and workers grows, the 

assignment of workers and tasks takes a long time on a single 

machine.  



Let us consider an exemplary environment executing the 

assignment periodically (e.g., every 5 minutes). During this 

time suppose 4,000 workers and 16,000 spatial tasks arrive 

with the average amount of tasks a worker can choose from 

(candidate tasks) to be 65. The created graph thus contains 

20,000 vertices (i.e., total number of tasks and workers) and 

280,000 (16,000+4,000+4000*65) edges. Using a machine 

running CentOS 6.3 with 7.5GB memory and 2 CPUs, the 

optimal assignment takes 28.18 minutes, meaning that the 

assignment cannot even finish within the duration of one time 

period. In this setting, the graph requires roughly 1.14 GB 

memory space and the testing machine has enough memory 

capacity. The bottleneck in such scenarios is thus the 

computation rather than the memory overhead. Another 

example, when there are 5,000 workers and 10,000 tasks and 

the average number of candidate tasks per worker is 1844, the 

assignment takes around 12 hours and 45 minutes on our 

simulation system. These examples show the inefficiency of a 

single server environment in which the assignment is 

performed periodically. One approach to address this is that 

instead of running the optimal assignment periodically, we 

could perform an online assignment algorithm [18], where the 

assignment is executed immediately once a task or a worker 

arrives. The online assignment yields a faster response time 

but the total number of assigned tasks would drop 

dramatically [30][31]. Hence, the need for an adaptive and 

scalable period-based spatial crowdsourcing solution arises. 

An analysis of usage data of popular crowdsourcing 

platforms shows that the above numbers actually 

underestimate the immense need for large scale and high 

throughput environments. Based on Mechanical Turk Tracker 

[26], which captures the market of Amazon Mechanical Turk 

every few minutes, the average number of arrived tasks per 

day is around 300K from January-August 2014. On the other 

hand, the total number of available crowdsourcing workers 

per year in a sample of 26 crowdsourcing service providers is 

1.34M, 3.1M, and 6.29M in 2009, 2010, and 2011, 

respectively, [27] which are approximately 3.67K, 8.49K, and 

17.23K per day, respectively. These statistics show the 

adaptation of crowdsourcing systems in terms of the number 

of engaged workers and received tasks and can be foreseen 

that these numbers will increase dramatically in the future. 

One obvious approach to cope with this large-scale 

requirement is to solve the assignment problem, represented 

as graph-matching, in a MapReduce (MR) environment. In [4] 

the authors proposed a MapReduce version of the maximum 

flow algorithm that can be used here to solve the assignment 

problem. The MR solution constructs the bipartite graph first 

and then partitions it across a cluster of servers and 

intercommunicates to generate the final assignment output. 

Thus, the MR solution uses what we call a “construct first- 

partition later” strategy. Our approaches, however, follow an 

opposite strategy, namely “partition first – construct later”. 

That is, we perform online partitioning on the incoming 

spatial tasks and workers across a cluster of cloud servers, and 

then each server constructs a partial bipartite graph between 

its workers and tasks and finally the servers communicate 

later to generate the final output. Though the proposed 

approaches return an approximate assignment, we show that 

the output is competitive to the exact solution yielding a 

significant runtime improvement and is in contrast to the basic 

approaches applicable in large-scale real-time scenarios. 

The online partitioning can be performed randomly or 

spatially. We can either partition tasks, workers or both. When 

one of them is not partitioned, it should be replicated. These 

permutations generate various algorithms that we evaluate and 

compare experimentally based on the optimality of the 

assignment output and the execution time. We also compare 

our approaches with the centralized and the MR-based 

solutions.  The results show that as compared to the exact 

approach, in a cluster of four servers, our approaches can 

achieve a task assignment percentage up to 0.99 and 20 times 

faster while MR-Based approach with the same system setting 

achieved a speedup by a factor 2. To the best of our 

knowledge, we are the first to study spatial crowdsourcing in a 

distributed setting in order to scale up the task assignment 

process. 

The remainder of this paper is organized as follows. 

Section II introduces a set of preliminaries in spatial 

crowdsourcing and a task assignment framework suitable for 

executing periodically. In Section III, we discuss our proposed 

distributed approaches for the task assignment problem in 

spatial crowdsourcing. Section IV presents the experimental 

results. In Section V, we review the related work. Finally, in 

Section VI, we conclude and discuss future work. 

II. SPATIAL CROWD SOURCING 

A. Background 

In this section, we review the concept of spatial 

crowdsourcing and its formal definitions and its goals [1]. 

DEFINITION 1 (SPATIAL TASK): A spatial task is a 

query (q) received at time s to be performed at a location (l) 

where l is a 2D point specified by longitude and latitude 

values. So, a spatial task (t) is denoted by the triplet <q, l, s>. 

DEFINITION 2 (SPATIAL WORKER): A spatial worker 

is a person who is located at a location (l) and is willing to 

perform spatial tasks. Each worker is specified by two 

constraints: the work region (R), which characterizes the area 

in which the worker is willing to perform tasks, and the 

maximum number of tasks (maxT) that he is able to perform. 

Thus, a spatial worker (w) is denoted by the triplet <l, R, 

maxT>. 

Since spatial tasks and spatial workers arrive at a SC-Server 

in a continuous manner, at any given time there is a set of 

workers that are willing to perform tasks and a set of tasks that 

have not been performed. Based on these two sets, the goal of 

the SC-server is to perform efficient and effective spatial task 

assignment.   

DEFINITION 3 (SPATIAL TASK ASSIGNMENT): Given 

a set of spatial tasks (t1, t2…, tn) and a set of workers (w1, w2…, 

wm), the SC-Server generates a set of assignment pairs <wi, tj>, 

assigning each spatial task (tj) to at most one worker (wi) 

while satisfying worker constraints. Consequently, if tj is 



assigned to wi, tj must be in the spatial region R of the worker 

wi.  In addition, if wi is assigned to k tasks, then k ≤ wj.maxT. 

When running the task assignment process, the SC-Server 

aims to maximize the total number of assignments at a certain 

time instance (Si). The priority of assigning a task to a worker 

includes several factors such as the travel cost, the remaining 

time of the task expiration, worker reputation, or the 

compatibility of worker skills with the requested task. 

Choosing one of these factors or all of them to compute the 

priority is based on the application goal. With spatial 

crowdsourcing, the travel cost is a critical factor since workers 

should physically go to the location of spatial task in order to 

perform the task. Hence, the SC-Server targets to maximize 

the overall task assignment at every time instance while 

minimizing the travel cost of the workers. We define the 

travel cost between a worker wi to a spatial task tj in terms of 

the Euclidean distance. 

A weighted bipartite graph G (U, V, E) is a graph whose 

vertices are divided into two disjoint sets (U and V) such that 

each edge (ui, vj) ∈ E connects a vertex ui ∈ U with a vertex vj 

∈ V and is associated with a weight f(ui, vj). A b-matching of 

G is a set (M) of E where the degree of each vertex in M is at 

most b. Kazemi and Shahabi [1] showed that the spatial task 

assignment problem can be formulated as the minimum-

weight maximum b-matching problem based on a weighted 

bipartite graph. Therefore each worker (wi) is represented by a 

vertex wi ∈ U and each task (tj) is represented by a vertex tj ∈ 

V. Regarding b constraint of each vertex, b(wi) is wi.maxT and 

b(tj) is 1. An edge (wi, tj) ∈ E represents a possible assignment 

between the task tj and the worker wi. Thus the edge (wi, tj) is 

existent if the spatial task ti is in the region of the worker wj 

(tj.l ∈ wi.R). In addition, each edge is associated with a weight, 

computed via a function f(wi, tj). Although there are several 

factors to define the weight function f(wi, tj) for the edges 

among tasks and workers, we employ only the Euclidean 

distance between the worker location (wi.l) and the task 

location (tj.l). The goal is to maximize |M| where the total 

weight of these edges is minimized.  

The minimum-weight maximum b-matching problem can 

be solved in different techniques such as the augmenting path 

algorithm or linear programming. By re-formulating the 

weighted bipartite graph as weighed flow network graph, the 

augmenting path algorithm is used to find the cheapest 

augmenting paths successively. It is a generalized version of 

the Ford Fulkerson algorithm [6] to compute the maximum 

flow with minimum cost. Alternatively, linear programming 

[28] can be used for representing all constraints and objective 

function (i.e., minimizing the total weight of the matching 

pairs) in a linear program. The simplex algorithm is the 

classical method for solving linear programs. 

In [1], the spatial task assignment is solved using 

minimum-cost maximum flow [25]. For this purpose, the 

weighted bipartite graph G(U, V, E) is reformulated in another 

weighted flow network graph G’(V’, E’). The set V’ contains 

|U| + |V| + 2 vertices including two virtual vertices: the source 

(src) and the destination (dst). The set E’ contains all edges in 

E and additional edges (src, wi), which connect the source 

vertex with each worker vertex, and edges (tj, dst), which 

connect each task vertex with the destination vertex. The 

weight of these new edges (i.e., f (src, wi) and f (tj, dst)) is 0. 

In flow network graphs, each edge is associated with a 

capacity value. The capacity of each edge connecting the 

source vertex with a worker vertex (wi) is the value wi.maxT 

while the capacity of other edges is 1. The graph G’ (V’, E’) is 

termed as the spatial crowdsourcing graph (SC-G). 

Example: Figure 1 illustrates an example of creating a 

spatial crowdsourcing graph (SC-G) for a set of spatial 

workers and tasks. Figure 1.a depicts three workers and five 

tasks in some geographical area and each worker (wi) is 

associated with his work region (wi.R) and the maximum 

number of tasks (wi.maxT) that he is able to perform. The 

corresponding SC-G is illustrated in Figure 1.b. As shown in 

the figure, {t1.l, t2.l, t3.l} ∈ w1.R so there are three edges 

connecting w1 with the tasks {t1, t2, t3}. Because w1.maxT = 2, 

the capacity value of the edge (src, w1) is 2 and the weight of 

this edge is 0. The weight of edges (wi, tj) is computed via f(wi, 

tj) and the capacity of these edges is 1. The weight of edges (tj, 

dst) is 0 and the capacity of these edges is 1, as each task may 

be assigned to at most one worker. 

 

a) Example of spatial tasks and workers 

 

b) Example of Spatial Crowdsourcing Graph 

Fig. 1. An example of spatial crowdsourcing 

B. Period-based Task Assignment Framework 

In reality the tasks and workers arrive continuously at a SC-

Server. This raises the problem of when to run the spatial task 

assignment. The two extreme approaches are known as offline 

and online based assignment. The offline assignment process 

is executed after receiving all of the tasks and workers while 

the online assignment [18] is executed once a task or a worker 

arrives to the system. The offline assignment is optimal in 

terms of assignment cost minimization as it is performed 

based on a global knowledge of all tasks and workers [19] 

[20]; however it is not feasible in a real-time environment as it 

poses considerable delay for assigning tasks. On the contrary, 

online assignment supports immediate responses; however the 

assignment optimality is lowered. Since both of these 



approaches have their characteristic drawbacks we envision a 

hybrid framework which balances between offline and online 

assignment. In our framework, the system waits for the arrival 

of tasks and workers for a certain period of time then executes 

the assignments. This process is repeated periodically. The 

aim is to support quick responses to tasks and local optimality 

for the assignment executed in each time period. 

Thus, we discretise the time into intervals (I0, I1, I2…, In). 

The framework performs the task assignment process at the 

beginning of each interval (i.e., Ik) and considers spatial tasks 

and workers received during Ik-1 in addition to the tasks that 

have not yet been assigned. 

At each time interval Ik the system maintains a spatial 

crowdsourcing graph SC-Gk which will be used in the next 

interval and hence includes all spatial tasks and workers 

received during Ik. At the arrival of any spatial task or worker, 

the SC-Gk is updated immediately. For example, at the arrival 

of a spatial task (tj), the system searches for all workers whose 

work regions include the task location (i.e., ∀wi : tj.l ∈ wi.R) 

and adds edges between this new task vertex and the vertices 

of the selected workers. Similarly, the graph is updated at the 

arrival of a new worker. 

At the beginning of each time interval Ik, the framework 

creates a new spatial crowdsourcing graph (SC-Gk) in order to 

receive new spatial tasks and workers. It also executes the task 

assignment process on the graph of the previous interval SC-

Gk-1. Based on the task assignment output, the unassigned 

tasks and workers are added SC-Gk to be considered in the 

next task assignment process. Thus, the task assignment 

process initiated at the beginning of the time interval Ik+1 

works on SC-Gk, which includes the tasks and workers 

received in Ik and all of the unassigned tasks and workers 

during Ik-1. Figure 2 depicts the system timeline in the 

intervals Ik-1, Ik, and Ik+1. 

 

Fig. 2. Spatial Crowdsourcing System Time Line 

C. MapReduce-based Solution 

MapReduce (MR) is a programming model which runs a 

distributed computation on a cluster of servers and it is a 

framework for processing a large-scale data [21]. In [4], the 

maximum flow problem in a network flow graph is studied 

using MapReduce. This approach is based on the Ford 

Fulkerson algorithm [6] and it uses a multiple MapReduce 

rounds of bi-directional search technique from the source and 

the sink vertices to find multiple augmenting paths 

concurrently. We adopted this approach to solve the weighted 

maximum flow problem and hence our spatial task assignment 

problem. We name this method the MapReduce-based 

Approach (MR-A). 

A MapReduce program is mainly composed of two 

functions: map and reduce. A map function performs filtering 

and sorting and a reduce function performs a summary 

operation. The input of MapReduce should be independent set 

of records consisting of <key, value> pairs and this allows 

partitioning records across servers. The MapReduce 

framework has its own file system which is known as 

Distributed File System (DFS). Thus, before executing a 

MapReduce job the input should be transferred to DFS and the 

output should also be collected from DFS.  

Although a MR-based approach is able to scale the problem 

and provides an exact assignment output compared with the 

centralized system, it has some drawbacks. First, it requires 

collecting spatial tasks, workers and finding out the candidacy 

relations between them (i.e., constructing the bipartite graph), 

then transferring the constructed graph to the MR distributed 

file system to be partitioned across servers (i.e., construct first 

– partition later). In contrast, our approaches partition graph 

information across servers in an online-fashion. Second, it 

poses a high volume of intercommunication when partitioning 

data across several parallel Map functions running on multiple 

servers and re-arranging data before running several parallel 

reduce functions to generate the final result. Third, the input 

records (i.e., bipartite graph) must be transferred to DFS and 

the output should be retrieved from DFS. Thus, these 

constraints slow down the execution of this approach. 

In this approach, we have a control server (C-Server) which 

stores all incoming tasks and workers at each time interval and 

updates SC-G. At the beginning of a new interval (Ik), the C-

Server transfers the data of SC-Gk-1 to DFS and then a 

MapReduce job is executed. This job partitions the data of 

SC-Gk-1 across a cluster of servers and performs the 

assignment process. The C-Server retrieves the assignment 

output from DFS to recognize the unassigned tasks and 

workers in SC-Gk-1 and add them into SC-Gk to be considered 

in the next assignment process. 

III. DISTRIBUTED SPATIAL CROWDSOURCING 

APPROACHES 

In this section, we will discuss approaches for period-based 

task assignment in a distributed environment. In this 

environment, there are multiple servers dedicated to a spatial 

crowdsourcing system whose main task is to distribute the 

task assignment process and scale up the overall system 

performance.  

A. General Setting 

From the set of available servers we select one to be the 

partitioning server (P-Server), which continuously receives 

and partitions the incoming spatial tasks and workers across 

the other servers which are named matching servers (M-

Servers). The P-Server is also responsible for syncing and 

discretising the system time into discrete intervals. At the 

beginning of each time interval, the P-Server sends parallel 

requests to all M-Servers to perform the task assignment 

based on the available information. 

Each M-Server maintains its own SC-G and continuously 

receives task and worker information from the P-Server. At 

the arrival of a new task or worker, the SC-G is updated 



immediately. At the beginning of each time interval Ik (when a 

matching request from the P-Server is received), each M-

Server simultaneously 

- performs the task assignment process locally based on 

SC-Gk-1,and 

- creates a new SC-Gk to append new tasks or workers 

received in the interval Ik.  

Our approaches mainly differ by the distribution of spatial 

workers and tasks across the servers and are named 

accordingly. We propose three approaches, which are 

afterwards compared with a MapReduce-based approach. 

B. Random Task Partitioning with Worker Replication 

Approach (RTP-WR-A) 

The main idea of the first approach is to send incoming 

workers to all M-Servers whereas the incoming tasks are 

partitioned across M-Servers. Since workers are replicated 

among M-Servers and each M-Server performs the task 

assignment individually on its own SC-G, across the results of 

M-Servers there are some workers assigned to a number of 

tasks greater than their capacity (i.e., wi.maxT). The 

assignments for these overloaded workers are resolved at a 

synchronizing server (S-Server) which generates the final 

assignment output as shown in Figure 3. Because each M-

Server executes the assignment for a subset of tasks and some 

tasks might be un-assigned from overloaded workers at the S-

Server, the final assignment output might miss some 

assignments compared to the centralized system. 

 

Fig. 3. Random Task Partitioning with Worker Replication Approach 

At the P-Server, a round-robin mechanism is used to 

balance the distribution of tasks among M-Servers. At the 

beginning of a new time interval Ik, the P-Server checks the 

status of all M-Servers and the S-Server. If all of them are idle 

(i.e. not involved in a task assignment process), the P-Server 

sends a request to all M-Servers to execute the assignment 

process. If one of the servers is busy, the P-Server postpones 

all assignment requests to the beginning of the next time 

interval Ik+1. 

At any time instance, all M-Servers “know” the same set of 

workers but disjoint sets of tasks. Formally, let Wx be the set 

of workers and Tx be the set of tasks in M-Server MSx. Then 

any time instance for any two M-Server MSi, MSj, Ti = Tj and 

Wi ∩ Wj = Ø. When the request of the P-Server to start the 

assignment arrives at an M-Server, the task assignment is 

performed on its local SC-Gk-1 and the status of the server is 

set to busy. After finishing the local assignment the result is 

sent to the S-Server. The distributed workflow is illustrated in 

Figure 4. Once the final assignment is generated in the S-

Server, it is transferred to all M-Servers. Every M-Server then 

adds the unassigned tasks and workers into SC-Gk to be 

considered in the next assignment process and the server 

status is set to idle again. 

 

Fig. 4. Parallel Processes at M-Server i at a time interval Ik  

The S-Server becomes busy when it receives an 

intermediate assignment result from any M-Server. It stores 

the intermediate results in a hash table which maps each 

worker to his assignment pairs received from different M-

Servers. When all M-Servers have sent their intermediate 

results, the S-Server scans through the hash table. If a worker 

wi is overloaded, the S-Server chooses the best tasks based on 

the assignment weight criteria (i.e. the travel distance) and un-

assigns the other tasks. Then, the final task assignment output 

is pushed concurrently to all M-Servers to update their local 

information. Afterwards, the S-Server’s status is set back to 

idle. 

Example: An example is shown in Figure 3, where w1 is 

replicated from the P-Server to all three M-Servers: MS1, MS2, 

and MS3. The set {t1, t2, t3} belongs to MS1, the set {t4, t5, t6} 

belongs to MS2, and the set {t7, t8, t9} belongs to MS3. Let us 

assume the local task assignment in M-Servers results 

assigning w1 to {t1, t2, t4, t7}. Given that w1.maxT=2 and f(w1, 

t7)<f(w1, t1)<f(w1, t2)< f(w1, t4), the S-Server un-assigns t2 and 

t4 from w1 and w1 remains assigned to {t1,t7}. Obviously the 

assignment process may produce non-optimal assignments, 

i.e., if a task gets unassigned it is not checked if it could be 

assigned to another worker instead. Consequently the number 

of assigned tasks may be smaller than in the centralized 

approach. 



With this approach, assuming that the number of available 

tasks is greater than the number of available workers, we 

partition the set of tasks across M-Servers. Instead of 

partitioning tasks, we could also partition workers (i.e., 

Random Worker Partitioning with Task Replication Approach, 

RWP-TR-A) and adapt the assignment strategy in the S-Server.  

However, our experimental evaluation reveals that 

partitioning tasks is better in term of the number of 

assignments and their total cost over subsequent time intervals.  

C. Spatial Partitioning Approach (SP-A) 

In RTP-WR-A, workers are replicated to all M-Servers. This 

results in overloaded workers which have to be resolved at the 

S-Server creating a bottleneck due to the need for waiting all 

intermediate results before proceeding to resolve overloading 

assignments. To eliminate the need of an S-Server, we 

propose the Spatial Partitioning Approach (SP-A) which 

partitions both tasks and workers based on their locations. The 

main idea of this approach is that each M-Server is assigned to 

a certain geographical region and if a task or worker is located 

in the geographical region of an M-Server, that M-Server 

receives the task or the worker. This partitioning is motivated 

by the fact that a worker is assigned to a task if they are 

located in roughly the same geographical region. Thus, spatial 

tasks and workers located in a specific geographical region 

should be processed at the same M-Server.  

In this approach, the global geographical area is partitioned 

into disjointed sub-areas by using space partitioning 

techniques such as a uniform grid, a quad tree, a kd-Tree [23], 

or a Voronoi diagram [24]. Let us note that the technique to 

partitioning the space may influence the performance of 

system, yet this investigation is out of the scope of this paper. 

In the following, we use a spatial uniform grid to partition the 

global geographical area into equal sub-areas across M-

Servers. Thus, there is no overlap between the geographical 

regions of M-Servers. In other words, if the M-Server (MSi) is 

assigned to a geographical region MSi.R and there is another 

M-Server MSj, MSi.R∩MSj.R = Ø.  

The P-Server is aware of the geographical regions of all M-

Servers. When a spatial worker wi arrives and its location 

belongs to the geographic region of an M-Server m (i.e., wi.l ∈ 

MSm.R), the P-Server sends a request to MSm to store wi. 

Similarly, when a spatial task tj is received and tj.l ∈ MSm.R, tj 

is stored in MSm. 

Example: Figure 5 shows an example of partitioning a 

certain geographical area into three sub-areas with their 

corresponding M-Servers. Spatial tasks and workers are 

partitioned across the three M-Servers. For example, t9 is 

processed in MS2 because t9.l ∈ MS2.R and w6 is sent to MS3 

because w6.l ∈ MS3.R. The work regions of some workers 

might overlap with the geographical regions of multiple 

servers thus the P-Server partitions workers based on their 

actual location. For instance, w4.R crosses MS2.R and MS3.R 

but w4.l ∈ MS2.R, so w4 is added into MS2. Figure 6 shows the 

general architecture of this approach and depicts the 

distribution of the sample of tasks and workers presented in 

Figure 5.  

 

Figure 5: Example of partitioning geographical area across M-Servers 

 

Fig. 6. Spatial Partitioning Approach 

At any time instance, all M-Servers have disjointed sets of 

tasks and workers. Let Wx, be the set of workers and Tx be the 

set of tasks in an M-Server x (MSx). Then any time instance 

for any two M-Server MSi, MSj, Ti ∩ Tj = Ø and Wi ∩ Wj = Ø. 

At the beginning of each time interval Ik, each M-Server 

receives a request from the P-Server to start executing the 

local task assignment process. The start of task assignment in 

each M-Server is independent from the other M-Servers where 

the assignment is performed if the server is idle without 

considering the status of other servers as in RTP-WR-A. When 

the assignment is finished in each M-Server, the server 

updates its own SC-G without communicating with the other 

servers. Because there is no overlap in the distribution of tasks 

and workers across M-Servers, the resulted assignment pairs 

over M-Servers are independent. Hence, there is no need for 

an S-Server. 

In contrast to this approach (SP-A), tasks and worker can be 

partitioned randomly without using the spatial information 

(i.e., Random Partitioning Approach, RP-A). Round-robin can 

be used to balance the distribution of tasks and workers. 

Experimentally, we will show that this approach produces the 

worst result. Spatial partitioning increases the effectivity of 

task assignment at each M-Server. 

With SP-A, the assignment output is approximate since a 

worker whose work area overlaps the geographical areas of 

multiple servers is processed by one of them and assigned to 

local tasks which may not be optimal if assigning to the 

nearby tasks located in the neighbouring servers is better. 

D. Spatial Partitioning with Worker Replication Approach 

(SP-WR-A) 

With RTP-WR-A, workers are replicated across all M-

Servers which results in overloading-assigned workers so an 



S-Server is required. This is avoided in SP-A by partitioning 

both tasks and workers, but disjointed subsets of workers 

across M-Servers prevent workers to be assigned to tasks 

stored in other servers. On the other hand, in SP-A tasks are 

partitioned spatially but in RTP-WR-A tasks are partitioned in 

round-robin. Spatial partitioning improves the effectivity of 

local task assignment in each M-Server. In Spatial 

Partitioning with Worker Replication Approach (SPWR-A), 

we propose a hybrid mechanism which spatially partitions 

both tasks and workers but some workers are replicated when 

necessary. Tasks are partitioned based on their location but 

workers are partitioned based on their work regions. If the 

worker region overlaps with the geographical area of multiple 

M-Servers, the worker is replicated to all of them. Otherwise, 

the worker is sent only to one of them. Because of the 

possibility of worker replication, an S-Server is required to 

resolve overloading workers. The architecture of this approach 

is shown in Figure 7. Generally, the architecture of this 

approach is similar to RTP-WR-A, but the functionalities of 

the P-Server and the S-Server are different. 

 

Fig. 7. Spatial Partitioning with Worker Replication Approach 

Example: The distribution of tasks and workers in Figure 7 

is based on the sample set of tasks and workers given in 

Figure 5. For example, w4.R overlaps MS2.R and MS3.R so the 

P-Server replicates w4 to MS2 and MS3 and w4 is marked as 

replicated.  

As in SP-A, the global geographical area is partitioned into 

disjointed sub-areas and each is assigned to an M-Server. The 

P-Server is aware about the geographic partitioning among M-

Servers and it is used for partitioning both tasks and workers 

spatially. As in RTP-WR-A, at the beginning of a new time 

interval Ik the P-Server checks the status of all M-Servers and 

the S-Server. If all of them are idle (i.e. not involved in a task 

assignment process), the P-Server sends a request to all M-

Servers to execute the assignment process. If one of the 

servers is busy, the P-Server postpones all assignment 

requests to the beginning of the next time interval Ik+1. 

At each M-Server, the assignment process is executed. The 

assignment output is categorized into two sets: final and 

intermediate. If an assignment pair does not contain a 

replicated worker, the assignment pair <wi, tj> is categorized 

as final. Otherwise, the pair is added to the intermediate 

assignment result. The intermediate assignment result is sent 

to the S-Server because it includes replicated workers which 

may be assigned to other tasks in the other M-Servers. But, 

the final set of assignments is not sent to the S-Server.  

With SP-WR-A, the S-Server performs a lighter job 

compared with RTP-WR-A. It does not receive all assignments 

generated from M-Servers but only the ones which contain 

replicated workers. When the final assignment output is 

generated at the S-Server, it is pushed concurrently to all M-

Servers to update their local information.  

The result of this approach is also approximate because 

tasks which are assigned to the replicated workers in M-

Servers might be un-assigned in the S-Server without 

considering alternative workers. In this approach, the 

synchronization job is minimized compared with RTP-WR-A 

so the execution time of the assignment process for the entire 

system is improved.   

IV. EXPERIMENTS 

We conducted our experiments on the Amazon EC2 

infrastructure. We used a varying number of machines (4, 8, 

or 16) each running on 64 bit CentOS 6.3 Linux OS with 2 

virtual CPUs, 7.5GB memory, and 30GB disk storage. These 

machines were connected via a 128 Mbps network. For each 

approach we implemented the different servers to carry out 

the functionalities of the P-Server, M-Servers and S-Server 

using Java 1.7 as programming language. In addition, Apache 

Hadoop was installed across all machines as MapReduce 

infrastructure [22]. Additionally, we used a dedicated machine 

which provides the approaches with task and worker 

information in a continuous manner, simulating a stream. 

Below, we first discuss the experimental methodology and 

then present our results. 

A. Experimental Methodology 

We conducted several experiments on real-world and 

synthetic datasets to evaluate the performance and the 

effectivity of our approaches. Real data was obtained from 

Gowalla and Brightkite [32], two location-based social 

networks where users shared their locations through check-ins. 

The Gowalla data was collected over the period of Feb. 2009 

to Oct. 2010 and the Brightkite data was collected from Apr. 

2008 to Oct. 2010. We subsequently extracted the data 

covering the area of California State. Each user record of a 

dataset was mapped to a worker wi. Since each user wi had 

various check-ins, we set wi.maxT to the number of check-ins 

of wi and wi.R as the minimum bounding rectangle of those 

checked-in locations. Additionally, a user check-in at a certain 

location l represents a task tj with location l. For the 

experiments on synthetic data, we randomly generated 

location data of workers and tasks drawn from a uniform 

distribution or a Gaussian mixture model. In the latter case the 

dataset was formed into 10 Gaussian clusters where the 

centers were randomly chosen from a uniform distribution. 

We randomly selected the value of maxT between 1 to 5 and 

the value of the spatial region R was in the range of [6.9, 69] 

miles. 

Specifically, we conducted our experiments using the 

following four datasets: In S1-SYN-UD, tasks and workers 

were uniformly distributed. S2-SYN-SD demonstrates a 

skewed data distribution where workers were distributed 



uniformly but tasks were distributed normally. The third 

dataset S3-SYN-SD is similar to S2-SYN-SD but the Gaussian 

centers of workers were chosen close to the geographical 

borders of M-Server areas. In the last dataset S4-RD, workers 

were obtained from the Brightkite data and tasks were 

obtained from the Gowalla data. 

In the experiments, we compared the performance of our 

approximate-solution approaches (RTP-WR-A, SP-A, and SP-

WR-A) with the exact-solution approaches, Centralized-

System Approach (CS-A) and MapReduce-based Approach 

(MR-A). Additionally, we evaluated two variations of the 

proposed approaches: RWP-TR-A which is a variation of RTP-

WR-A and RP-A which is a variation of SP-A. We evaluated 

all approaches based on three metrics: M1) the execution time 

speed-up of the approach compared to CS-A, M2) the 

percentage of assigned tasks compared with the exact solution, 

and M3) the percentage of assignment cost per assignment 

pair compared to the exact solution 

where , X-A∈ 

{MR-A, RWP-TR-A, SP-A, SP-WR-A, RTP-WR-A, RP-A}.  

Since MR-A and CS-A are the ground truth when calculating 

the metrics M2 and M3, their values were 1.0. 

By default the length of a time interval (period) was set to 1 

minute, but was extended when the running assignment was 

not completed. 

B. The effect of Arrival Rate 

For every dataset (S1-SYN-UD, S2-SYN-SD, S3-SYN-SD, or 

S4-RD), we performed three experiments in which we varied 

the arrival rate of tasks and workers per time interval at the 

spatial crowdsourcing system. For the synthesized datasets, 

the received number of tasks per interval was 8K, 9K, or 10K 

while the number of workers was 2K, 3K or 5K 

correspondingly. Because of the limited number of real data, 

the received number of tasks was 1000, 1200, or 1500 while 

the number of workers was 200, 400, or 500. The approaches 

ran through 10 time intervals. We extracted the average of the 

three metrics (i.e., execution time speed up, assignment ratio 

and assignment cost ratio) over the three experiments for each 

dataset. In this set of experiments all distributed approaches 

used four M-Servers. 

 

Fig. 8: Avg. of Execution Time Speedup over 10 Time Intervals in Four 

Datasets with Three Arrival Rates 

 

Fig. 9: Avg. of Percentage of Assigned Tasks compared with CS-A or MR-A 
over 10 Time Intervals in Four Datasets with Three Arrival Rates 

 

Fig. 10: Avg. of Percentage of Assignment Cost per Assignment Pair over 10 

Time Intervals in Four Datasets with Three Arrival Rates 

 

Fig. 11: Avg. of Percentage of Assigned Tasks in the 1st Time Interval in Four 

Datasets with Three Arrival Rates 

First we show the efficiency and effectivity of the 

distributed approaches (MR-A, RWP-TR-A, SP-A, SP-WR-A, 

RTP-WR-A, and RP-A) compared with the centralized 

approach (CS-A) in terms of the execution time speed-up 

(Figure 8), the percentage of task assignment (Figure 9) and 

their cost along 10 time intervals (Figure 10). It is clearly 

visible that our approximate approaches achieved a very high 

speed-up. In addition, we noticed that on one hand the average 

number of assignments was nearly the same for most of the 

approaches in the four datasets and on the other hand they 

were different in the assignment cost. Most of the proposed 



approaches were able to achieve more than 95% (sometimes 

even 105%) of the assignments of the centralized approach 

(CS-A). This can be attributed to two reasons: a) the high rate 

of arriving tasks and workers which provides a plethora of 

alternatives when executing the assignment and b) running the 

system over consecutive time intervals gives the system 

chances to re-assign tasks, which were un-assigned in the S-

Server, to their best matches among old or new-arrived 

workers. 

RP-A was much faster than CS-A. Even though it partitions 

tasks and workers randomly across M-Servers, it was able to 

generate a number of assignments almost similar to CS-A but 

increasing the cost of CS-A up to three times. This renders this 

approach infeasible to maintain a comparable assignment cost 

percentage to CS-A. On the other hand, the distributed 

solution offered by MR-A only provided a marginal speed-up. 

With RWP-TR-A and RTP-WR-A, the average of M1 for 

both approaches was 4.6, which shows that the two 

approximate approaches did not provide a good improvement 

in terms of the execution time.  The random partitioning and 

the existence of an S-Server hinder the system achieving a 

high speed-up. In the two datasets (S1-SYN-UD and S4-RD), 

M2 was similar for both approaches but in the other datasets 

RTP-WR-A outperformed RWP-TR-A. This shows that the un-

assignments occurred at the S-Server of RWP-TR-A were 

higher than the un-assignments at RTP-WR-A. In terms of M3, 

RTP-WR-A displayed a stable behaviour while RWP-TR-A 

performed differently in different datasets. However in S4-RD 

and S1-SYN-UD, M2 of RTP-WR-A was almost equivalent to 

CS-A and M3 of RTP-WR-A became 30% higher than CS-A in 

S4-RD while it was significantly less in S1-SYN-UD. The 

latter dataset indicates that RTP-WR-A utilized the new 

arriving tasks and workers in addition to the old un-assigned 

tasks and workers for choosing the least-cost assignments. 

SP-A scored the second place in terms of M1 after RP-A. 

Even though both SP-A and RP-A partition tasks and workers, 

there was a large difference in M1. This is a result of two 

reasons a) in RP-A the random partitioning in round robin 

manner results in a balanced load between M-Servers but the 

spatial partitioning in SP-A yields imbalanced load, b) M1 was 

calculated as the average of execution time for all M-Servers. 

In terms of M1, SP-WR-A was the third after SP-A due to the 

existence of an S-Server. SP-WR-A was much faster than 

RWP-TR-A and RTP-WR-A because the replication of workers 

is only performed when necessary. The average of M2 and M3 

of SP-A and SP-WR-A were nearly similar to CS-A except in 

S3-SYN-SD in which M2 of SP-A decreased by 9% with a 30% 

higher cost (i.e. M3) than CS-A. This displays the main 

drawback of SP-A when most of worker areas overlap with 

multiple M-Servers. On the other hand, M2 and M3 of SP-WR-

A were almost similar to CS-A in S3-SYN-SD. 

Figure 11 shows M2 of the approaches in the first time 

interval compared with CS-A. Note that some approaches 

achieved a low assignment percentage. For example, in S2-

SYN-SD, M2 of RWP-TR-A and RTP-WR-A was 0.65 and 0.76 

in the first time interval but they increased to 0.90 and 0.95, 

respectively, after 10 time intervals. 

C. The effect of Number of M-Servers 

We varied the number of M-Servers (4, 8 or 16) to analyse 

the behaviour of the approximate approaches when scaling the 

number of servers. Figures 12 and 13 compare the average of 

M1 and M2, respectively, of MR-A, SP-A, SP-WR-A and RTP-

WR-A in different cluster settings. The results were calculated 

over 10 time intervals for a set of experiments using all 

datasets with multiple arrival rates as discussed in the 

previous subsection.  

 
Fig. 12: Avg. of Execution Time Speedup of MR-A, SP-A, SP-WR-A and 

RTP-WR-A in different clusters (4, 8, or 16 servers) 

 

Fig. 13: Avg. of Assigned Tasks for SP-A, SP-WR-A and RTP-WR-A in 
different clusters (4, 8, or 16 servers) 

Figure 12 shows M1 in logarithmic scale. When increasing 

the number of servers, M1 of SP-A increased exponentially 

while increased linearly for SP-WR-A. M1 of SP-A was 20, 89, 

and 480 for the number of servers 4, 8, and 16. SP-WR-A 

occupied the second place with the M1 values 12, 31, and 89. 

RTP-WR-A scored the third place with 5, 11, and 46 

displaying a small change when scaling the system. This 

marginal increase is due to having an S-Server whose job 

increases when adding an M-Server. On the other hand, MR-A 

showed the smallest speedup factor when scaling the cluster 

of servers due to the increase of intercommunication between 

servers when partitioning input data and merging intermediate 

data.  

In Figure 13, we notice that SP-WR-A was able to maintain 

a high M2 comparable to CS-A regardless of the number of M-

Servers. On other hand, the effectivity of SP-A and RTP-WR-

A decreased when the number of servers increased. SP-A 



achieved 0.97, 0.93, and 0.86 of M2 when the number of M-

Servers was 4, 8, and 16, respectively. While running SP-A on 

16 server in S3-SYN-SD, M2 reached to 0.75 which displays 

the infectivity of this approach when most of the workers 

existing around the borders of M-Servers and having a large 

number of M-Servers. RTP-WR-A scored 0.96, 0.92, and 0.83 

of M2 when the number of M-Servers was 4, 8, and 16, 

respectively. This shows that the un-assignments happening in 

the S-Server in RTP-WR-A increases as the number of M-

Servers increases. 

V. RELATED WORK 

Crowdsourcing attracted researchers from different 

communities [11][12][13][14] and commercially used in the 

industry [7][8][9][10]. Few studies focused on spatial 

crowdsourcing [15] [16]. In [15], a crowdsourcing platform 

was proposed which utilizes location as a parameter to 

distribute tasks among workers. In [16], their crowdsourcing 

platform employed a location-based service (e.g., Foursquare) 

to find the appropriate people to answer a query given over 

Twitter but it did not assign to workers any spatial task, for 

which the worker should go to that location and perform the 

corresponding task.  

The taxonomy of spatial crowdsourcing and the problem of 

spatial task assignment were studied in [1] and the issue of 

trust in spatial crowdsourcing was studied in [2]. Both [1] and 

[2] studied the problem in server-assigned mode. Instead of 

server mode, the worker-assigned mode in spatial 

crowdsourcing was explored in [3] and the proposed 

techniques considered the dynamic location of workers while 

travelling to tasks. In [3], the shortest path to other spatial 

tasks was computed from the worker location at the current 

visited task so the task assignment problem was solved 

differently and mapped to the Travel Salesman Problem. The 

current existing work focuses on the task assignment problem 

without considering a scalable solution. 

Boutsis et al [17] proposed a crowdsourcing platform to 

assign appropriate workers to tasks to increase the probability 

of getting on-time completed tasks and high-quality responses 

to tasks but the location parameter was utilized implicitly. For 

scalability, workers and tasks located in the same 

geographical area were processed in the same server which is 

similar to our second approach (SP-A) but location parameter 

was not considered in the assignment. In our scalable 

approaches, spatial partitioning is used because of the 

prominent constraints for spatial tasks and workers. The 

spatial task assignment considers travel distance however it 

can be extended naturally to other parameters such as task 

deadline and worker expertise.  

Spatial task assignment is mapped to a weighted b-

matching problem which can be converted to a weighted 

maximum flow. Scaling the problem in MapReduce is 

possible [4][5]. In [4], the maximum flow problem in a 

network flow graph was studied in MapReduce, where an 

exact-solution approach was designed. In [5], two 

approximate algorithms were proposed to solve b-matching 

problem in MapReduce. We compared our approximate 

approaches with the exact MR-based approach to study the 

effectivity of our approximate solutions. 

The auction algorithm [35] is a variant of task assignment 

problem where workers (e.g., robotic agents) assign 

themselves to tasks while attempting to maximize a certain 

collective benefit function. It solves the assignment in 

decentralized fashion (i.e., worker-assigned) but our spatial 

task assignment is based on a server-assigned strategy where 

the information about workers and tasks are collectively 

managed by servers. In [36] the auction algorithm is extended 

to deal with spatial tasks and mobile workers. Beside the 

difference in the task assignment strategy, they did not focus 

on improving the performance of the task assignment to be 

feasible in an online large-scale setting. 

Partitioning a graph is a common problem which is mainly 

categorized as offline or online. Offline partitioning requires 

full graph information to distribute the graph. Spectral 

clustering algorithm [34] is an example of offline partitioning 

which results with optimal graph partitioning but lengthy 

execution time. Online partitioning aims to find a near-

optimal solution by distributing vertices and edges with only 

limited graph information. There are usually two approaches 

in online partitioning: edge cut or vertex cut. PowerGraph [33] 

is an online partitioning framework which employs several 

vertex-cut algorithms to provide edge balanced partitions. 

Online and offline partitioning require knowledge about the 

graph structure but our distributed approaches partition the 

problem information without constructing the graph itself. 

VI. CONCLUSION 

In this study we considered the problem of spatial 

crowdsourcing in a distributed environment. We showed that 

a single centralized system is not capable to cope with a rising 

number of workers and tasks arriving in short amount of time. 

We thus evaluated several approaches that differ in the 

distribution and handling of the incoming data. In a cluster of 

16 servers, the most efficient of these approaches were shown 

to be up to 88 times faster while yielding comparable 

effectivity to the centralized approach. In contrast, a Map 

Reduce based implementation could only achieve a speedup 

by a factor 5. To the best of our knowledge this is the first 

study of suitable approaches for the problem of distributed 

spatial crowdsourcing.  

As future work, we plan to study different space 

partitioning techniques for assigning the geographical areas of 

the matching servers. We also plan to study the theoretical 

bounds of our approximated solutions. Moreover, we plan to 

incorporate the historical information of the previous 

partitions and task assignments in our distributed approaches. 
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