
Scalable Spatial Crowdsourcing: A study of

distributed algorithms
Abdullah Alfarrarjeh

 #1
, Tobias Emrich

 *2
, Cyrus Shahabi

 #3

Dept. of Computer Science, University of Southern California, USA

1
alfarrar@usc.edu,

3
shahabi@usc.edu

*
Dept. of Computer Science, Ludwig Maximilian Univ. of Munich, Germany

2
emrich@dbs.ifi.lmu.de

Abstract— Recently spatial crowdsourcing was introduced as

a natural extension to traditional crowdsourcing allowing for

tasks to have a geospatial component, i.e., a task can only be

performed if a worker is physically present at the location of the

task. The problem of assigning spatial tasks to workers in a

spatial crowdsourcing system can be formulated as a weighted

bipartite b-matching graph problem that can be solved optimally

by existing methods for the minimum cost maximum flow

problem. However, these methods are still too complex to run

repeatedly for an online system, especially when the number of

incoming workers and tasks increases. Hence, we propose a class

of approaches that utilizes an online partitioning method to

reduce the problem space across a set of cloud servers to

construct independent bipartite graphs and solve the assignment

problem in parallel. Our approaches solve the spatial task

assignment approximately but competitive to the exact solution.

We experimentally verify that our approximate approaches

outperform the centralized and MapReduce version of the exact

approach with acceptable accuracy and thus suitable for online

spatial crowdsourcing at scale.

Keywords—distributed spatial task assignment; spatial task

assignment; online partitioning; spatial crowdsouring

I. INTRODUCTION

In recent years, crowdsourcing has become popular in

many research communities (e.g., databases [11], image

processing [12][13] and NLP [14]) and is commercially used

in the industry (e.g. Amazon Mechanical Turk [7],

CrowdFlower [8], CrowdCloud [9] and MicroWorkers [10]).

The concept of crowdsourcing refers to outsourcing tasks to a

set of people, known as the workers. Tasks in a crowdsourcing

system are usually relatively small and require only a

moderate effort. A typical task involves translating an article

from one language to another, verifying the information

written on a business card, or labelling the content of an image.

Due to the ubiquity of smartphones, the workers nowadays

are no longer bound to their personal computers to perform

tasks but can carry a device with an enormous sensing

capability enabling them to perform their tasks at any location.

This technical achievement allows for the natural extension of

traditional crowdsourcing to what is known as spatial

crowdsourcing [1] where tasks are additionally specified by a

location. A worker is hence required to be physically present

at a task location in order to perform the corresponding task.

An example of a spatial task is to take a picture of a particular

building or capture a video of a concert. In these scenarios,

smartphones are used to perform the spatial tasks (e.g.,

capturing a picture, recording a video or audio) and

simultaneously sense additional information (e.g., location,

time, direction, speed and acceleration).

According to the taxonomy of spatial crowdsourcing

introduced in [1], there are two modes for assigning tasks to

workers: worker-assigned mode and server-assigned mode. In

the worker-assigned mode, a worker chooses the best spatial

tasks autonomously in his/her vicinity with no coordination

with the server or other workers— thus each worker tries to

maximize his assignments while minimizing the cost. In the

server-assigned mode, the assignment is performed by the

spatial crowdsourcing server (SC-server). In this mode, the

SC-Server coordinates between all of the workers and tasks in

order to globally maximize the number of assigned tasks

while minimizing the total cost for the workers. In this paper,

we focus on the server-assigned mode.

From the viewpoint of the requester of a set of tasks, the

main goal is to have all of the tasks be performed in a short

amount of time. This consideration brings the problem of the

assignment of current tasks to available workers in a way that

maximizes the throughput. Although recent studies [1][2][17]

have presented techniques to solve this problem, they focused

on the maximization of the assigned tasks rather than the

runtime of the assignment in a large-scale setting. Thus, these

studies only considered a rather small number of tasks and

available workers at a time so that the assignment can usually

be performed on a single machine. Generally, the spatial task

assignment problem is represented as a weighted bipartite

graph and solved as a weighted b-matching problem. The

latter problem can be converted to a minimum-cost maximum

flow problem, which is solved by finding the cheapest

augmenting paths successively in a weighted network flow

graph (i.e., a generalization of the Ford Fulkerson Algorithm)

[1]. In our case, weights (corresponding to the costs associated

with the tasks) are non-negative and the graph is acyclic, so

the assignment can be performed in O((m + n log n) n C)

time where n is the number of nodes in the graph, m is the

number of edges, and C denotes the maximum edge capacity

[30]. In this work we aim at a high throughput environment

(large number of tasks and workers arriving in a short amount

of time). However, considering the above runtime complexity,

when the number of incoming tasks and workers grows, the

assignment of workers and tasks takes a long time on a single

machine.

Let us consider an exemplary environment executing the

assignment periodically (e.g., every 5 minutes). During this

time suppose 4,000 workers and 16,000 spatial tasks arrive

with the average amount of tasks a worker can choose from

(candidate tasks) to be 65. The created graph thus contains

20,000 vertices (i.e., total number of tasks and workers) and

280,000 (16,000+4,000+4000*65) edges. Using a machine

running CentOS 6.3 with 7.5GB memory and 2 CPUs, the

optimal assignment takes 28.18 minutes, meaning that the

assignment cannot even finish within the duration of one time

period. In this setting, the graph requires roughly 1.14 GB

memory space and the testing machine has enough memory

capacity. The bottleneck in such scenarios is thus the

computation rather than the memory overhead. Another

example, when there are 5,000 workers and 10,000 tasks and

the average number of candidate tasks per worker is 1844, the

assignment takes around 12 hours and 45 minutes on our

simulation system. These examples show the inefficiency of a

single server environment in which the assignment is

performed periodically. One approach to address this is that

instead of running the optimal assignment periodically, we

could perform an online assignment algorithm [18], where the

assignment is executed immediately once a task or a worker

arrives. The online assignment yields a faster response time

but the total number of assigned tasks would drop

dramatically [30][31]. Hence, the need for an adaptive and

scalable period-based spatial crowdsourcing solution arises.

An analysis of usage data of popular crowdsourcing

platforms shows that the above numbers actually

underestimate the immense need for large scale and high

throughput environments. Based on Mechanical Turk Tracker

[26], which captures the market of Amazon Mechanical Turk

every few minutes, the average number of arrived tasks per

day is around 300K from January-August 2014. On the other

hand, the total number of available crowdsourcing workers

per year in a sample of 26 crowdsourcing service providers is

1.34M, 3.1M, and 6.29M in 2009, 2010, and 2011,

respectively, [27] which are approximately 3.67K, 8.49K, and

17.23K per day, respectively. These statistics show the

adaptation of crowdsourcing systems in terms of the number

of engaged workers and received tasks and can be foreseen

that these numbers will increase dramatically in the future.

One obvious approach to cope with this large-scale

requirement is to solve the assignment problem, represented

as graph-matching, in a MapReduce (MR) environment. In [4]

the authors proposed a MapReduce version of the maximum

flow algorithm that can be used here to solve the assignment

problem. The MR solution constructs the bipartite graph first

and then partitions it across a cluster of servers and

intercommunicates to generate the final assignment output.

Thus, the MR solution uses what we call a “construct first-

partition later” strategy. Our approaches, however, follow an

opposite strategy, namely “partition first – construct later”.

That is, we perform online partitioning on the incoming

spatial tasks and workers across a cluster of cloud servers, and

then each server constructs a partial bipartite graph between

its workers and tasks and finally the servers communicate

later to generate the final output. Though the proposed

approaches return an approximate assignment, we show that

the output is competitive to the exact solution yielding a

significant runtime improvement and is in contrast to the basic

approaches applicable in large-scale real-time scenarios.

The online partitioning can be performed randomly or

spatially. We can either partition tasks, workers or both. When

one of them is not partitioned, it should be replicated. These

permutations generate various algorithms that we evaluate and

compare experimentally based on the optimality of the

assignment output and the execution time. We also compare

our approaches with the centralized and the MR-based

solutions. The results show that as compared to the exact

approach, in a cluster of four servers, our approaches can

achieve a task assignment percentage up to 0.99 and 20 times

faster while MR-Based approach with the same system setting

achieved a speedup by a factor 2. To the best of our

knowledge, we are the first to study spatial crowdsourcing in a

distributed setting in order to scale up the task assignment

process.

The remainder of this paper is organized as follows.

Section II introduces a set of preliminaries in spatial

crowdsourcing and a task assignment framework suitable for

executing periodically. In Section III, we discuss our proposed

distributed approaches for the task assignment problem in

spatial crowdsourcing. Section IV presents the experimental

results. In Section V, we review the related work. Finally, in

Section VI, we conclude and discuss future work.

II. SPATIAL CROWD SOURCING

A. Background

In this section, we review the concept of spatial

crowdsourcing and its formal definitions and its goals [1].

DEFINITION 1 (SPATIAL TASK): A spatial task is a

query (q) received at time s to be performed at a location (l)

where l is a 2D point specified by longitude and latitude

values. So, a spatial task (t) is denoted by the triplet <q, l, s>.

DEFINITION 2 (SPATIAL WORKER): A spatial worker

is a person who is located at a location (l) and is willing to

perform spatial tasks. Each worker is specified by two

constraints: the work region (R), which characterizes the area

in which the worker is willing to perform tasks, and the

maximum number of tasks (maxT) that he is able to perform.

Thus, a spatial worker (w) is denoted by the triplet <l, R,

maxT>.

Since spatial tasks and spatial workers arrive at a SC-Server

in a continuous manner, at any given time there is a set of

workers that are willing to perform tasks and a set of tasks that

have not been performed. Based on these two sets, the goal of

the SC-server is to perform efficient and effective spatial task

assignment.

DEFINITION 3 (SPATIAL TASK ASSIGNMENT): Given

a set of spatial tasks (t1, t2…, tn) and a set of workers (w1, w2…,

wm), the SC-Server generates a set of assignment pairs <wi, tj>,

assigning each spatial task (tj) to at most one worker (wi)

while satisfying worker constraints. Consequently, if tj is

assigned to wi, tj must be in the spatial region R of the worker

wi. In addition, if wi is assigned to k tasks, then k ≤ wj.maxT.

When running the task assignment process, the SC-Server

aims to maximize the total number of assignments at a certain

time instance (Si). The priority of assigning a task to a worker

includes several factors such as the travel cost, the remaining

time of the task expiration, worker reputation, or the

compatibility of worker skills with the requested task.

Choosing one of these factors or all of them to compute the

priority is based on the application goal. With spatial

crowdsourcing, the travel cost is a critical factor since workers

should physically go to the location of spatial task in order to

perform the task. Hence, the SC-Server targets to maximize

the overall task assignment at every time instance while

minimizing the travel cost of the workers. We define the

travel cost between a worker wi to a spatial task tj in terms of

the Euclidean distance.

A weighted bipartite graph G (U, V, E) is a graph whose

vertices are divided into two disjoint sets (U and V) such that

each edge (ui, vj) ∈ E connects a vertex ui ∈ U with a vertex vj

∈ V and is associated with a weight f(ui, vj). A b-matching of

G is a set (M) of E where the degree of each vertex in M is at

most b. Kazemi and Shahabi [1] showed that the spatial task

assignment problem can be formulated as the minimum-

weight maximum b-matching problem based on a weighted

bipartite graph. Therefore each worker (wi) is represented by a

vertex wi ∈ U and each task (tj) is represented by a vertex tj ∈

V. Regarding b constraint of each vertex, b(wi) is wi.maxT and

b(tj) is 1. An edge (wi, tj) ∈ E represents a possible assignment

between the task tj and the worker wi. Thus the edge (wi, tj) is

existent if the spatial task ti is in the region of the worker wj

(tj.l ∈ wi.R). In addition, each edge is associated with a weight,

computed via a function f(wi, tj). Although there are several

factors to define the weight function f(wi, tj) for the edges

among tasks and workers, we employ only the Euclidean

distance between the worker location (wi.l) and the task

location (tj.l). The goal is to maximize |M| where the total

weight of these edges is minimized.

The minimum-weight maximum b-matching problem can

be solved in different techniques such as the augmenting path

algorithm or linear programming. By re-formulating the

weighted bipartite graph as weighed flow network graph, the

augmenting path algorithm is used to find the cheapest

augmenting paths successively. It is a generalized version of

the Ford Fulkerson algorithm [6] to compute the maximum

flow with minimum cost. Alternatively, linear programming

[28] can be used for representing all constraints and objective

function (i.e., minimizing the total weight of the matching

pairs) in a linear program. The simplex algorithm is the

classical method for solving linear programs.

In [1], the spatial task assignment is solved using

minimum-cost maximum flow [25]. For this purpose, the

weighted bipartite graph G(U, V, E) is reformulated in another

weighted flow network graph G’(V’, E’). The set V’ contains

|U| + |V| + 2 vertices including two virtual vertices: the source

(src) and the destination (dst). The set E’ contains all edges in

E and additional edges (src, wi), which connect the source

vertex with each worker vertex, and edges (tj, dst), which

connect each task vertex with the destination vertex. The

weight of these new edges (i.e., f (src, wi) and f (tj, dst)) is 0.

In flow network graphs, each edge is associated with a

capacity value. The capacity of each edge connecting the

source vertex with a worker vertex (wi) is the value wi.maxT

while the capacity of other edges is 1. The graph G’ (V’, E’) is

termed as the spatial crowdsourcing graph (SC-G).

Example: Figure 1 illustrates an example of creating a

spatial crowdsourcing graph (SC-G) for a set of spatial

workers and tasks. Figure 1.a depicts three workers and five

tasks in some geographical area and each worker (wi) is

associated with his work region (wi.R) and the maximum

number of tasks (wi.maxT) that he is able to perform. The

corresponding SC-G is illustrated in Figure 1.b. As shown in

the figure, {t1.l, t2.l, t3.l} ∈ w1.R so there are three edges

connecting w1 with the tasks {t1, t2, t3}. Because w1.maxT = 2,

the capacity value of the edge (src, w1) is 2 and the weight of

this edge is 0. The weight of edges (wi, tj) is computed via f(wi,

tj) and the capacity of these edges is 1. The weight of edges (tj,

dst) is 0 and the capacity of these edges is 1, as each task may

be assigned to at most one worker.

a) Example of spatial tasks and workers

b) Example of Spatial Crowdsourcing Graph

Fig. 1. An example of spatial crowdsourcing

B. Period-based Task Assignment Framework

In reality the tasks and workers arrive continuously at a SC-

Server. This raises the problem of when to run the spatial task

assignment. The two extreme approaches are known as offline

and online based assignment. The offline assignment process

is executed after receiving all of the tasks and workers while

the online assignment [18] is executed once a task or a worker

arrives to the system. The offline assignment is optimal in

terms of assignment cost minimization as it is performed

based on a global knowledge of all tasks and workers [19]

[20]; however it is not feasible in a real-time environment as it

poses considerable delay for assigning tasks. On the contrary,

online assignment supports immediate responses; however the

assignment optimality is lowered. Since both of these

approaches have their characteristic drawbacks we envision a

hybrid framework which balances between offline and online

assignment. In our framework, the system waits for the arrival

of tasks and workers for a certain period of time then executes

the assignments. This process is repeated periodically. The

aim is to support quick responses to tasks and local optimality

for the assignment executed in each time period.

Thus, we discretise the time into intervals (I0, I1, I2…, In).

The framework performs the task assignment process at the

beginning of each interval (i.e., Ik) and considers spatial tasks

and workers received during Ik-1 in addition to the tasks that

have not yet been assigned.

At each time interval Ik the system maintains a spatial

crowdsourcing graph SC-Gk which will be used in the next

interval and hence includes all spatial tasks and workers

received during Ik. At the arrival of any spatial task or worker,

the SC-Gk is updated immediately. For example, at the arrival

of a spatial task (tj), the system searches for all workers whose

work regions include the task location (i.e., ∀wi : tj.l ∈ wi.R)

and adds edges between this new task vertex and the vertices

of the selected workers. Similarly, the graph is updated at the

arrival of a new worker.

At the beginning of each time interval Ik, the framework

creates a new spatial crowdsourcing graph (SC-Gk) in order to

receive new spatial tasks and workers. It also executes the task

assignment process on the graph of the previous interval SC-

Gk-1. Based on the task assignment output, the unassigned

tasks and workers are added SC-Gk to be considered in the

next task assignment process. Thus, the task assignment

process initiated at the beginning of the time interval Ik+1

works on SC-Gk, which includes the tasks and workers

received in Ik and all of the unassigned tasks and workers

during Ik-1. Figure 2 depicts the system timeline in the

intervals Ik-1, Ik, and Ik+1.

Fig. 2. Spatial Crowdsourcing System Time Line

C. MapReduce-based Solution

MapReduce (MR) is a programming model which runs a

distributed computation on a cluster of servers and it is a

framework for processing a large-scale data [21]. In [4], the

maximum flow problem in a network flow graph is studied

using MapReduce. This approach is based on the Ford

Fulkerson algorithm [6] and it uses a multiple MapReduce

rounds of bi-directional search technique from the source and

the sink vertices to find multiple augmenting paths

concurrently. We adopted this approach to solve the weighted

maximum flow problem and hence our spatial task assignment

problem. We name this method the MapReduce-based

Approach (MR-A).

A MapReduce program is mainly composed of two

functions: map and reduce. A map function performs filtering

and sorting and a reduce function performs a summary

operation. The input of MapReduce should be independent set

of records consisting of <key, value> pairs and this allows

partitioning records across servers. The MapReduce

framework has its own file system which is known as

Distributed File System (DFS). Thus, before executing a

MapReduce job the input should be transferred to DFS and the

output should also be collected from DFS.

Although a MR-based approach is able to scale the problem

and provides an exact assignment output compared with the

centralized system, it has some drawbacks. First, it requires

collecting spatial tasks, workers and finding out the candidacy

relations between them (i.e., constructing the bipartite graph),

then transferring the constructed graph to the MR distributed

file system to be partitioned across servers (i.e., construct first

– partition later). In contrast, our approaches partition graph

information across servers in an online-fashion. Second, it

poses a high volume of intercommunication when partitioning

data across several parallel Map functions running on multiple

servers and re-arranging data before running several parallel

reduce functions to generate the final result. Third, the input

records (i.e., bipartite graph) must be transferred to DFS and

the output should be retrieved from DFS. Thus, these

constraints slow down the execution of this approach.

In this approach, we have a control server (C-Server) which

stores all incoming tasks and workers at each time interval and

updates SC-G. At the beginning of a new interval (Ik), the C-

Server transfers the data of SC-Gk-1 to DFS and then a

MapReduce job is executed. This job partitions the data of

SC-Gk-1 across a cluster of servers and performs the

assignment process. The C-Server retrieves the assignment

output from DFS to recognize the unassigned tasks and

workers in SC-Gk-1 and add them into SC-Gk to be considered

in the next assignment process.

III. DISTRIBUTED SPATIAL CROWDSOURCING

APPROACHES

In this section, we will discuss approaches for period-based

task assignment in a distributed environment. In this

environment, there are multiple servers dedicated to a spatial

crowdsourcing system whose main task is to distribute the

task assignment process and scale up the overall system

performance.

A. General Setting

From the set of available servers we select one to be the

partitioning server (P-Server), which continuously receives

and partitions the incoming spatial tasks and workers across

the other servers which are named matching servers (M-

Servers). The P-Server is also responsible for syncing and

discretising the system time into discrete intervals. At the

beginning of each time interval, the P-Server sends parallel

requests to all M-Servers to perform the task assignment

based on the available information.

Each M-Server maintains its own SC-G and continuously

receives task and worker information from the P-Server. At

the arrival of a new task or worker, the SC-G is updated

immediately. At the beginning of each time interval Ik (when a

matching request from the P-Server is received), each M-

Server simultaneously

- performs the task assignment process locally based on

SC-Gk-1,and

- creates a new SC-Gk to append new tasks or workers

received in the interval Ik.

Our approaches mainly differ by the distribution of spatial

workers and tasks across the servers and are named

accordingly. We propose three approaches, which are

afterwards compared with a MapReduce-based approach.

B. Random Task Partitioning with Worker Replication

Approach (RTP-WR-A)

The main idea of the first approach is to send incoming

workers to all M-Servers whereas the incoming tasks are

partitioned across M-Servers. Since workers are replicated

among M-Servers and each M-Server performs the task

assignment individually on its own SC-G, across the results of

M-Servers there are some workers assigned to a number of

tasks greater than their capacity (i.e., wi.maxT). The

assignments for these overloaded workers are resolved at a

synchronizing server (S-Server) which generates the final

assignment output as shown in Figure 3. Because each M-

Server executes the assignment for a subset of tasks and some

tasks might be un-assigned from overloaded workers at the S-

Server, the final assignment output might miss some

assignments compared to the centralized system.

Fig. 3. Random Task Partitioning with Worker Replication Approach

At the P-Server, a round-robin mechanism is used to

balance the distribution of tasks among M-Servers. At the

beginning of a new time interval Ik, the P-Server checks the

status of all M-Servers and the S-Server. If all of them are idle

(i.e. not involved in a task assignment process), the P-Server

sends a request to all M-Servers to execute the assignment

process. If one of the servers is busy, the P-Server postpones

all assignment requests to the beginning of the next time

interval Ik+1.

At any time instance, all M-Servers “know” the same set of

workers but disjoint sets of tasks. Formally, let Wx be the set

of workers and Tx be the set of tasks in M-Server MSx. Then

any time instance for any two M-Server MSi, MSj, Ti = Tj and

Wi ∩ Wj = Ø. When the request of the P-Server to start the

assignment arrives at an M-Server, the task assignment is

performed on its local SC-Gk-1 and the status of the server is

set to busy. After finishing the local assignment the result is

sent to the S-Server. The distributed workflow is illustrated in

Figure 4. Once the final assignment is generated in the S-

Server, it is transferred to all M-Servers. Every M-Server then

adds the unassigned tasks and workers into SC-Gk to be

considered in the next assignment process and the server

status is set to idle again.

Fig. 4. Parallel Processes at M-Server i at a time interval Ik

The S-Server becomes busy when it receives an

intermediate assignment result from any M-Server. It stores

the intermediate results in a hash table which maps each

worker to his assignment pairs received from different M-

Servers. When all M-Servers have sent their intermediate

results, the S-Server scans through the hash table. If a worker

wi is overloaded, the S-Server chooses the best tasks based on

the assignment weight criteria (i.e. the travel distance) and un-

assigns the other tasks. Then, the final task assignment output

is pushed concurrently to all M-Servers to update their local

information. Afterwards, the S-Server’s status is set back to

idle.

Example: An example is shown in Figure 3, where w1 is

replicated from the P-Server to all three M-Servers: MS1, MS2,

and MS3. The set {t1, t2, t3} belongs to MS1, the set {t4, t5, t6}

belongs to MS2, and the set {t7, t8, t9} belongs to MS3. Let us

assume the local task assignment in M-Servers results

assigning w1 to {t1, t2, t4, t7}. Given that w1.maxT=2 and f(w1,

t7)<f(w1, t1)<f(w1, t2)< f(w1, t4), the S-Server un-assigns t2 and

t4 from w1 and w1 remains assigned to {t1,t7}. Obviously the

assignment process may produce non-optimal assignments,

i.e., if a task gets unassigned it is not checked if it could be

assigned to another worker instead. Consequently the number

of assigned tasks may be smaller than in the centralized

approach.

With this approach, assuming that the number of available

tasks is greater than the number of available workers, we

partition the set of tasks across M-Servers. Instead of

partitioning tasks, we could also partition workers (i.e.,

Random Worker Partitioning with Task Replication Approach,

RWP-TR-A) and adapt the assignment strategy in the S-Server.

However, our experimental evaluation reveals that

partitioning tasks is better in term of the number of

assignments and their total cost over subsequent time intervals.

C. Spatial Partitioning Approach (SP-A)

In RTP-WR-A, workers are replicated to all M-Servers. This

results in overloaded workers which have to be resolved at the

S-Server creating a bottleneck due to the need for waiting all

intermediate results before proceeding to resolve overloading

assignments. To eliminate the need of an S-Server, we

propose the Spatial Partitioning Approach (SP-A) which

partitions both tasks and workers based on their locations. The

main idea of this approach is that each M-Server is assigned to

a certain geographical region and if a task or worker is located

in the geographical region of an M-Server, that M-Server

receives the task or the worker. This partitioning is motivated

by the fact that a worker is assigned to a task if they are

located in roughly the same geographical region. Thus, spatial

tasks and workers located in a specific geographical region

should be processed at the same M-Server.

In this approach, the global geographical area is partitioned

into disjointed sub-areas by using space partitioning

techniques such as a uniform grid, a quad tree, a kd-Tree [23],

or a Voronoi diagram [24]. Let us note that the technique to

partitioning the space may influence the performance of

system, yet this investigation is out of the scope of this paper.

In the following, we use a spatial uniform grid to partition the

global geographical area into equal sub-areas across M-

Servers. Thus, there is no overlap between the geographical

regions of M-Servers. In other words, if the M-Server (MSi) is

assigned to a geographical region MSi.R and there is another

M-Server MSj, MSi.R∩MSj.R = Ø.

The P-Server is aware of the geographical regions of all M-

Servers. When a spatial worker wi arrives and its location

belongs to the geographic region of an M-Server m (i.e., wi.l ∈

MSm.R), the P-Server sends a request to MSm to store wi.

Similarly, when a spatial task tj is received and tj.l ∈ MSm.R, tj

is stored in MSm.

Example: Figure 5 shows an example of partitioning a

certain geographical area into three sub-areas with their

corresponding M-Servers. Spatial tasks and workers are

partitioned across the three M-Servers. For example, t9 is

processed in MS2 because t9.l ∈ MS2.R and w6 is sent to MS3

because w6.l ∈ MS3.R. The work regions of some workers

might overlap with the geographical regions of multiple

servers thus the P-Server partitions workers based on their

actual location. For instance, w4.R crosses MS2.R and MS3.R

but w4.l ∈ MS2.R, so w4 is added into MS2. Figure 6 shows the

general architecture of this approach and depicts the

distribution of the sample of tasks and workers presented in

Figure 5.

Figure 5: Example of partitioning geographical area across M-Servers

Fig. 6. Spatial Partitioning Approach

At any time instance, all M-Servers have disjointed sets of

tasks and workers. Let Wx, be the set of workers and Tx be the

set of tasks in an M-Server x (MSx). Then any time instance

for any two M-Server MSi, MSj, Ti ∩ Tj = Ø and Wi ∩ Wj = Ø.

At the beginning of each time interval Ik, each M-Server

receives a request from the P-Server to start executing the

local task assignment process. The start of task assignment in

each M-Server is independent from the other M-Servers where

the assignment is performed if the server is idle without

considering the status of other servers as in RTP-WR-A. When

the assignment is finished in each M-Server, the server

updates its own SC-G without communicating with the other

servers. Because there is no overlap in the distribution of tasks

and workers across M-Servers, the resulted assignment pairs

over M-Servers are independent. Hence, there is no need for

an S-Server.

In contrast to this approach (SP-A), tasks and worker can be

partitioned randomly without using the spatial information

(i.e., Random Partitioning Approach, RP-A). Round-robin can

be used to balance the distribution of tasks and workers.

Experimentally, we will show that this approach produces the

worst result. Spatial partitioning increases the effectivity of

task assignment at each M-Server.

With SP-A, the assignment output is approximate since a

worker whose work area overlaps the geographical areas of

multiple servers is processed by one of them and assigned to

local tasks which may not be optimal if assigning to the

nearby tasks located in the neighbouring servers is better.

D. Spatial Partitioning with Worker Replication Approach

(SP-WR-A)

With RTP-WR-A, workers are replicated across all M-

Servers which results in overloading-assigned workers so an

S-Server is required. This is avoided in SP-A by partitioning

both tasks and workers, but disjointed subsets of workers

across M-Servers prevent workers to be assigned to tasks

stored in other servers. On the other hand, in SP-A tasks are

partitioned spatially but in RTP-WR-A tasks are partitioned in

round-robin. Spatial partitioning improves the effectivity of

local task assignment in each M-Server. In Spatial

Partitioning with Worker Replication Approach (SPWR-A),

we propose a hybrid mechanism which spatially partitions

both tasks and workers but some workers are replicated when

necessary. Tasks are partitioned based on their location but

workers are partitioned based on their work regions. If the

worker region overlaps with the geographical area of multiple

M-Servers, the worker is replicated to all of them. Otherwise,

the worker is sent only to one of them. Because of the

possibility of worker replication, an S-Server is required to

resolve overloading workers. The architecture of this approach

is shown in Figure 7. Generally, the architecture of this

approach is similar to RTP-WR-A, but the functionalities of

the P-Server and the S-Server are different.

Fig. 7. Spatial Partitioning with Worker Replication Approach

Example: The distribution of tasks and workers in Figure 7

is based on the sample set of tasks and workers given in

Figure 5. For example, w4.R overlaps MS2.R and MS3.R so the

P-Server replicates w4 to MS2 and MS3 and w4 is marked as

replicated.

As in SP-A, the global geographical area is partitioned into

disjointed sub-areas and each is assigned to an M-Server. The

P-Server is aware about the geographic partitioning among M-

Servers and it is used for partitioning both tasks and workers

spatially. As in RTP-WR-A, at the beginning of a new time

interval Ik the P-Server checks the status of all M-Servers and

the S-Server. If all of them are idle (i.e. not involved in a task

assignment process), the P-Server sends a request to all M-

Servers to execute the assignment process. If one of the

servers is busy, the P-Server postpones all assignment

requests to the beginning of the next time interval Ik+1.

At each M-Server, the assignment process is executed. The

assignment output is categorized into two sets: final and

intermediate. If an assignment pair does not contain a

replicated worker, the assignment pair <wi, tj> is categorized

as final. Otherwise, the pair is added to the intermediate

assignment result. The intermediate assignment result is sent

to the S-Server because it includes replicated workers which

may be assigned to other tasks in the other M-Servers. But,

the final set of assignments is not sent to the S-Server.

With SP-WR-A, the S-Server performs a lighter job

compared with RTP-WR-A. It does not receive all assignments

generated from M-Servers but only the ones which contain

replicated workers. When the final assignment output is

generated at the S-Server, it is pushed concurrently to all M-

Servers to update their local information.

The result of this approach is also approximate because

tasks which are assigned to the replicated workers in M-

Servers might be un-assigned in the S-Server without

considering alternative workers. In this approach, the

synchronization job is minimized compared with RTP-WR-A

so the execution time of the assignment process for the entire

system is improved.

IV. EXPERIMENTS

We conducted our experiments on the Amazon EC2

infrastructure. We used a varying number of machines (4, 8,

or 16) each running on 64 bit CentOS 6.3 Linux OS with 2

virtual CPUs, 7.5GB memory, and 30GB disk storage. These

machines were connected via a 128 Mbps network. For each

approach we implemented the different servers to carry out

the functionalities of the P-Server, M-Servers and S-Server

using Java 1.7 as programming language. In addition, Apache

Hadoop was installed across all machines as MapReduce

infrastructure [22]. Additionally, we used a dedicated machine

which provides the approaches with task and worker

information in a continuous manner, simulating a stream.

Below, we first discuss the experimental methodology and

then present our results.

A. Experimental Methodology

We conducted several experiments on real-world and

synthetic datasets to evaluate the performance and the

effectivity of our approaches. Real data was obtained from

Gowalla and Brightkite [32], two location-based social

networks where users shared their locations through check-ins.

The Gowalla data was collected over the period of Feb. 2009

to Oct. 2010 and the Brightkite data was collected from Apr.

2008 to Oct. 2010. We subsequently extracted the data

covering the area of California State. Each user record of a

dataset was mapped to a worker wi. Since each user wi had

various check-ins, we set wi.maxT to the number of check-ins

of wi and wi.R as the minimum bounding rectangle of those

checked-in locations. Additionally, a user check-in at a certain

location l represents a task tj with location l. For the

experiments on synthetic data, we randomly generated

location data of workers and tasks drawn from a uniform

distribution or a Gaussian mixture model. In the latter case the

dataset was formed into 10 Gaussian clusters where the

centers were randomly chosen from a uniform distribution.

We randomly selected the value of maxT between 1 to 5 and

the value of the spatial region R was in the range of [6.9, 69]

miles.

Specifically, we conducted our experiments using the

following four datasets: In S1-SYN-UD, tasks and workers

were uniformly distributed. S2-SYN-SD demonstrates a

skewed data distribution where workers were distributed

uniformly but tasks were distributed normally. The third

dataset S3-SYN-SD is similar to S2-SYN-SD but the Gaussian

centers of workers were chosen close to the geographical

borders of M-Server areas. In the last dataset S4-RD, workers

were obtained from the Brightkite data and tasks were

obtained from the Gowalla data.

In the experiments, we compared the performance of our

approximate-solution approaches (RTP-WR-A, SP-A, and SP-

WR-A) with the exact-solution approaches, Centralized-

System Approach (CS-A) and MapReduce-based Approach

(MR-A). Additionally, we evaluated two variations of the

proposed approaches: RWP-TR-A which is a variation of RTP-

WR-A and RP-A which is a variation of SP-A. We evaluated

all approaches based on three metrics: M1) the execution time

speed-up of the approach compared to CS-A, M2) the

percentage of assigned tasks compared with the exact solution,

and M3) the percentage of assignment cost per assignment

pair compared to the exact solution

where , X-A∈

{MR-A, RWP-TR-A, SP-A, SP-WR-A, RTP-WR-A, RP-A}.

Since MR-A and CS-A are the ground truth when calculating

the metrics M2 and M3, their values were 1.0.

By default the length of a time interval (period) was set to 1

minute, but was extended when the running assignment was

not completed.

B. The effect of Arrival Rate

For every dataset (S1-SYN-UD, S2-SYN-SD, S3-SYN-SD, or

S4-RD), we performed three experiments in which we varied

the arrival rate of tasks and workers per time interval at the

spatial crowdsourcing system. For the synthesized datasets,

the received number of tasks per interval was 8K, 9K, or 10K

while the number of workers was 2K, 3K or 5K

correspondingly. Because of the limited number of real data,

the received number of tasks was 1000, 1200, or 1500 while

the number of workers was 200, 400, or 500. The approaches

ran through 10 time intervals. We extracted the average of the

three metrics (i.e., execution time speed up, assignment ratio

and assignment cost ratio) over the three experiments for each

dataset. In this set of experiments all distributed approaches

used four M-Servers.

Fig. 8: Avg. of Execution Time Speedup over 10 Time Intervals in Four

Datasets with Three Arrival Rates

Fig. 9: Avg. of Percentage of Assigned Tasks compared with CS-A or MR-A
over 10 Time Intervals in Four Datasets with Three Arrival Rates

Fig. 10: Avg. of Percentage of Assignment Cost per Assignment Pair over 10

Time Intervals in Four Datasets with Three Arrival Rates

Fig. 11: Avg. of Percentage of Assigned Tasks in the 1st Time Interval in Four

Datasets with Three Arrival Rates

First we show the efficiency and effectivity of the

distributed approaches (MR-A, RWP-TR-A, SP-A, SP-WR-A,

RTP-WR-A, and RP-A) compared with the centralized

approach (CS-A) in terms of the execution time speed-up

(Figure 8), the percentage of task assignment (Figure 9) and

their cost along 10 time intervals (Figure 10). It is clearly

visible that our approximate approaches achieved a very high

speed-up. In addition, we noticed that on one hand the average

number of assignments was nearly the same for most of the

approaches in the four datasets and on the other hand they

were different in the assignment cost. Most of the proposed

approaches were able to achieve more than 95% (sometimes

even 105%) of the assignments of the centralized approach

(CS-A). This can be attributed to two reasons: a) the high rate

of arriving tasks and workers which provides a plethora of

alternatives when executing the assignment and b) running the

system over consecutive time intervals gives the system

chances to re-assign tasks, which were un-assigned in the S-

Server, to their best matches among old or new-arrived

workers.

RP-A was much faster than CS-A. Even though it partitions

tasks and workers randomly across M-Servers, it was able to

generate a number of assignments almost similar to CS-A but

increasing the cost of CS-A up to three times. This renders this

approach infeasible to maintain a comparable assignment cost

percentage to CS-A. On the other hand, the distributed

solution offered by MR-A only provided a marginal speed-up.

With RWP-TR-A and RTP-WR-A, the average of M1 for

both approaches was 4.6, which shows that the two

approximate approaches did not provide a good improvement

in terms of the execution time. The random partitioning and

the existence of an S-Server hinder the system achieving a

high speed-up. In the two datasets (S1-SYN-UD and S4-RD),

M2 was similar for both approaches but in the other datasets

RTP-WR-A outperformed RWP-TR-A. This shows that the un-

assignments occurred at the S-Server of RWP-TR-A were

higher than the un-assignments at RTP-WR-A. In terms of M3,

RTP-WR-A displayed a stable behaviour while RWP-TR-A

performed differently in different datasets. However in S4-RD

and S1-SYN-UD, M2 of RTP-WR-A was almost equivalent to

CS-A and M3 of RTP-WR-A became 30% higher than CS-A in

S4-RD while it was significantly less in S1-SYN-UD. The

latter dataset indicates that RTP-WR-A utilized the new

arriving tasks and workers in addition to the old un-assigned

tasks and workers for choosing the least-cost assignments.

SP-A scored the second place in terms of M1 after RP-A.

Even though both SP-A and RP-A partition tasks and workers,

there was a large difference in M1. This is a result of two

reasons a) in RP-A the random partitioning in round robin

manner results in a balanced load between M-Servers but the

spatial partitioning in SP-A yields imbalanced load, b) M1 was

calculated as the average of execution time for all M-Servers.

In terms of M1, SP-WR-A was the third after SP-A due to the

existence of an S-Server. SP-WR-A was much faster than

RWP-TR-A and RTP-WR-A because the replication of workers

is only performed when necessary. The average of M2 and M3

of SP-A and SP-WR-A were nearly similar to CS-A except in

S3-SYN-SD in which M2 of SP-A decreased by 9% with a 30%

higher cost (i.e. M3) than CS-A. This displays the main

drawback of SP-A when most of worker areas overlap with

multiple M-Servers. On the other hand, M2 and M3 of SP-WR-

A were almost similar to CS-A in S3-SYN-SD.

Figure 11 shows M2 of the approaches in the first time

interval compared with CS-A. Note that some approaches

achieved a low assignment percentage. For example, in S2-

SYN-SD, M2 of RWP-TR-A and RTP-WR-A was 0.65 and 0.76

in the first time interval but they increased to 0.90 and 0.95,

respectively, after 10 time intervals.

C. The effect of Number of M-Servers

We varied the number of M-Servers (4, 8 or 16) to analyse

the behaviour of the approximate approaches when scaling the

number of servers. Figures 12 and 13 compare the average of

M1 and M2, respectively, of MR-A, SP-A, SP-WR-A and RTP-

WR-A in different cluster settings. The results were calculated

over 10 time intervals for a set of experiments using all

datasets with multiple arrival rates as discussed in the

previous subsection.

Fig. 12: Avg. of Execution Time Speedup of MR-A, SP-A, SP-WR-A and

RTP-WR-A in different clusters (4, 8, or 16 servers)

Fig. 13: Avg. of Assigned Tasks for SP-A, SP-WR-A and RTP-WR-A in
different clusters (4, 8, or 16 servers)

Figure 12 shows M1 in logarithmic scale. When increasing

the number of servers, M1 of SP-A increased exponentially

while increased linearly for SP-WR-A. M1 of SP-A was 20, 89,

and 480 for the number of servers 4, 8, and 16. SP-WR-A

occupied the second place with the M1 values 12, 31, and 89.

RTP-WR-A scored the third place with 5, 11, and 46

displaying a small change when scaling the system. This

marginal increase is due to having an S-Server whose job

increases when adding an M-Server. On the other hand, MR-A

showed the smallest speedup factor when scaling the cluster

of servers due to the increase of intercommunication between

servers when partitioning input data and merging intermediate

data.

In Figure 13, we notice that SP-WR-A was able to maintain

a high M2 comparable to CS-A regardless of the number of M-

Servers. On other hand, the effectivity of SP-A and RTP-WR-

A decreased when the number of servers increased. SP-A

achieved 0.97, 0.93, and 0.86 of M2 when the number of M-

Servers was 4, 8, and 16, respectively. While running SP-A on

16 server in S3-SYN-SD, M2 reached to 0.75 which displays

the infectivity of this approach when most of the workers

existing around the borders of M-Servers and having a large

number of M-Servers. RTP-WR-A scored 0.96, 0.92, and 0.83

of M2 when the number of M-Servers was 4, 8, and 16,

respectively. This shows that the un-assignments happening in

the S-Server in RTP-WR-A increases as the number of M-

Servers increases.

V. RELATED WORK

Crowdsourcing attracted researchers from different

communities [11][12][13][14] and commercially used in the

industry [7][8][9][10]. Few studies focused on spatial

crowdsourcing [15] [16]. In [15], a crowdsourcing platform

was proposed which utilizes location as a parameter to

distribute tasks among workers. In [16], their crowdsourcing

platform employed a location-based service (e.g., Foursquare)

to find the appropriate people to answer a query given over

Twitter but it did not assign to workers any spatial task, for

which the worker should go to that location and perform the

corresponding task.

The taxonomy of spatial crowdsourcing and the problem of

spatial task assignment were studied in [1] and the issue of

trust in spatial crowdsourcing was studied in [2]. Both [1] and

[2] studied the problem in server-assigned mode. Instead of

server mode, the worker-assigned mode in spatial

crowdsourcing was explored in [3] and the proposed

techniques considered the dynamic location of workers while

travelling to tasks. In [3], the shortest path to other spatial

tasks was computed from the worker location at the current

visited task so the task assignment problem was solved

differently and mapped to the Travel Salesman Problem. The

current existing work focuses on the task assignment problem

without considering a scalable solution.

Boutsis et al [17] proposed a crowdsourcing platform to

assign appropriate workers to tasks to increase the probability

of getting on-time completed tasks and high-quality responses

to tasks but the location parameter was utilized implicitly. For

scalability, workers and tasks located in the same

geographical area were processed in the same server which is

similar to our second approach (SP-A) but location parameter

was not considered in the assignment. In our scalable

approaches, spatial partitioning is used because of the

prominent constraints for spatial tasks and workers. The

spatial task assignment considers travel distance however it

can be extended naturally to other parameters such as task

deadline and worker expertise.

Spatial task assignment is mapped to a weighted b-

matching problem which can be converted to a weighted

maximum flow. Scaling the problem in MapReduce is

possible [4][5]. In [4], the maximum flow problem in a

network flow graph was studied in MapReduce, where an

exact-solution approach was designed. In [5], two

approximate algorithms were proposed to solve b-matching

problem in MapReduce. We compared our approximate

approaches with the exact MR-based approach to study the

effectivity of our approximate solutions.

The auction algorithm [35] is a variant of task assignment

problem where workers (e.g., robotic agents) assign

themselves to tasks while attempting to maximize a certain

collective benefit function. It solves the assignment in

decentralized fashion (i.e., worker-assigned) but our spatial

task assignment is based on a server-assigned strategy where

the information about workers and tasks are collectively

managed by servers. In [36] the auction algorithm is extended

to deal with spatial tasks and mobile workers. Beside the

difference in the task assignment strategy, they did not focus

on improving the performance of the task assignment to be

feasible in an online large-scale setting.

Partitioning a graph is a common problem which is mainly

categorized as offline or online. Offline partitioning requires

full graph information to distribute the graph. Spectral

clustering algorithm [34] is an example of offline partitioning

which results with optimal graph partitioning but lengthy

execution time. Online partitioning aims to find a near-

optimal solution by distributing vertices and edges with only

limited graph information. There are usually two approaches

in online partitioning: edge cut or vertex cut. PowerGraph [33]

is an online partitioning framework which employs several

vertex-cut algorithms to provide edge balanced partitions.

Online and offline partitioning require knowledge about the

graph structure but our distributed approaches partition the

problem information without constructing the graph itself.

VI. CONCLUSION

In this study we considered the problem of spatial

crowdsourcing in a distributed environment. We showed that

a single centralized system is not capable to cope with a rising

number of workers and tasks arriving in short amount of time.

We thus evaluated several approaches that differ in the

distribution and handling of the incoming data. In a cluster of

16 servers, the most efficient of these approaches were shown

to be up to 88 times faster while yielding comparable

effectivity to the centralized approach. In contrast, a Map

Reduce based implementation could only achieve a speedup

by a factor 5. To the best of our knowledge this is the first

study of suitable approaches for the problem of distributed

spatial crowdsourcing.

As future work, we plan to study different space

partitioning techniques for assigning the geographical areas of

the matching servers. We also plan to study the theoretical

bounds of our approximated solutions. Moreover, we plan to

incorporate the historical information of the previous

partitions and task assignments in our distributed approaches.

ACKNOWLEDGMENT

This research has been supported in part by NSF grants IIS-

1320149 and CNS-1461963, the USC Integrated Media

Systems Center, and unrestricted cash gifts from Google and

Northrop Grumman. The opinions, findings, and conclusions

or recommendations expressed in this material are those of the

authors and do not necessarily reflect the views of any of the

sponsors such as NSF.

REFERENCES

[1] L.Kazemi and C. Shahabi. "Geocrowd: enabling query answering with

spatial crowdsourcing." In SIGSPATIAL, pp. 189-198. ACM, 2012.

[2] L. Kazemi, C. Shahabi, and L. Chen. "GeoTruCrowd: trustworthy
query answering with spatial crowdsourcing." In SIGSPATIAL, pp.

304-313. ACM, 2013.

[3] D. Dingxiong, C. Shahabi, and U. Demiryurek. "Maximizing the
number of worker's self-selected tasks in spatial crowdsourcing." In

SIGSPATIAL, pp. 314-323. ACM, 2013.

[4] H. Felix, R. H. Yap, and Y. Wu. "A Mapreduce-based maximum-flow
algorithm for large small-world network graphs." In ICDCS, pp. 192-

202. IEEE, 2011.

[5] G. D. F. Morales, A. Gionis, and M. Sozio. "Social content matching in
mapreduce." In VLDB Endowment 4, no. 7 (2011): 460-469.

[6] L. R. Ford and D. R. Fulkerson. "Maximal flow through a network."

Canadian journal of Mathematics 8, no. 3 (1956): 399-404.
[7] “Amazon Mechanical Turk”, http://www.mturk.com/

[8] “CrowdFlower”, http://www.crowdflower.com/

[9] “CrowdCloud”, http://www.crowdcloud.com/
[10] “MicroWorkers”, http://microworkers.com/

[11] M. J. Franklin, D. Kossmann, T. Kraska, S. Ramesh, and R. Xin.

"CrowdDB: answering queries with crowdsourcing." In SIGMOD, pp.
61-72. ACM, 2011.

[12] K.-T. Chen, C.-C. Wu, Y.-C. Chang and C.-L. Lei. "A

crowdsourceable QoE evaluation framework for multimedia content."
In MM’09, pp. 491-500. ACM, 2009.

[13] A. Sorokin and D. Forsyth. "Utility data annotation with amazon

mechanical turk." Urbana 51, no. 61 (2008): 820.
[14] R. Snow, B. O'Connor, D. Jurafsky, and A. Y. Ng. "Cheap and fast---

but is it good?: evaluating non-expert annotations for natural language

tasks." In EMNLP, pp. 254-263. Association for Computational
Linguistics, 2008.

[15] F. Alt, A. S. Shirazi, A. Schmidt, U. Kramer, and Z. Nawaz. "Location-

based crowdsourcing: extending crowdsourcing to the real world." In
NordiCHI, pp. 13-22. ACM, 2010.

[16] M. F. Bulut, Y. S. Yilmaz, and M. Demirbas. "Crowdsourcing

location-based queries." In PERCOM Workshops, pp. 513-518. IEEE,
2011.

[17] I. Boutsis and V. Kalogeraki. "On task assignment for real-time

reliable crowdsourcing." In ICDCS, pp. 1-10. IEEE, 2014.
[18] C.-J. Ho and J. W. Vaughan. "Online Task Assignment in

Crowdsourcing Markets." In AAAI. 2012.

[19] R. C.-W. Wong, Y. Tao, A. W.-C. Fu, and X. Xiao. "On efficient
spatial matching." In VLDB Endowment, 2007: 579-590

[20] M. L. Yiu, K. Mouratidis, and N. Mamoulis. "Capacity constrained

assignment in spatial databases." In SIGMOD, pp. 15-28. ACM, 2008.
[21] J. Dean, and S. Ghemawat. "MapReduce: simplified data processing on

large clusters." Communications of the ACM 51, no. 1 (2008):107-113.

[22] “Apache Hadoop”, http://hadoop.apache.org/
[23] H. Samet. Foundations of multidimensional and metric data structures.

Morgan Kaufmann, 2006.
[24] F. Aurenhammer. "Voronoi diagrams—a survey of a fundamental

geometric data structure." In CSUR 23, no. 3 (1991):345-405.

[25] R. K. Ahuja, T. L. Magnanti, and J. B. Orlin. "Network flows: theory,
algorithms, and applications." (1993).

[26] “mturk tracker”, http://www.mturk-tracker.com/

[27] “The Crowd in the Cloud: Exploring the Future of Outsourcing”,
http://www.lionbridge.com/files/2012/11/Lionbridge-White-

Paper_The-Crowd-in-the-Cloud-final.pdf

[28] V. Chvatal. “Linear programming”. Macmillan, 1983.
[29] T. Brunsch, K. Cornelissen, B. Manthey, and H. Röglin. "Smoothed

analysis of the successive shortest path algorithm." In SODA, pp.

1180-1189. ACM SIAM, 2013.
[30] A. Mehta and D. Panigrahi. "Online matching with stochastic rewards."

In FOCS, pp. 728-737. IEEE, 2012.

[31] A. Mehta "Online matching and ad allocation." Theoretical Computer
Science 8, no. 4 (2012): 265-368.

[32] J. Leskovec, and A. Krevl. "Stanford large network dataset collection."

http://snap.stanford.edu/data/index.html (2014).

[33] J. Gonzalez, Y. Low, H. Gu, D. Bickson, and C. Guestrin.

"PowerGraph: Distributed Graph-Parallel Computation on Natural

Graphs." In OSDI, vol. 12, no. 1, p. 2. 2012.
[34] A. Ng, M. I. Jordan, and Y. Weiss. "On spectral clustering: Analysis

and an algorithm." Advances in neural information processing systems

2 (2002): 849-856
[35] D. Bertsekas, and David A. Castañon. "Parallel synchronous and

asynchronous implementations of the auction algorithm." Parallel

Computing 17, no. 6 (1991): 707-732.
[36] B. Moore, and K. Passino. "Distributed task assignment for mobile

agents." Automatic Control, IEEE Transactions on 52, no. 4 (2007):

749-753.

http://www.mturk-tracker.com/
http://www.lionbridge.com/files/2012/11/Lionbridge-White-Paper_The-Crowd-in-the-Cloud-final.pdf
http://www.lionbridge.com/files/2012/11/Lionbridge-White-Paper_The-Crowd-in-the-Cloud-final.pdf
http://snap.stanford.edu/data/index.html

