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ABSTRACT
This paper studies a spatial group-by query over complex poly-
gons. Groups are selected from a set of non-overlapping complex
polygons, typically in the order of thousands, while the input is
a large-scale dataset that contains hundreds of millions or even
billions of spatial points. Given a set of spatial points and a set of
polygons, the spatial group-by query returns the number of points
that lie within boundaries of each polygon. This problem is chal-
lenging because real polygons (like counties, cities, postal codes,
voting regions, etc.) are described by very complex boundaries.
We propose a highly-parallelized query processing framework to
efficiently compute the spatial group-by query. Our experimen-
tal evaluation with real data and queries has shown significant
superiority over all existing techniques.
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1 INTRODUCTION
Spatial data is readily available in very large quantities through
the emergence of various technologies. Examples include user-
generated data from hundreds of millions of users, fine-granularity
satellite data from both public and private sectors, ubiquitous IoT
applications and traffic management data. Such excessively large
spatial datasets are rich in information but also come with new
challenges for data scientists who try to explore and analyze them
efficiently in various applications. These challenges span the whole
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stack of spatial data management starting from revisiting funda-
mental queries and their variations so they are efficiently supported
on the current volume scale.

In this paper, we address a spatial group-by query to efficiently
support large-scale datasets that contain hundreds of millions or
even billions of data points on real polygons with very complex
perimeter geometries that have tens of thousands of points. Such
overwhelming polygon complexity combined with large volume
data is beyond any currently available techniques in the mainstream
spatial data management systems. Given a set of spatial points and a
set of complex polygons, our group-by query counts the number of
spatial points within the boundaries of each polygon. So, it groups
points by polygon boundaries. This query is a composition of the
fundamental spatial range query using sets of polygons as spatial
group-by conditions. These real polygons are heavily used by social
scientists in various spatial statistical analysis applications, such as
spatial regionalization, spatial harmonization, segregation analysis,
join-count analysis, hot-spot and cold-spot analysis, and spatial
autocorrelation analysis [29].

Traditionally, count aggregations over polygons are performed
using filter-refine approaches [13, 15]. The filter phase retrieves
a subset of data based on the polygon minimum bounding rec-
tangle (MBR), then this subset is refined where each data point is
tested against the exact polygon geometry using point-in-polygon
checks. This approach is still used in modern distributed systems,
e.g, GeoSpark [32]. However, it incurs significantly expensive com-
putations on large data since spatial containment checks are highly
complex and consume significant processing overhead. For example,
running a single query for 100 million points over only 255 country
borders takes an hour to finish, using a twelve-nodes GeoSpark
cluster with a total memory of 1TB. Such inefficient runtime lim-
its spatial data scientists from performing large-scale analysis on
modern spatial datasets.

Existing approaches face a main challenge to handle modern
large datasets efficiently. This challenge arises from the prohibitive
computations of point-in-polygon checks on real complex polygons,
due to the excessive number of points on the polygon perimeter.

To overcome this challenge, we propose the Spatial GroupBy
Polygon Aggregate Counting (SGPAC), a highly-parallelized query
processing framework to efficiently support spatial group-by
queries in mainstream spatial data management systems. The SG-
PAC framework is able to efficiently aggregate counts for large-scale
datasets over a large number of highly complex polygons. To this
end, SGPAC crumbles both data points and query polygons into
fine-granular pieces based on two-level spatial indexing. For real
polygons, a two-level clipper significantly downsizes the number
of perimeter points to considerably speed up computing group-by
aggregates, while still ensuring exact results. The counting process
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over the new clipped polygons is highly-parallelizable and makes
great use of the distributed computation resources.

We performed an extensive experimental evaluation with real
spatial data and world-scale polygons. Our techniques have shown
significant superiority over all existing techniques for real complex
polygons. In the rest of this paper, we outline related work in Sec-
tion 2, while Section 3 formally defines the problem. The proposed
query processing is detailed in Section 4. Sections 5 and 6 present
experimental evaluation and conclusions.

2 RELATED WORK
Centralized techniques. Aggregation over spatial polygons has
been studied for long and several techniques have been proposed [2–
5, 12, 13, 15, 17–23, 30, 35]; the majority of them produce exact
results while there are also works that produce approximate re-
sults, e.g., [3, 18, 33]. The most widely-used techniques are based
on the two-phase filter-refine approach [13, 15] that filters out ir-
relevant data based on polygon approximations, most commonly
a minimum bounding rectangle (MBR) approximation, and then
refines candidate points based on polygon perimeter geometry. Sev-
eral works proposed more precise polygon approximations in the
filtering phase. Brinkhoff et. al. [4] studied different approxima-
tions, namely rotated minimum bounding box (RMBB), minimum
bounding circle (MBC), minimum bounding ellipse (MBE), convex
hull (CH), and minimum bounding n-corner (n-C). Sidlauskas et.
al. [30] improved filtering through clipping away empty spaces in
the MBR. Other approaches proposed multi-step filtering [5, 19, 20]
and rasterization-based polygon approximation [2, 3, 12, 33, 35] to
reduce the candidate set size. Although the rich approximations
result in a tight candidate set, they do not reduce the computation
complexity of each point-in-polygon check, which depends on the
number of polygon perimeter points. Kipf et. al. [18] solves an or-
thogonal point-polygon join query that takes a single point and
outputs polygons that contain this point. This work assumes that
all polygons are known beforehand, and thus can be indexed, while
the data points are streamed.

Another direction in supporting polygon aggregation is poly-
gon decomposition [21–23, 26]. Such decomposition reduces the
complexity of a polygon query by dividing it into smaller polygons.
The original polygon geometry is decomposed into regular forms,
e.g., convex polygons, triangles, trapezoids, combinations of rect-
angles and triangles, or even smaller irregular polygons using a
uniform grid. However, decomposition has not yet been adopted
in distributed big spatial data systems. This is confirmed by recent
surveys [11, 27] that examined work on range queries in modern
big spatial systems. Current big spatial systems mostly focus on
rectangular ranges and have limited support for arbitrary polygons
with complex shapes and high-density perimeters, which is cru-
cial for data analysis on real datasets, e.g., in social sciences, since
real-world polygons are neither rectangular nor regular.

Distributed and parallel techniques. There are also recent
works on addressing irregular polygon range queries using dis-
tributed partitioning techniques [14, 24, 25, 28] and parallel GPU-
based techniques [1, 33, 34]. These techniques mostly rely on par-
titioning data across a cluster of machines or GPU cores so that
one query is partitioned along with data partitioning, and then the

query executes on multiple nodes/cores that have relevant data.
Nodarakis et. al. [25] partitions data based on either a regular grid
or angle-based partitioning. However, that work only supports con-
vex polygons. Guo et. al. [14] partitions data using a quadtree, then
different partitions work in parallel using a traditional filter-refine
approach. Ray et. al. [28] partitions data based on either object
size or point density to improve workload balance among nodes.
Malensek et. al. [24] proposed bitmap-based filtering where the
global view facilitates node selection based on the intersection with
query polygons. While these distributed approaches tighten the
candidate set and take advantage of parallelism, they do not reduce
the computational complexity of point-in-polygon checks, which
are the bottleneck. Therefore, even in distributed environments,
their overall computational cost is still high on large-scale datasets
and large real polygon sets. Also, GPU-based techniques are not
widely incorporated in the mainstream spatial systems.

Our work follows the decomposition direction in distributed
environments to speed up polygon aggregations. Compared to
existing literature, our work is distinguished by inherently consid-
ering real complex polygons and large-scale datasets (that contain
hundreds of millions of points) by identifying and reducing the
main performance bottleneck.

3 PROBLEM DEFINITION
Consider a spatial dataset 𝐷 that consists of point objects. Each
object 𝑜 ∈ 𝐷 is represented by (𝑜𝑖𝑑 , 𝑙𝑎𝑡 , 𝑙𝑜𝑛𝑔), where 𝑜𝑖𝑑 is the
object identifier and <𝑙𝑎𝑡 ,𝑙𝑜𝑛𝑔> represent the latitude/longitude
coordinates of the object’s location in the two-dimensional space.
Formally, an SGPAC query 𝑞 is defined by a set of polygons 𝐿 as
follows:

Definition 1: Spatial GroupBy Polygon Aggregate Counting
(SGPAC) Query. Given a spatial dataset 𝐷 , a query 𝑞 defined by
a set of polygons 𝐿 = {𝑙1, 𝑙2, ..., 𝑙𝑚}, returns a set of 𝑚 integers
{𝑐1, 𝑐2, ..., 𝑐𝑚}, where 𝑐𝑖 is the number of objects 𝑜 𝑗 ∈ 𝐷 so that 𝑜 𝑗 ’s
location lies inside polygon 𝑙𝑖 ∈ 𝐿.

Each polygon 𝑙𝑖 ∈ 𝐿 is represented by 𝑛𝑖 spatial points that
define its perimeter geometry. For large values of𝑚 and 𝑛𝑖 and a
large-scale spatial dataset 𝐷 with hundreds of millions of points,
scaling a spatial group-by query is highly challenging.

As with typical relational group-by queries, the query groups
can be selected in an ad-hoc manner. The polygon sets that are
used in different applications, e.g., social sciences, could be either
pre-defined polygons, e.g., US states borders, or arbitrary polygons,
e.g., polygons produced by regionalization and harmonization al-
gorithms [29]. Here we assume the general case, where set 𝐿 is
not known apriori (and thus cannot be indexed beforehand). Since
groups in a typical group-by clause are disjoint, the polygon set
consists of disjoint polygons. However, our processing algorithm
can also support polygon sets with overlapping polygons.

4 QUERY PROCESSING FRAMEWORK
The rationale behind this framework depends on two observations.
The first observation recognizes that the main performance bot-
tleneck of polygon aggregations is the high computational cost of
point-in-polygon checks. So, our framework relies on significantly
reducing the complexity of these checks to minimize the overall
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Figure 1: Query Processing Framework Overview

cost of large polygon sets aggregations. The second observation
is that in nowadays applications, large-scale spatial datasets are
usually indexed on distributed big spatial data systems, such as
GeoSpark [32], Simba [31], GeoMesa [16], or SpatialHadoop [10].
Therefore, we develop a query processing framework that exploits
such distributed indexing infrastructure in reducing the compu-
tational cost of spatial group-by queries to make our techniques
applicable to a wide variety of existing applications and platforms.

Figure 1 shows an overview of our query processing framework.
The framework exploits partitioning, by facilitating a global dis-
tributed spatial index to partition both data points and query poly-
gons across different machines (distributed worker nodes). Each
worker node 𝑗 covers a specific spatial area represented with a
minimum bounding rectangle (MBR) 𝐵 𝑗 . Then, on each worker
node, the local portion of data points is indexed with a local spatial
index, which does not necessarily have the same structure as the
global index. The local index further divides data into small chunks.
Meanwhile, when a new query polygon set 𝐿 arrives, each worker
node receives a subset 𝐿𝑗 of query polygons that overlap with its
partition MBR 𝐵 𝑗 ; that is, for all 𝑙𝑖 ∈ 𝐿𝑗 , 𝑙𝑖 ∩ 𝐵 𝑗 ≠ 𝜙 . Each polygon
𝑙𝑖 ∈ 𝐿𝑗 goes through a Two-level Clipper module that significantly
reduces the complexity of its perimeter through two phases of poly-
gon clipping. The first phase is based on the global index partition
boundaries 𝐵 𝑗 . This phase replaces 𝑙𝑖 with 𝑙𝑖 ∩ 𝐵 𝑗 , its intersection
with the partition MBR, as any part of the polygon outside 𝐵 𝑗 will

not produce any results from the data points assigned to node 𝑗 .
The newly clipped polygon 𝑙𝑖 is passed as an input to the second
level of clipping, which further clips 𝑙𝑖 based on the local index
partitions to produce multiple smaller polygons, each of them cor-
responding to one of the local index partitions and clipped with its
MBR boundaries.

After the two-level clipping of input polygons, the query input
turns into small crumbles of both local data partitions and simple
query polygons that are fed to a multi-threaded Point-in-Polygon Re-
finer module. This module takes pairs of data partitions and clipped
query polygons with overlapping boundaries, where each pair fol-
lows one of two cases. The first case is that the boundaries of both
the local partition and the clipped query polygon are the same. This
means that the local partition is wholly contained inside the query
polygon and all data points are counted in the result set without fur-
ther refinement. The second case is that the clipped query polygon
intersects with part of the local partition boundaries. In this case,
the refinement module iterates over all the points within the local
partition and simply uses the standard point-in-polygon algorithms
to filter out points that are outside the polygon boundaries. Such
point-in-polygon operation is much less expensive on the clipped
polygon compared to the original polygon, with up to an order of
magnitude cost reduction as shown in our experiments. Each thread
maintains a list of <polygon id, count> pairs that record the count
of points in each polygon. Lists of pairs from different threads and
partitions are forwarded to a shuffling phase that aggregates total
counts of each input polygon, based on polygon ids, in a similar
fashion to the standard map-reduce word counting procedure.

5 EXPERIMENTAL EVALUATION
We evaluate the performance of SGPAC in terms of query latency
using a real implementation based on GeoSpark [32].

Experimental setup. Our parameter is the average number
of points per polygon perimeter (representing the complexity of
polygon geometry). The global index is a quadtree with default
capacity of 30K points and the local index is a uniform grid index
with grid granularity of 10KMx10KM.

Evaluation datasets. Our evaluation data is a Twitter dataset
that contains 100 million real geotagged tweets spatially distributed
worldwide. For query polygons, we use real polygons sets that rep-
resent four different multi-scale spatial layers representing borders
of continents, countries, provinces, and counties worldwide [6–9].

Evaluated alternatives. We evaluate our SGPAC technique (de-
noted as SGPAC-2L) against three alternatives: (1) A variation of
SGPAC (denoted as SGPAC-1L) that employs only one-level clipping
based on global index partitions and ignores local index clipping.
(2) A distributed filter-refine approach (denoted as FR) that uses the
popular MBR-based filter-refine (as discussed in Section 2) on each
worker node in parallel. (3) A spatial join based approach (denoted
as SP-Join) that partitions both data points and polygons based on
the global index, and then performs nested loop spatial join on each
worker node in parallel.

Query evaluation. Figure 2 evaluates the query performance of
the different techniques on the four real polygon sets of continents,
countries, provinces, and counties. The figure presents the query
performance in ascending order of the average number of perimeter
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(b) Magnified view for Figure 2(a)

Figure 2: Query Performance on Real Polygon Layers.

points 𝑛 per polygon (in Figure 2(a) and magnified in Figure 2(b)).
Both FR and SP-Join performmuch worse than all SGPAC variations
in three of the four layers, where their query latency is 2-23 times
slower than SGPAC. All SGPAC variations take under 4 minutes to
process all query polygons on the 100 million data points, except
in one case where SGPAC-1L takes 24 minutes. For FR, latency
ranges from 6-89 minutes, and for SP-Join latency ranges from 4.5-
114 minutes, depending on the query polygons characteristics. In
particular, Figure 2 gives the following major insights:

(1) The first insight is the high variability in query speedup for
different polygon layers. For continents and countries, FR and SP-
Join are significantly much slower than all SGPAC variations, with
12-23 times slower latency. However, for counties, they have latency
that is only twice slower than SGPAC variations, while for provinces
the improvement is minor with 1.3-1.7 times slower latency. This is
interpreted by the variability in polygon complexity, in terms of the
number of perimeter points. Different techniques have increasing
latency with increasing polygon complexity. The provinces set has
the simplest polygon perimeters, with an average of 246 points
per perimeter; here FR and SP-Join still perform reasonably with
4.5-5.9 minutes latency compared to 3.4 minutes for SGPAC-2L.
When the polygon complexity increases, with a higher number of
perimeter points, the SGPAC variations perform much better due
to our proposed polygon complexity reduction.

(2) The second insight is the effectiveness of the second level of
SGPAC two-level clipping for reducing perimeter complexity. As
shown in Figure 2, the SGPAC-1L approach (that ignores second
level clipping) performs comparably to SGPAC-2L except in case of
counties that have the smallest area (5.7𝑘𝑚2), where SGPAC-1L per-
forms five times slower than SGPAC-2L. In that case, many county
polygons are small enough to fit in the local machine without being
clipped by the global index; that is, the polygon complexity is not
reduced by the first level clipping. In such scenarios, ignoring the
second level of clipping leads to much more expensive point-in-
polygon checks and much higher overall latency.

6 CONCLUSIONS
This paper proposes a spatial group-by query that groups spatial
points based on the boundaries of a set of complex polygons. This
query designed for thousands of polygons with complex perimeters
and large-scale spatial datasets that contain hundreds of millions
of points. We have proposed a highly efficient query processor that
uses existing distributed spatial data systems to support scalable
spatial group-by queries. Our technique depends on reducing query

polygons complexity by clipping them based on global and local
spatial indexes. The experimental evaluation showed significant
superiority for our techniques over existing competitors.
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