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Abstract

We present a statistical debugging algorithm that isolates bugs in
programs containing multiple undiagnosed bugs. Earlier statistical
algorithms that focus solely on identifying predictors that corre-
late with program failure perform poorly when there are multiple
bugs. Our new technique separates the effects of different bugs and
identifies predictors that are associated with individual bugs. These
predictors reveal both the circumstances under which bugs occur
as well as the frequencies of failure modes, making it easier to pri-
oritize debugging efforts. Our algorithm is validated using several
case studies, including examples in which the algorithm identified
previously unknown, significant crashing bugs in widely used sys-
tems.

Categories and Subject Descriptors D.2.4 [Software Engineer-
ing]: Software/Program Verification—statistical methods; D.2.5
[Software Engineering]: Testing and Debugging—debugging aids,
distributed debugging, monitors, tracing; I.5.2 [Pattern Recogni-
tion]: Design Methodology—feature evaluation and selection

General Terms Experimentation, Reliability

Keywords bug isolation, random sampling, invariants, feature se-
lection, statistical debugging
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1. Introduction

This paper is about statistical debugging, a dynamic analysis for
identifying the causes of software failures (i.e., bugs). Instrumented
programs monitor their own behavior and produce feedback re-
ports. The instrumentation examines program behavior during ex-
ecution by sampling, so complete information is never available
about any single run. However, monitoring is also lightweight and
therefore practical to deploy in a production testing environment or
to large user communities, making it possible to gather informa-
tion about many runs. The collected data can then be analyzed for
interesting trends across all of the monitored executions.

In our approach, instrumentation consists of predicates tested
at particular program points; we defer discussing which predicates
are chosen for instrumentation to Section 2. A given program point
may have many predicates that are sampled independently during
program execution when that program point is reached (i.e., each
predicate associated with a program point may or may not be
tested each time the program point is reached). A feedback report
R consists of one bit indicating whether a run of the program
succeeded or failed, as well as a bit vector with one bit for each
predicate P. If P is observed to be true at least once during run R
then R(P) = 1, otherwise R(P) = 0.

Let B denote a bug (i.e., something that causes incorrect behav-
ior in a program). We use B to denote a bug profile, i.e., a set of
failing runs (feedback reports) that share B as the cause of failure.
The union of all bug profiles is exactly the set of failing runs, but
note that Bi ∩B j 6= /0 in general; more than one bug can occur in
some runs.

A predicate P is a bug predictor (or simply a predictor) of bug
B if whenever R(P) = 1 then it is statistically likely that R ∈ B

(see Section 3.1). Statistical debugging selects a small subset S of
the set of all instrumented predicates P such that S has predictors
of all bugs. We also rank the predictors in S from the most to least
important. The set S and associated metrics (see Section 4) are then
available to engineers to help in finding and fixing the most serious
bugs.

In previous work, we focused on techniques for lightweight
instrumentation and sampling of program executions, but we also
studied two preliminary algorithms for statistical debugging and
presented experimental results on medium-size applications with
a single bug [10, 16]. The most general technique we studied is
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regularized logistic regression, a standard statistical procedure that
tries to select a set of predicates that best predict the outcome of
every run. As we worked to apply these methods to much larger
programs under realistic conditions, we discovered a number of
serious scalability problems:

• For large applications the set P numbers in the hundreds of
thousands of predicates, many of which are, or are very nearly,
logically redundant. In our experience, this redundancy in P

causes regularized logistic regression to choose highly redun-
dant lists of predictors S. Redundancy is already evident in
prior work [10] but becomes a much more serious problem for
larger programs.

• A separate difficulty is the prevalence of predicates predicting
multiple bugs. For example, for many Unix programs a bug is
more likely to be encountered when many command line flags
are given, because the more options that are given non-default
settings the more likely unusual code paths are to be exercised.
Thus, predicates implying a long command line may rank near
the top, even though such predicates are useless for isolating the
cause of individual bugs.

• Finally, different bugs occur at rates that differ by orders of
magnitude. In reality, we do not know which failure is caused
by which bug, so we are forced to lump all the bugs together
and try to learn a binary classifier. Thus, predictors for all but
the most common bugs have relatively little influence over the
global optimum and tend to be ranked very low or not included
in S at all.

These problems with regularized logistic regression persist in
many variations we have investigated, but analysis of this body of
experimental work yielded some key technical insights. In addition
to the bug predictors we wish to find among the instrumented
predicates, there are several other kinds of predicates. First, nearly
all predicates (often 98% or 99%) are not predictive of anything.
These non-predictors are best identified and discarded as quickly as
possible. Among the remaining predicates that can predict failure in
some way, there are some bug predictors. There are also super-bug
predictors: predicates that, as described above, predict failures due
to a variety of bugs. And there are sub-bug predictors: predicates
that characterize a subset of the instances of a specific bug; these are
often special cases of more general problems. We give the concepts
of super- and sub-bug predictors more precise technical treatment
in Section 3.3.

The difficulty in identifying the best bug predictors lies in not
being misled by the sub- or super-bug predictors and not being
overwhelmed by the sheer number of predicates to sift through.
This paper makes a number of contributions on these problems:

• We present a new algorithm for isolating multiple bugs in com-
plex applications (Section 3) that offers significant improve-
ments over previous work. It scales much more gracefully in all
the dimensions discussed above and for each selected predicate
P it naturally yields information that shows both how important
(in number of explained program failures) and how accurate a
predictor P is.

• We validate the algorithm by a variety of experiments. We show
improved results for previously reported experiments [10]. In
a controlled experiment we show that the algorithm is able
to find a number of known bugs in a complex application.
Lastly, we use the algorithm to discover previously unknown
serious crashing bugs in two large and widely used open source
applications.

• We show that relatively few runs are sufficient to isolate all
of the bugs described in this paper, demonstrating that our

approach is feasible for in-house automatic testing as well as
for deployment to end users (see Section 4.3).

• We report on the effectiveness of the current industry practice of
collecting stack traces from failing runs. We find that across all
of our experiments, in about half the cases the stack is useful in
isolating the cause of a bug; in the other half the stack contains
essentially no information about the bug’s cause.

• Finally, we show that, in principle, it is possible for our ap-
proach to help isolate any kind of failure, not just program
crashes. All that is required is a way to label each run as either
“successful” or “unsuccessful.”

With respect to this last point, perhaps the greatest strength of
our system is its ability to automatically identify the cause of many
different kinds of bugs, including new classes of bugs that we did
not anticipate in building the tool. By relying only on the distinction
between good and bad executions, our analysis does not require a
specification of the program properties to be analyzed. Thus, statis-
tical debugging provides a complementary approach to static anal-
yses, which generally do require specification of the properties to
check. Statistical debugging can identify bugs beyond the reach of
current static analysis techniques and even new classes of bugs that
may be amenable to static analysis if anyone thought to check for
them. One of the bugs we found, in the RHYTHMBOX open source
music player, provides a good illustration of the potential for posi-
tive interaction with static analysis. A strong predictor of failure de-
tected by our algorithm revealed a previously unrecognized unsafe
usage pattern of a library’s API. A simple syntactic static analysis
subsequently showed more than one hundred instances of the same
unsafe pattern throughout RHYTHMBOX.

The rest of the paper is organized as follows. After providing
background in Section 2, we discuss our algorithm in Section 3.
The experimental results are presented in Section 4, including the
advantages over our previous approach based on regularized logis-
tic regression. Section 5 considers variations and extensions of the
basic statistical debugging algorithm. We discuss related work in
Section 6 and offer our conclusions in Section 7.

2. Background

This section describes ideas and terminology needed to present
our algorithm. The ideal program monitoring system would gather
complete execution traces and provide them to an engineer (or,
more likely, a tool) to mine for the causes of bugs. However,
complete tracing of program behavior is simply impractical; no end
user or tester would accept the required performance overhead or
network bandwidth.

Instead, we use a combination of sparse random sampling,
which controls performance overhead, and client-side summariza-
tion of the data, which limits storage and transmission costs. We
briefly discuss both aspects.

Random sampling is added to a program via a source-to-source
transformation. Our sampling transformation is general: any col-
lection of statements within (or added to) a program may be desig-
nated as an instrumentation site and thereby sampled instead of run
unconditionally. That is, each time instrumentation code is reached,
a coin flip decides whether the instrumentation is executed or not.
Coin flipping is simulated in a statistically fair manner equivalent
to a Bernoulli process: each potential sample is taken or skipped
randomly and independently as the program runs. We have found
that a sampling rate of 1/100 in most applications1 keeps the perfor-
mance overhead of instrumentation low, often unmeasurable.

1 Some compute-bound kernels are an exception; we currently sometimes
resort to simply excluding the most performance critical code from instru-
mentation.



Orthogonal to the sampling transformation is the decision about
what instrumentation to introduce and how to concisely summarize
the resulting data. Useful instrumentation captures behaviors likely
to be of interest when hunting for bugs. At present our system offers
the following instrumentation schemes for C programs:

branches: At each conditional we track two predicates indicating
whether the true or false branches were ever taken. This applies
to if statements as well as implicit conditionals such as loop
tests and short-circuiting logical operators.

returns: In C, the sign of a function’s return value is often used to
signal success or failure. At each scalar-returning function call
site, we track six predicates: whether the returned value is ever
< 0, ≤ 0, > 0, ≥ 0, = 0, or 6= 0.

scalar-pairs: Many bugs concern boundary issues in the relation-
ship between a variable and another variable or constant. At
each scalar assignment x = ..., identify each same-typed
in-scope variable yi and each constant expression c j. For each
yi and each c j , we track six relationships to the new value of
x: <,≤,>,≥,=, 6=. Each (x,yi) or (x,c j) pair is treated as a
distinct instrumentation site—in general, a single assignment
statement is associated with multiple distinct instrumentation
sites.

All predicates at an instrumentation site are sampled jointly. To
be more precise, an observation is a single dynamic check of all
predicates at a single instrumentation site. We write “P observed”
when the site containing P has been sampled, regardless of whether
P was actually true or false. We write “P observed to be true” or
merely “P” when the site containing P has been sampled and P was
actually found to be true. For example, sampling a single negative
return value means that all six returns predicates (< 0, ≤ 0, > 0,
≥ 0, = 0, and 6= 0) are “observed.” However only three of them
(< 0, ≤ 0, and 6= 0) are “observed to be true.” 2

These are natural properties to check and provide good coverage
of a program’s scalar values and control flow. This set is by no
means complete, however; in particular, we believe it would be
useful to have predicates on heap structures as well (see Section 4).

3. Cause Isolation Algorithm

This section presents our algorithm for automatically isolating mul-
tiple bugs. As discussed in Section 2, the input is a set of feedback
reports from individual program runs R, where R(P) = 1 if predi-
cate P is observed to be true during the execution of R.

The idea behind the algorithm is to simulate the iterative manner
in which human programmers typically find and fix bugs:

1. Identify the most important bug B.

2. Fix B, and repeat.

For our purposes, identifying a bug B means selecting a predi-
cate P closely correlated with its bug profile B. The difficulty is that
we know the set of runs that succeed and fail, but we do not know
which set of failing runs corresponds to B, or even how many bugs
there are. In other words, we do not know the sizes or membership
of the set of bug profiles {Bi}. Thus, in the first step we must infer
which predicates are most likely to correspond to individual bugs
and rank those predicates in importance.

For the second step, while we cannot literally fix the bug corre-
sponding to the chosen predictor P, we can simulate what happens
if the bug does not occur. We discard any run R such that R(P) = 1
and recursively apply the entire algorithm to the remaining runs.

2 In reality, we count the number of times P is observed to be true, but the
analysis of the feedback reports only uses whether P is observed to be true
at least once.

Discarding all the runs where R(P) = 1 reduces the importance of
other predictors of B, allowing predicates that predict different bugs
(i.e., corresponding to different sets of failing runs) to rise to the top
in subsequent iterations.

3.1 Increase Scores

We now discuss the first step: how to find the cause of the most im-
portant bug. We break this step into two sub-steps. First, we elim-
inate predicates that have no predictive power at all; this typically
reduces the number of predicates we need to consider by two or-
ders of magnitude (e.g., from hundreds of thousands to thousands).
Next, we rank the surviving predicates by importance (see Sec-
tion 3.3).

Consider the following C code fragment:

f = ...; (a)

if (f == NULL) { (b)

x = 0; (c)

*f; (d)

}

Consider the predicate f == NULL at line (b), which would
be captured by branches instrumentation. Clearly this predicate
is highly correlated with failure; in fact, whenever it is true this
program inevitably crashes.3 An important observation, however,
is that there is no one perfect predictor of failure in a program with
multiple bugs. Even a “smoking gun” such as f == NULL at line
(b) has little or no predictive power for failures due to unrelated
bugs in the same program.

The bug in the code fragment above is deterministic with respect
to f == NULL: if f == NULL is true at line (b), the program
fails. In many cases it is impossible to observe the exact conditions
causing failure; for example, buffer overrun bugs in a C program
may or may not cause the program to crash depending on runtime
system decisions about how data is laid out in memory. Such bugs
are non-deterministic with respect to every observed predicate;
even for the best predictor P, it is possible that P is true and still the
program terminates normally. In the example above, if we insert
before line (d) a valid pointer assignment to f controlled by a
conditional that is true at least occasionally (say via a call to read
input)

if (...) f = ... some valid pointer ...;

*f;

the bug becomes non-deterministic with respect to f == NULL.
To summarize, even for a predicate P that is truly the cause of

a bug, we can neither assume that when P is true that the program
fails nor that when P is never observed to be true that the program
succeeds. But we can express the probability that P being true
implies failure. Let Crash be an atomic predicate that is true for
failing runs and false for successful runs. Let Pr(A|B) denote the
conditional probability function of the event A given event B. We
want to compute:

Failure(P) ≡ Pr(Crash|P observed to be true)

for every instrumented predicate P over the set of all runs. Let S(P)
be the number of successful runs in which P is observed to be true,
and let F(P) be the number of failing runs in which P is observed
to be true. We estimate Failure(P) as:

Failure(P) =
F(P)

S(P)+F(P)

3 We also note that this bug could be detected by a simple static analysis;
this example is meant to be concise rather than a significant application of
our techniques.



Notice that Failure(P) is unaffected by the set of runs in which
P is not observed to be true. Thus, if P is the cause of a bug, the
causes of other independent bugs do not affect Failure(P). Also
note that runs in which P is not observed at all (either because the
line of code on which P is checked is not reached, or the line is
reached but P is not sampled) have no effect on Failure(P). The
definition of Failure(P) generalizes the idea of deterministic and
non-deterministic bugs. A bug is deterministic for P if Failure(P) =
1.0, or equivalently, P is never observed to be true in a successful
run (S(P) = 0) and P is observed to be true in at least one failing run
(F(P) > 0). If Failure(P) < 1.0 then the bug is non-deterministic
with respect to P. Lower scores show weaker correlation between
the predicate and program failure.

Now Failure(P) is a useful measure, but it is not good enough
for the first step of our algorithm. To see this, consider again the
code fragment given above in its original, deterministic form. At
line (b) we have Failure(f == NULL) = 1.0, so this predicate
is a good candidate for the cause of the bug. But on line (c)

we have the unpleasant fact that Failure(x == 0) = 1.0 as well.
To understand why, observe that the predicate x == 0 is always
true at line (c) and, in addition, only failing runs reach this line.
Thus S(x == 0) = 0, and, so long as there is at least one run that
reaches line (c) at all, Failure(x == 0) at line (c) is 1.0.

As this example shows, just because Failure(P) is high does not
mean P is the cause of a bug. In the case of x == 0, the deci-
sion that eventually causes the crash is made earlier, and the high
Failure(x == 0) score merely reflects the fact that this predicate
is checked on a path where the program is already doomed.

A way to address this difficulty is to score a predicate not by the
chance that it implies failure, but by how much difference it makes
that the predicate is observed to be true versus simply reaching
the line where the predicate is checked. That is, on line (c), the
probability of crashing is already 1.0 regardless of the value of the
predicate x == 0, and thus the fact that x == 0 is true does not
increase the probability of failure at all. This fact coincides with
our intuition that this predicate is irrelevant to the bug.

Recall that we write “P observed” when P has been reached and
sampled at least once, without regard to whether P was actually true
or false. This leads us to the following definition:

Context(P) ≡ Pr(Crash|P observed)

Now, it is not the case that P is observed in every run, because
the site where this predicate occurs may not be reached, or may be
reached but not sampled. Thus, Context(P) is the probability that in
the subset of runs where the site containing predicate P is reached
and sampled, the program fails. We can estimate Context(P) as
follows:

Context(P) =
F(P observed)

S(P observed)+F(P observed)

The interesting quantity, then, is

Increase(P) ≡ Failure(P)−Context(P)

which can be read as: How much does P being true increase the
probability of failure over simply reaching the line where P is
sampled? For example, for the predicate x == 0 on line (c), we
have

Failure(x == 0) = Context(x == 0) = 1.0

and so Increase(x == 0) = 0.
In most cases, a predicate P with Increase(P)≤ 0 has no predic-

tive power and can safely be discarded. (See Section 5 for possible
exceptions.) Because some Increase(P) scores may be based on
few observations of P, it is important to attach confidence intervals
to the scores. In our experiments we retain a predicate P only if the
95% confidence interval based on Increase(P) lies strictly above

zero; this removes predicates from consideration that have high in-
crease scores but very low confidence because of few observations.

Pruning predicates based on Increase(P) has several desirable
properties. It is easy to prove that large classes of irrelevant predi-
cates always have scores ≤ 0. For example, any predicate that is un-
reachable, that is a program invariant, or that is obviously control-
dependent on a true cause is eliminated by this test. It is also worth
pointing out that this test tends to localize bugs at a point where
the condition that causes the bug first becomes true, rather than at
the crash site. For example, in the code fragment given above, the
bug is attributed to the success of the conditional branch test f ==

NULL on line (b) rather than the pointer dereference on line (d).
Thus, the cause of the bug discovered by the algorithm points di-
rectly to the conditions under which the crash occurs, rather than
the line on which it occurs (which is usually available anyway in
the stack trace).

3.2 Statistical Interpretation

We have explained the test Increase(P) > 0 using programming
terminology, but it also has a natural statistical interpretation as a
simplified likelihood ratio hypothesis test. Consider the two classes
of trial runs of the program: failed runs F and successful runs S.
For each class, we can treat the predicate P as a Bernoulli random
variable with heads probabilities π f (P) and πs(P), respectively,
for the two classes. The heads probability is the probability that
the predicate is observed to be true. If a predicate causes a set of
crashes, then π f should be much bigger than πs. We can formulate
two statistical hypotheses: the null hypothesis H0 : π f ≤ πs, versus
the alternate hypothesis H1 : π f > πs. Since π f and πs are not
known, we must estimate them:

π̂ f (P) =
F(P)

F(P observed)
π̂s(P) =

S(P)

S(P observed)

Although these proportion estimates of π f and πs approach
the actual heads probabilities as we increase the number of trial
runs, they still differ due to sampling. With a certain probability,
using these estimates instead of the actual values results in the
wrong answer. A likelihood ratio test takes this uncertainty into

account, and makes use of the statistic Z =
(π̂ f −π̂s)

Vf ,s
, where V f ,s is

a sample variance term [8]. When the data size is large, Z can be
approximated as a standard Gaussian random variable. Performed
independently for each predicate P, the test decides whether or not
π f (P) ≤ πs(P) with a guaranteed false-positive probability (i.e.,
choosing H1 when H0 is true). A necessary (but not sufficient)
condition for choosing H1 is that π̂ f (P) > π̂s(P). However, this is
equivalent to the condition that Increase(P) > 0. To see why, let
a = F(P), b = S(P), c = F(P observed), and d = S(P observed).
Then

Increase(P) > 0 ⇐⇒ Failure(P) > Context(P)

⇐⇒
a

a+b
>

c

c+d
⇐⇒ a(c+d) > (a+b)c

⇐⇒ ad > bc ⇐⇒
a

c
>

b

d
⇐⇒ π̂ f (P) > π̂s(P)

3.3 Balancing Specificity and Sensitivity

We now turn to the question of ranking those predicates that sur-
vive pruning. Table 1 shows the top predicates under different rank-
ing schemes (explained below) for one of our experiments. Due
to space limitations we omit additional per-predicate information,
such as source file and line number, which is available in the inter-
active version of our analysis tools.

We use a concise bug thermometer to visualize the information
for each predicate. The length of the thermometer is logarithmic
in the number of runs in which the predicate was observed, so



Table 1. Comparison of ranking strategies for MOSS without redundancy elimination

(a) Sort descending by F(P)

Thermometer Context Increase S F F + S Predicate

0.176 0.007±0.012 22554 5045 27599 files[filesindex].language != 15

0.176 0.007±0.012 22566 5045 27611 tmp == 0 is FALSE

0.176 0.007±0.012 22571 5045 27616 strcmp != 0

0.176 0.007±0.013 18894 4251 23145 tmp == 0 is FALSE

0.176 0.007±0.013 18885 4240 23125 files[filesindex].language != 14

0.176 0.008±0.013 17757 4007 21764 filesindex >= 25

0.177 0.008±0.014 16453 3731 20184 new value of M < old value of M

0.176 0.261±0.023 4800 3716 8516 config.winnowing_window_size != argc

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2732 additional predictors follow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(b) Sort descending by Increase(P)

Thermometer Context Increase S F F + S Predicate

0.065 0.935±0.019 0 23 23 ((*(fi + i)))->this.last_token < filesbase

0.065 0.935±0.020 0 10 10 ((*(fi + i)))->other.last_line == last

0.071 0.929±0.020 0 18 18 ((*(fi + i)))->other.last_line == filesbase

0.073 0.927±0.020 0 10 10 ((*(fi + i)))->other.last_line == yy_n_chars

0.071 0.929±0.028 0 19 19 bytes <= filesbase

0.075 0.925±0.022 0 14 14 ((*(fi + i)))->other.first_line == 2

0.076 0.924±0.022 0 12 12 ((*(fi + i)))->this.first_line < nid

0.077 0.923±0.023 0 10 10 ((*(fi + i)))->other.last_line == yy_init

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2732 additional predictors follow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(c) Sort descending by harmonic mean

Thermometer Context Increase S F F + S Predicate

0.176 0.824±0.009 0 1585 1585 files[filesindex].language > 16

0.176 0.824±0.009 0 1584 1584 strcmp > 0

0.176 0.824±0.009 0 1580 1580 strcmp == 0

0.176 0.824±0.009 0 1577 1577 files[filesindex].language == 17

0.176 0.824±0.009 0 1576 1576 tmp == 0 is TRUE

0.176 0.824±0.009 0 1573 1573 strcmp > 0

0.116 0.883±0.012 1 774 775 ((*(fi + i)))->this.last_line == 1

0.116 0.883±0.012 1 776 777 ((*(fi + i)))->other.last_line == yyleng

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2732 additional predictors follow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

small increases in thermometer size indicate many more runs. Each
thermometer has a sequence of bands. The black band on the left
shows Context(P) as a fraction of the entire thermometer length.
The dark gray band ( ) shows the lower bound of Increase(P)
with 95% confidence, also proportional to the entire thermometer
length. The light gray band ( ) shows the size of that confidence
interval.4 It is very small in most thermometers, indicating a tight
interval. The white space at the right end of the thermometer shows
S(P), the number of successful runs in which the predicate was
observed to be true. The tables show the thermometer as well as the
numbers for each of the quantities that make up the thermometer.

The most important bug is the one that causes the greatest
number of failed runs. This observation suggests:

Importance(P) = F(P)

Table 1(a) shows the top predicates ranked by decreasing F(P) af-
ter predicates where Increase(P) ≤ 0 are discarded. The predicates
in Table 1(a) are, as expected, involved in many failing runs. How-
ever, the large white band in each thermometer reveals that these
predicates are also highly non-deterministic: they are also true in
many successful runs and are weakly correlated with bugs. Further-

4 If reading this paper in color, the dark gray band is red, and the light gray
band is pink.

more, the very narrow dark gray bands ( ) in most thermometers
indicate that most Increase scores are very small.

Our experience with other ranking strategies that emphasize the
number of failed runs is similar. They select predicates involved
in many failing, but also many successful, runs. The best of these
predicates (the ones with high Increase scores) are super-bug pre-
dictors: predictors that include failures from more than one bug.
Super-bug predictors account for a very large number of failures by
combining the failures of multiple bugs, but are also highly non-
deterministic (because they are not specific to any single cause of
failure) despite reasonably high Increase scores.

Another possibility is:

Importance(P) = Increase(P)

Table 1(b) shows the top predicates ranked by decreasing Increase
score. Thermometers here are almost entirely dark gray ( ), indi-
cating Increase scores that are very close to 1.0. These predicates
do a much better job of predicting failure. In fact, the program al-
ways fails when any of these predicates is true. However, observe
that the number of failing runs (column F) is very small. These
predicates are sub-bug predictors: predictors for a subset of the
failures caused by a bug. Unlike super-bug predictors, which are
not useful in our experience, sub-bug predictors that account for
a significant fraction of the failures for a bug often provide valu-



able clues. However still they represent special cases and may not
suggest other, more fundamental, causes of the bug.

Tables 1(a) and 1(b) illustrate the difficulty of defining “impor-
tance.” We are looking for predicates with high sensitivity, mean-
ing predicates that account for many failed runs. But we also want
high specificity, meaning predicates that do not mis-predict failure
in many successful runs. In information retrieval, the corresponding
terms are recall and precision. A standard way to combine sensitiv-
ity and specificity is to compute their harmonic mean; this measure
prefers high scores in both dimensions. In our case, Increase(P)
measures specificity. For sensitivity, we have found it useful to con-
sider a transformation φ of the raw counts, and to form the normal-
ized ratio φ(F(P))/φ(NumF), where NumF is the total number of
failed runs. In our work thus far φ has been a logarithmic trans-
formation, which moderates the impact of very large numbers of
failures. Thus our overall metric is the following:

Importance(P) =
2

1
Increase(P)

+ 1
log(F(P))/log(NumF)

It is possible for this formula to be undefined (due to a division
by 0), in which case we define the Importance to be 0. Table 1(c)
gives results using this metric. Both individual F(P) counts and
individual Increase(P) scores are smaller than in Tables 1(a) and
1(b), but the harmonic mean has effectively balanced both of these
important factors. All of the predicates on this list indeed have both
high specificity and sensitivity. Each of these predictors accurately
describes a large number of failures.

As in the case of the pruning based on the Increase score, it
is useful to assess statistical significance of Importance scores by
computing a confidence interval for the harmonic mean. Exact con-
fidence intervals for the harmonic mean are not available, but we
can use the delta method to derive approximate confidence inter-
vals [9]. Computing the means and variances needed for applying
the delta method requires computing estimates of underlying bino-
mial probabilities for the predicates and conditioning on the event
that the corresponding counts are non-zero.

3.4 Redundancy Elimination

The remaining problem with the results in Table 1(c) is that there is
substantial redundancy; it is easy to see that several of these pred-
icates are related. This redundancy hides other, distinct bugs that
either have fewer failed runs or more non-deterministic predictors
further down the list. As discussed previously, beginning with the
set of all runs and predicates, we use a simple iterative algorithm to
eliminate redundant predicates:

1. Rank predicates by Importance.

2. Remove the top-ranked predicate P and discard all runs R (feed-
back reports) where R(P) = 1.

3. Repeat these steps until the set of runs is empty or the set of
predicates is empty.

We can now state an easy-to-prove but important property of
this algorithm.

LEMMA 3.1. Let P1, . . . ,Pn be a set of instrumented predicates,
B1, . . . ,Bm a set of bugs, and B1, . . . ,Bm the corresponding bug
profiles. Let

Z =
⋃

1≤i≤n

{R|R(Pi) = 1}.

If for all 1 ≤ j ≤m we have B j ∩Z 6= /0, then the algorithm chooses
at least one predicate from the list P1, . . . ,Pn that predicts at least
one failure due to B j.

Thus, the elimination algorithm chooses at least one predicate
predictive of each bug represented by the input set of predicates.

We are, in effect, covering the set of bugs with a ranked subset
of predicates. The other property we might like, that the algorithm
chooses exactly one predicate to represent each bug, does not hold;
we shall see in Section 4 that the algorithm sometimes selects a
strong sub-bug predictor as well as a more natural predictor. (As a
technical aside, note that Lemma 3.1 does not guarantee that every
selected predicate has a positive Increase score at the time it is
selected. Even if predicates with non-positive Increase scores are
discarded before running the elimination algorithm, new ones can
arise during the elimination algorithm. However, the Increase score
of any predicate that covers at least one failing run will at least be
defined. See Section 5 for related discussion.)

Beyond always representing each bug, the algorithm works well
for two other reasons. First, two predicates are redundant if they
predict the same (or nearly the same) set of failing runs. Thus, sim-
ply removing the set of runs in which a predicate is true automati-
cally reduces the importance of any related predicates in the correct
proportions. Second, because elimination is iterative, it is only nec-
essary that Importance selects a good predictor at each step, and not
necessarily the best one; any predicate that covers a different set of
failing runs than all higher-ranked predicates is selected eventually.

Finally, we studied an optimization in which we eliminated
logically redundant predicates within instrumentation sites prior to
running the iterative algorithm. However, the elimination algorithm
proved to be sufficiently powerful that we obtained nearly identical
experimental results with and without this optimization, indicating
it is unnecessary.

4. Experiments

In this section we present the results of applying the algorithm de-
scribed in Section 3 in five case studies. Table 2 shows summary
statistics for each of the experiments. In each study we ran the pro-
grams on about 32,000 random inputs. The number of instrumenta-
tion sites varies with the size of the program, as does the number of
predicates those instrumentation sites yield. Our algorithm is very
effective in reducing the number of predicates the user must ex-
amine. For example, in the case of RHYTHMBOX an initial set of
857,384 predicates is reduced to 537 by the Increase(P) > 0 test, a
reduction of 99.9%. The elimination algorithm then yields 15 pred-
icates, a further reduction of 97%. The other case studies show a
similar reduction in the number of predicates by 3-4 orders of mag-
nitude.

The results we discuss are all on sampled data. Sampling creates
additional challenges that must be faced by our algorithm. Assume
P1 and P2 are equivalent bug predictors and both are sampled at a
rate of 1/100 and both are reached once per run. Then even though
P1 and P2 are equivalent, they will be observed in nearly disjoint
sets of runs and treated as close to independent by the elimination
algorithm.

To address this problem, we set the sampling rates of predicates
to be inversely proportional to their frequency of execution. Based
on a training set of 1,000 executions, we set the sampling rate of
each predicate so as to obtain an expected 100 samples of each
predicate in subsequent program executions. On the low end, the
sampling rate is clamped to a minimum of 1/100; if the site is
expected to be reached fewer than 100 times the sampling rate is set
at 1.0. Thus, rarely executed code has a much higher sampling rate
than very frequently executed code. (A similar strategy has been
pursued for similar reasons in related work [3].) We have validated
this approach by comparing the results for each experiment with
results obtained with no sampling at all (i.e., the sampling rate
of all predicates set to 100%). The results are identical except
for the RHYTHMBOX and MOSS experiments, where we judge
the differences to be minor: sometimes a different but logically
equivalent predicate is chosen, the ranking of predictors of different



Table 2. Summary statistics for bug isolation experiments

Runs Predicate Counts

Lines of Code Successful Failing Sites Initial Increase > 0 Elimination

MOSS 6001 26,299 5598 35,223 202,998 2740 21
CCRYPT 5276 20,684 10,316 9948 58,720 50 2
BC 14,288 23,198 7802 50,171 298,482 147 2
EXIF 10,588 30,789 2211 27,380 156,476 272 3
RHYTHMBOX 56,484 12,530 19,431 14,5176 857,384 537 15

bugs is slightly different, or one or the other version has a few extra,
weak predictors at the tail end of the list.

4.1 A Validation Experiment

To validate our algorithm we first performed an experiment in
which we knew the set of bugs in advance. We added nine bugs
to MOSS, a widely used service for detecting plagiarism in soft-
ware [15]. Six of these were previously discovered and repaired
bugs in MOSS that we reintroduced. The other three were varia-
tions on three of the original bugs, to see if our algorithm could
discriminate between pairs of bugs with very similar behavior but
distinct causes. The nature of the eight crashing bugs varies: four
buffer overruns, a null file pointer dereference in certain cases, a
missing end-of-list check in the traversal of a hash table bucket, a
missing out-of-memory check, and a violation of a subtle invariant
that must be maintained between two parts of a complex data struc-
ture. In addition, some of these bugs are non-deterministic and may
not even crash when they should.

The ninth bug—incorrect comment handling in some cases—
only causes incorrect output, not a crash. We include this bug in
our experiment in order to show that bugs other than crashing bugs
can also be isolated using our techniques, provided there is some
way, whether by automatic self-checking or human inspection, to
recognize failing runs. In particular, for our experiment we also
ran a correct version of MOSS and compared the output of the
two versions. This oracle provides a labeling of runs as “success”
or “failure,” and the resulting labels are treated identically by our
algorithm as those based on program crashes.

Table 3 shows the results of the experiment. The predicates
listed were selected by the elimination algorithm in the order
shown. The first column is the initial bug thermometer for each
predicate, showing the Context and Increase scores before elimi-
nation is performed. The second column is the effective bug ther-
mometer, showing the Context and Increase scores for a predicate
P at the time P is selected (i.e., when it is the top-ranked predicate).
Thus the effective thermometer reflects the cumulative diluting ef-
fect of redundancy elimination for all predicates selected before
this one.

As part of the experiment we separately recorded the exact set
of bugs that actually occurred in each run. The columns at the far
right of Table 3 show, for each selected predicate and for each
bug, the actual number of failing runs in which both the selected
predicate is observed to be true and the bug occurs. Note that while
each predicate has a very strong spike at one bug, indicating it is
a strong predictor of that bug, there are always some runs with
other bugs present. For example, the top-ranked predicate, which
is overwhelmingly a predictor of bug #5, also includes some runs
where bugs #3, #4, and #9 occurred. This situation is not the result
of misclassification of failing runs by our algorithm. As observed
in Section 1, more than one bug may occur in a run. It simply
happens that in some runs bugs #5 and #3 both occur (to pick just
one possible combination).

A particularly interesting case of this phenomenon is bug #7,
one of the buffer overruns. Bug #7 is not strongly predicted by any
predicate on the list but occurs in at least a few of the failing runs
of most predicates. We have examined the runs of bug #7 in detail
and found that the failing runs involving bug #7 also trigger at least
one other bug. That is, even when the bug #7 overrun occurs, it
never causes incorrect output or a crash in any run. Bug #8, another
overrun, was originally found by a code inspection. It is not shown
here because the overrun is never triggered in our data (its column
would be all 0’s). There is no way our algorithm can find causes
of bugs that do not occur, but recall that part of our purpose in
sampling user executions is to get an accurate picture of the most
important bugs. It is consistent with this goal that if a bug never
causes a problem, it is not only not worth fixing, it is not even worth
reporting.

The other bugs all have strong predictors on the list. In fact, the
top eight predicates have exactly one predictor for each of the seven
bugs that occur, with the exception of bug #1, which has one very
strong sub-bug predictor in the second spot and another predictor
in the sixth position. Notice that even the rarest bug, bug #2, which
occurs more than an order of magnitude less frequently than the
most common bug, is identified immediately after the last of the
other bugs. Furthermore, we have verified by hand that the selected
predicates would, in our judgment, lead an engineer to the cause of
the bug. Overall, the elimination algorithm does an excellent job of
listing separate causes of each of the bugs in order of priority, with
very little redundancy.

Below the eighth position there are no new bugs to report and
every predicate is correlated with predicates higher on the list. Even
without the columns of numbers at the right it is easy to spot the
eighth position as the natural cutoff. Keep in mind that the length
of the thermometer is on a log scale, hence changes in larger mag-
nitudes may appear less evident. Notice that the initial and effective
thermometers for the first eight predicates are essentially identical.
Only the predicate at position six is noticeably different, indicating
that this predicate is somewhat affected by a predicate listed ear-
lier (specifically, its companion sub-bug predictor at position two).
However, all of the predicates below the eighth line have very dif-
ferent initial and effective thermometers (either many fewer failing
runs, or much more non-deterministic, or both) showing that these
predicates are strongly affected by higher-ranked predicates.

The visualizations presented thus far have a drawback illus-
trated by the MOSS experiment: It is not easy to identify the pred-
icates to which a predicate is closely related. Such a feature would
be useful in confirming whether two selected predicates represent
different bugs or are in fact related to the same bug. We do have a
measure of how strongly P implies another predicate P′: How does
removing the runs where R(P) = 1 affect the importance of P′? The
more closely related P and P′ are, the more P′’s importance drops
when P’s failing runs are removed. In the interactive version of our
analysis tools, each predicate P in the final, ranked list links to an
affinity list of all predicates ranked by how much P causes their
ranking score to decrease.



Table 3. MOSS failure predictors using nonuniform sampling

Number of Failing Runs Also Exhibiting Bug #n

Initial Effective Predicate #1 #2 #3 #4 #5 #6 #7 #9

files[filesindex].language > 16 0 0 28 54 1585 0 0 68
((*(fi + i)))->this.last_line == 1 774 0 17 0 0 0 18 2
token_index > 500 31 0 16 711 0 0 0 47
(p + passage_index)->last_token <= filesbase 28 2 508 0 0 0 1 29
__result == 0 is TRUE 16 0 0 9 19 291 0 13
config.match_comment is TRUE 791 2 23 1 0 5 11 41
i == yy_last_accepting_state 55 0 21 0 0 3 7 769
new value of f < old value of f 3 144 2 2 0 0 0 5
files[fileid].size < token_index 31 0 10 633 0 0 0 40
passage_index == 293 27 3 8 0 0 0 2 366
((*(fi + i)))->other.last_line == yyleng 776 0 16 0 0 0 18 1
min_index == 64 24 1 7 0 0 1 1 249
((*(fi + i)))->this.last_line == yy_start 771 0 18 0 0 0 19 0
(passages + i)->fileid == 52 24 0 477 14 24 0 1 14
passage_index == 25 60 5 27 0 0 4 10 962
strcmp > 0 0 0 28 54 1584 0 0 68
i > 500 32 2 18 853 54 0 0 53
token_sequence[token_index].val >= 100 1250 3 28 38 0 15 19 65
i == 50 27 0 11 0 0 1 4 463
passage_index == 19 59 5 28 0 0 4 10 958
bytes <= filesbase 1 0 19 0 0 0 0 1

Table 4. Predictors for CCRYPT

Initial Effective Predicate

res == nl

line <= outfile

Table 5. Predictors for BC

Initial Effective Predicate

a_names < v_names

old_count == 32

4.2 Additional Experiments

We briefly report here on experiments with additional applica-
tions containing both known and unknown bugs. Complete anal-
ysis results for all experiments may be browsed interactively at
<http://www.cs.wisc.edu/˜liblit/pldi-2005/>.

4.2.1 CCRYPT

We analyzed CCRYPT 1.2, which has a known input validation
bug. The results are shown in Table 4. Our algorithm reports two
predictors, both of which point directly to the single bug. It is
easy to discover that the two predictors are for the same bug; the
first predicate is listed first in the second predicate’s affinity list,
indicating the first predicate is a sub-bug predictor associated with
the second predicate.

4.2.2 BC

GNU BC 1.06 has a previously reported buffer overrun. Our results
are shown in Table 5. The outcome is the same as for CCRYPT:
two predicates are retained by elimination, and the second predicate
lists the first predicate at the top of its affinity list, indicating that the
first predicate is a sub-bug predictor of the second. Both predicates
point to the cause of the overrun. This bug causes a crash long after
the overrun occurs and there is no useful information on the stack
at the point of the crash to assist in isolating this bug.

4.2.3 EXIF

Table 6 shows results for EXIF 0.6.9, an open source image process-
ing program. Each of the three predicates is a predictor of a distinct

Table 6. Predictors for EXIF

Initial Effective Predicate

i < 0

maxlen > 1900

o + s > buf_size is TRUE

and previously unknown crashing bug. It took less than twenty min-
utes of work to find and verify the cause of each of the bugs using
these predicates and the additional highly correlated predicates on
their affinity lists. All bugs have been confirmed as valid by EXIF

project developers.
To illustrate how statistical debugging is used in practice, we use

the last of these three failure predictors as an example, and describe
how it enabled us to effectively isolate the cause of one of the bugs.
Failed runs exhibiting o + s > buf size show the following
unique stack trace at the point of termination:

main

exif_data_save_data

exif_data_save_data_content

exif_data_save_data_content

exif_data_save_data_entry

exif_mnote_data_save

exif_mnote_data_canon_save

memcpy

The code in the vicinity of the call to memcpy in function
exif mnote data canon save is as follows:

for (i = 0; i < n->count; i++) {

...

memcpy(*buf + doff, (c)

n->entries[i].data, s);

...

}

This stack trace alone provides little insight into the cause of
the bug. However, our algorithm highlights o + s > buf size

in function exif mnote data canon load as a strong bug
predictor. Thus, a quick inspection of the source code leads us to
construct the following call sequence:

http://www.cs.wisc.edu/~liblit/pldi-2005/


Table 7. Predictors for RHYTHMBOX

Initial Effective Predicate

tmp is FALSE

(mp->priv)->timer is FALSE

(view->priv)->change_sig_queued is TRUE

(hist->priv)->db is TRUE

rb_playlist_manager_signals[0] > 269

(db->priv)->thread_reaper_id >= 12

entry == entry

fn == fn

klass > klass

genre < artist

vol <= (float )0 is TRUE

(player->priv)->handling_error is TRUE

(statusbar->priv)->library_busy is TRUE

shell < shell

len < 270

main

exif_loader_get_data

exif_data_load_data

exif_mnote_data_canon_load

exif_data_save_data

exif_data_save_data_content

exif_data_save_data_content

exif_data_save_data_entry

exif_mnote_data_save

exif_mnote_data_canon_save

memcpy

The code in the vicinity of the predicate o + s > buf size

in function exif mnote data canon load is as follows:

for (i = 0; i < c; i++) {

...

n->count = i + 1;

...

if (o + s > buf_size) return; (a)

...

n->entries[i].data = malloc(s); (b)

...

}

It is apparent from the above code snippets and the call sequence
that whenever the predicate o + s > buf size is true,

• the function exif mnote data canon load returns on
line (a), thereby skipping the call to malloc on line (b)

and thus leaving n->entries[i].data uninitialized for
some value of i, and

• the function exif mnote data canon save passes the
uninitialized n->entries[i].data to memcpy on line
(c), which reads it and eventually crashes.

In summary, our algorithm enabled us to effectively isolate
the causes of several previously unknown bugs in source code
unfamiliar to us in a small amount of time and without any explicit
specification beyond “the program shouldn’t crash.”

4.2.4 RHYTHMBOX

Table 7 shows our results for RHYTHMBOX 0.6.5, an interactive,
graphical, open source music player. RHYTHMBOX is a complex,
multi-threaded, event-driven system, written using a library provid-
ing object-oriented primitives in C. Event-driven systems use event
queues; each event performs some computation and possibly adds
more events to some queues. We know of no static analysis today
that can analyze event-driven systems accurately, because no static
analysis is currently capable of analyzing the heap-allocated event
queues with sufficient precision. Stack inspection is also of limited
utility in analyzing event-driven systems, as the stack in the main
event loop is unchanging and all of the interesting state is in the
queues.

We isolated two distinct bugs in RHYTHMBOX. The first predi-
cate led us to the discovery of a race condition. The second predi-
cate was not useful directly, but we were able to isolate the bug us-
ing the predicates in its affinity list. This second bug revealed what
turned out to be a very common incorrect pattern of accessing the
underlying object library (recall Section 1). RHYTHMBOX develop-
ers confirmed the bugs and enthusiastically applied patches within
a few days, in part because we could quantify the bugs as important
crashing bugs. It required several hours to isolate each of the two
bugs (and there are additional bugs represented in the predictors
that we did not isolate) because they were violations of subtle heap
invariants that are not directly captured by our current instrumen-
tation schemes. Note, however, that we could not have even begun
to understand these bugs without the information provided by our
tool. We intend to explore schemes that track predicates on heap
structure in future work.

4.3 How Many Runs Are Needed?

Recall that we used about 32,000 runs in each of the five case
studies. For many of the bugs this number is clearly far more than
the minimum required. In this section, we estimate how many runs
are actually needed for all bug predictors to be identified.

Our estimates are computed using the following methodology.
We choose one predictor for each bug identified in the case studies.
Where the elimination algorithm selects two predictors for a bug,
we pick the more natural one (i.e., not the sub-bug predictor).
For each chosen predictor P, we compute the importance of P
using many different numbers of runs. Let ImportanceN(P) be the
importance of P using N runs. We are interested in the minimum N
such that

Importance32,000(P)− ImportanceN(P) < 0.2

The threshold 0.2 is selected because we observe that all of the
chosen predictors in our studies would still be ranked very highly
even if their importance scores were 0.2 lower.

Table 8 presents the results of the analysis. In these experiments,
the number of runs N ranges over the values 100, 200, . . . , 900,
1,000, 2,000, . . . , 25,000. For each study, we list two numbers for
each bug with predictor P: the minimum number of runs N such
that the threshold test is met, and the number of failing runs F(P)
among those N runs where P is observed to be true. Note that the
number of runs N needed for different bugs varies by two orders of
magnitude. We need 21,000 runs to isolate all of the bug predictors
in EXIF because the last bug in that study is extremely rare: only
21 failing runs out of our total population of 33,000 runs share bug
#3 as the cause of failure. If we exclude bug #3, then just 2,000
runs are sufficient to isolate EXIF bugs #1 and #2. Thus, results
degrade gracefully with fewer runs, with the predictors for rare
bugs dropping out first.

The number F(P) is independent of the rate at which the dif-
ferent bugs occur and allows us to compare the absolute number of
failures needed to isolate different bugs. Notice that we can isolate
any bug predictor with between 10 and 40 observations of failing
runs caused by the bug. How long it takes to get those observations
of failing runs depends on the frequency with which the bug occurs
and the sampling rate of the bug predictor. Assume F failures are
needed to isolate the predictor of a bug. If the failing runs where the
predictor is observed to be true constitute a fraction 0 ≤ p ≤ 1 of
all runs, then about N = F/p runs will be required by our algorithm.

4.4 Comparison with Logistic Regression

In earlier work we used ℓ1-regularized logistic regression to rank
the predicates by their failure-prediction strength [10, 16]. Logistic
regression uses linearly weighted combinations of predicates to
classify a trial run as successful or failed. Regularized logistic



Table 8. Minimum number of runs needed

Bug #n

Runs #1 #2 #3 #4 #5 #6 #9

MOSS F(P) 18 10 32 12 21 11 20
N 500 3,000 2,000 800 300 1,000 600

CCRYPT F(P) 26
N 200

BC F(P) 40
N 200

RHYTHMBOX F(P) 22 35
N 300 100

EXIF F(P) 28 12 13
N 2,000 300 21,000

Table 9. Results of logistic regression for MOSS

Coefficient Predicate

0.769379 (p + passage_index)->last_line < 4

0.686149 (p + passage_index)->first_line < i

0.675982 i > 20

0.671991 i > 26

0.619479 (p + passage_index)->last_line < i

0.600712 i > 23

0.591044 (p + passage_index)->last_line == next

0.567753 i > 22

0.544829 i > 25

0.536122 i > 28

regression incorporates a penalty term that drives most coefficients
towards zero, thereby giving weights to only the most important
predicates. The output is a set of coefficients for predicates giving
the best overall prediction.

A weakness of logistic regression for our application is that it
seeks to cover the set of failing runs without regard to the orthogo-
nality of the selected predicates (i.e., whether they represent distinct
bugs). This problem can be seen in Table 9, which gives the top ten
predicates selected by logistic regression for MOSS. The striking
fact is that all selected predicates are either sub-bug or super-bug
predictors. The predicates beginning with p + ... are all sub-
bug predictors of bug #1 (see Table 3). The predicates i > ...

are super-bug predictors: i is the length of the command line and
the predicates say program crashes are more likely for long com-
mand lines (recall Section 1).

The prevalence of super-bug predictors on the list shows the
difficulty of making use of the penalty term. Limiting the number
of predicates that can be selected via a penalty has the effect of
encouraging regularized logistic regression to choose super-bug
predictors, as these cover more failing runs at the expense of poorer
predictive power compared to predictors of individual bugs. On
the other hand, the sub-bug predictors are chosen based on their
excellent prediction power of those small subsets of failed runs.

5. Alternatives and Extensions

While we have targeted our algorithm at finding bugs, there are
other possible applications, and there are variations of the basic
approach we have presented that may prove useful. In this section
we briefly discuss some of these possibilities.

While we have focused on bug finding, the same ideas can be
used to isolate predictors of any program event. For example, we
could potentially look for early predictors of when the program
will raise an exception, send a message on the network, write to

disk, or suspend itself. Furthermore, it is interesting to consider ap-
plications in which the predictors are used on-line by the running
program; for example, knowing that a strong predictor of program
failure has become true may enable preemptive action (see Sec-
tion 6).

There are also variations on the specific algorithm we have
proposed that are worth investigating. For example, we have chosen
to discard all the runs where R(P) = 1 when P is selected by the
elimination algorithm, but there are at least three natural choices:

1. When P is selected, discard all runs where R(P) = 1.

2. When P is selected, discard only failing runs where R(P) = 1.

3. When P is selected, relabel all failing runs where R(P) = 1 as
successful runs.

We have already given the intuition for (1), our current choice.
For (2), the idea is that whatever the bug is, it is not manifested in
the successful runs and thus retaining all successful runs is more
representative of correct program behavior. Proposal (3) goes one
step further, asserting that even the failing runs will look mostly the
same once the bug is fixed, and the best approximation to a program
without the bug is simply that the failing runs are now successful
runs.

On a more technical level, the three proposals differ in how
much code coverage they preserve. By discarding no runs, proposal
(3) preserves all the code paths that were executed in the original
runs, while proposal (1) discards the most runs and so potentially
renders more paths unreached in the runs that remain. This differ-
ence in paths preserved translates into differences in the Failure and
Context scores of predicates under the different proposals. In fact,
for a predicate P and its complement ¬P, it is possible to prove that
just after predicate P is selected by the elimination algorithm, then

Increase3(¬P) ≥ Increase2(¬P) ≥ Increase1(¬P) = 0

where the subscripts indicate which proposal for discarding runs
is used and assuming all the quantities are defined. Thus, proposal
(1) is the most conservative, in the sense that only one of P or ¬P
can have positive predictive power, while proposal (3) potentially
allows more predictors to have positive Increase scores.

This analysis reveals that a predicate P with a negative Increase
score is not necessarily useless—the score may be negative only
because it is temporarily overshadowed by stronger predictors of
different bugs that are anti-correlated with P. It is possible to
construct examples where both P and ¬P are the best predictors of
different bugs, but the result mentioned above assures us that once
one is selected by the elimination algorithm, the other’s Increase
score is non-negative if it is defined. This line of reasoning also



suggests that when using proposal (2) or (3) for discarding runs,
a predicate P with Increase(P) ≤ 0 should not be discarded in a
preprocessing step, as P may become a positive predictor once ¬P
is selected by the elimination algorithm. In the case of proposal (1),
only one of P or ¬P can ever have a non-negative Increase score,
and so it seems reasonable to eliminate predicates with negative
scores early.

6. Related Work

In this section we briefly survey related work. There is currently a
great deal of interest in applying static analysis to improve software
quality. While we firmly believe in the use of static analysis to find
and prevent bugs, our dynamic approach has advantages as well. A
dynamic analysis can observe actual run-time values, which is of-
ten better than either making a very conservative static assumption
about run-time values for the sake of soundness or allowing some
very simple bugs to escape undetected. Another advantage of dy-
namic analysis, especially one that mines actual user executions for
its data, is the ability to assign an accurate importance to each bug.
Additionally, as we have shown, a dynamic analysis that does not
require an explicit specification of the properties to check can find
clues to a very wide range of errors, including classes of errors not
considered in the design of the analysis.

The Daikon project [5] monitors instrumented applications to
discover likely program invariants. It collects extensive trace in-
formation at run time and mines traces offline to accept or reject
any of a wide variety of hypothesized candidate predicates. The
DIDUCE project [7] tests a more restricted set of predicates within
the client program, and attempts to relate state changes in candidate
predicates to manifestation of bugs. Both projects assume complete
monitoring, such as within a controlled test environment. Our goal
is to use lightweight partial monitoring, suitable for either testing
or deployment to end users.

Software tomography as realized through the GAMMA system
[1, 12] shares our goal of low-overhead distributed monitoring of
deployed code. GAMMA collects code coverage data to support
a variety of code evolution tasks. Our instrumentation exposes a
broader family of data- and control-dependent predicates on pro-
gram behavior and uses randomized sparse sampling to control
overhead. Our predicates do, however, also give coverage informa-
tion: the sum of all predicate counters at a site reveals the relative
coverage of that site.

Efforts to directly apply statistical modeling principles to de-
bugging have met with mixed results. Early work in this area by
Burnell and Horvitz [2] uses program slicing in conjunction with
Bayesian belief networks to filter and rank the possible causes for
a given bug. Empirical evaluation shows that the slicing compo-
nent alone finds 65% of bug causes, while the probabilistic model
correctly identifies another 10%. This additional payoff may seem
small in light of the effort, measured in man-years, required to dis-
till experts’ often tacit knowledge into a formal belief network.
However, the approach does illustrate one strategy for integrating
information about program structure into the statistical modeling
process.

In more recent work, Podgurski et al. [13] apply statistical fea-
ture selection, clustering, and multivariate visualization techniques
to the task of classifying software failure reports. The intent is
to bucket each report into an equivalence group believed to share
the same underlying cause. Features are derived offline from fine-
grained execution traces without sampling; this approach reduces
the noise level of the data but greatly restricts the instrumentation
schemes that are practical to deploy outside of a controlled testing
environment. As in our own earlier work, Podgurski uses logis-
tic regression to select features that are highly predictive of failure.
Clustering tends to identify small, tight groups of runs that do share

a single cause but that are not always maximal. That is, one cause
may be split across several clusters. This problem is similar to cov-
ering a bug profile with sub-bug predictors.

In contrast, current industrial practice uses stack traces to cluster
failure reports into equivalence classes. Two crash reports show-
ing the same stack trace, or perhaps only the same top-of-stack
function, are presumed to be two reports of the same failure. This
heuristic works to the extent that a single cause corresponds to a
single point of failure, but our experience with MOSS, RHYTHM-
BOX, and EXIF suggests that this assumption may not often hold. In
MOSS, we find that only bugs #2 and #5 have truly unique “signa-
ture” stacks: a crash location that is present if and only if the corre-
sponding bug was actually triggered. These bugs are also our most
deterministic. Bugs #4 and #6 also have nearly unique stack sig-
natures. The remaining bugs are much less consistent: each stack
signature is observed after a variety of different bugs, and each
triggered bug causes failure in a variety of different stack states.
RHYTHMBOX and EXIF bugs caused crashes so long after the bad
behavior that stacks were of limited use or no use at all.

Studies that attempt real-world deployment of monitored soft-
ware must address a host of practical engineering concerns, from
distribution to installation to user support to data collection and
warehousing. Elbaum and Hardojo [4] have reported on a limited
deployment of instrumented Pine binaries. Their experiences have
helped to guide our own design of a wide public deployment of ap-
plications with sampled instrumentation, presently underway [11].

For some highly available systems, even a single failure must
be avoided. Once the behaviors that predict imminent failure are
known, automatic corrective measures may be able to prevent the
failure from occurring at all. The Software Dependability Frame-
work (SDF) [6] uses multivariate state estimation techniques to
model and thereby predict impending system failures. Instrumen-
tation is assumed to be complete and is typically domain-specific.
Our algorithm could also be used to identify early warning predi-
cates that predict impending failure in actual use.

7. Conclusions

We have demonstrated a practical, scalable algorithm for isolating
multiple bugs in complex software systems. Our experimental re-
sults show that we can detect a wide variety of both anticipated and
unanticipated causes of failure in realistic systems and do so with a
relatively modest number of program executions.
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