< Usrvemery of Pesnirivasis

Scalable Store-Load Forwarding via
Store Queue Index Prediction

Tingting Sha, Milo M.K. Martin, Amir Roth

University of Pennsylvania
{shatingt, milom, amir}@cis.upenn.edu

B :di =addr data
[
=«(RAM) (RAM)

Four Aspects of OoO Load/Store Execution

 The four aspects...

1.
2. Detect memory-ordering violations
3.

4. Forward from stores to loads

Commit stores in order

Reduce memory-ordering violations

. and state-of-the-art implementations

Age ordered store queue (SQ)

Age ordered load queue (LQ) + associative search
 Proposed: in-order load re-execution [Cain+'04]

Dependence prediction [Kessler+94, Moshovos+'97, Chrysos+98...]

Associative store queue search

We consider the first three aspects “solved”

UNIVERSITY of PENNSYLVANIA E:IZEJF)
H CG ARCHITECTURE OMPILERS GROUP [2] &Lenn

The Problem

— addr

—)
—)

addr EN gge = data

D$ (CAM) mxlogick (RAM)
—)

—)

« Age-ordered associative search is not scalable

« Simple associative search: CAM is slow, difficult to pipeline
* But can be partitioned (to reduce wire delay)
 Age-ordered associative search: CAM and age logic are slow
* And age logic makes partitioning difficult

* Load queue — load re-execution [Cain+'04]
e Store queue — ?

ﬂ (:‘ (; UNIVERSITY of PENNSYLVANIA EEQP nn
o ARCHITECTURE *+ CoMPILERS GROUP (31 le,”*

Possible Solutions

 Engineer around associative search
* Put your best designer on the store queue
* Longer access latency than D$ — nasty scheduler, replays...
» Put your best designer on the scheduler

* Proposed: reduce associative search
 Reduce bandwidth
e Bloom-filtered SQ [Sethumadhavan+‘03]
 Reduce number of stores searched
* Pipelined/chained SQ [Park+‘03]
e Hierarchical/filtered SQ [Srinivasan+‘04, Ghandi+'05, Torres+‘05]
« Decomposed SQ [Roth‘05; Baugh+‘04]

Why not just eliminate associative search?

UNIVERSITY of PENNSYLVANIA E:IZEJF)
n CG ARCHITECTURE OMPILERS GROUP [4] &L”enn

Our Solution

addr SQ index predictor

e

addr data
D$ L (RAM) ' (RAM)

— data

 Replace associative search with indexed access
 Replace address CAM + age logic with address RAM

* Predict one SQ index per load
» Predictor (e.g., Store Sets) is not on load critical path

o Keep address match — allow false positives — boost accuracy

: w UNIVERSITY of PENNSYLVANIA mP
ﬂ CG ARCHITECTURE * COMPILERS GROUP [5] &l.em

Verification

» Speculative indexed access requires verification
 In-order load re-execution prior to commit [Cain+'04]
o Store Vulnerability Window (SVW) re-execution filter [Roth'05]
+ On average 3% of loads re-execute — almost free
+ Works unmodified for speculative indexed SQ (address check)

Re-execution + Indexed store queue = ...
CAM-free load/store unit

UNIVERSITY of PENNSYLVANIA E:I"'-!":]F) nn
ﬂ CG ARCHITECTURE + COMPILERS GROUP (6] &le.L

Outline

v'Introduction and background

e Forwarding index prediction
* Mechanism
» Evaluation

» Delay index prediction
» Mechanism
» Evaluation

e Conclusion

ﬂ (:‘ (; UNIVERSITY of PENNSYLVANIA EEQP nn
o ARCHITECTURE *+ CoMPILERS GROUP (71 le,”*

SSNs: A Naming System for Dynamic Stores

« SSNs (Store Sequence Numbers)
* Required for SVW and more convenient than store queue indices
+ Can name committed stores
+ Fewer wrap-around issues
Monotonically increasing
e SSN,,mii: YOUNgest committed store
SSNgispatch: YOungest dispatched store (SSN,, i + SQ.NUM)
From SSN to store queue index?
e If St SSN > SSN_,,,mit St-INDEX = (st.SSN % SQ.SIZE)

UNIVERSITY of PENNSYLVANIA E:IZEJF) nn
H CG ARCHITECTURE OMPILERS GROUFP (8] &Le.L

Indexed Forwarding Pipeline Actions

Fetch Decode Rename Issue Execute Execute SVW Re-exec Commit

address=

forwarding
predictor

e Decode/rename: predict forwarding store (SSN;,4)

 |ssue: wait for load address, SSN,, 4 to execute
e Unify: SSN,4 used for both forwarding and scheduling

 Execute: index SQ, forward if address matches
« SVW/re-execute: verify forwarding

e Commit: train predictor
e N R e
BRRGR o/ pener = & Penn

Forwarding Index Predictor

Decode Rename

PC;.

SSN;y,

Load
PC

MAX [—> SSNi,q

FSP pred SAT

PCdeZ SSNdeZ

Forwarding Store Predictor (FSP)

 Maps load PC to small set of likely-to-forward store PCs

* (Load) PC-indexed, set-associative, entry={tag, (2) store PCs}
Store Alias Table (SAT)

 Maps store PC to its most recent store instance (SSN)

o (Store) PC-indexed, direct-mapped, entry={SSN}

SSN;,4: largest SSN (youngest in-flight store)

Design inspired by Store Sets [Chrysos+'98]
» Used for load scheduling ... and forwarding

ﬂ ‘:(; UNIVERSITY of PENNSYLVANIA mﬂP nn
N ARCHITECTURE *+ COMPILERS GROUP [10] L.“..Q-l--.um-.w*

Working Example: Forwarding (Store Part)

PC Z: store 8, A

PCW: IdA
PC Z: store 8, A

Fetch Decode Rename Issue Execute W-back SVW Re-exec Commit

19,18 A B

FSP SAT Y 5 |6
W X | Y Z B Data cache
Predictor 4 SSN.ommit = 17

tail tail head

ﬂ ‘; UNIVERSITY of PENNSYLVANIA mﬂP nn
: c ARCHITECTURE + COMPILERS GROUP [11] le.w*

Working Example: Forwarding (Store Part)

PC Z: store 8, A

PCW: IdA
PC Z: store 8, A

Fetch Decode Rename Issue Execute W-back SVW Re-exec Commit

19 18 A B

FSP SAT Z |Y 5 |6
W X Y Z B Data cache
Z 18 119

Predictor 4 SSN.ommit = 17

tail > head

ﬂ ‘:(; UNIVERSITY of PENNSYLVANIA mﬂP nn
3, ARCHITECTURE + COMPILERS GROUP [12] Le.w*

Working Example: Forwarding (Load Part)

PC Z: store 8, A
PCW: IdA

Pwad =7?
PCW:IdA

Fetch Decode @ Rename Issue Execute W-back A Re-exec Commit

19 18 A B
FSP SAT Z |Y 5 |6
WX Y 7 A |B Data cache
18] 19
Predictor 8 |4 SSN.ommit = 17
tail > head

UNIVERSITY of PENNSYLVANIA v P
AC s & Penn
"y " Usirvemsrry af Pesinsmuvasas

ARCHITECTURE *+ COMPILERS GROUP

Working Example: Forwarding (Load Part)

SSNyyg =7 PC Z: store8, A
PCiyg =2 PCW: IdA
PC W: Id A

Fetch Decode @ Rename Issue Execute W-back A Re-exec Commit

19 18 A B
FSP SAT Z |Y 5 |6
W X ‘ Y 7 A |B Data cache
Predictor 8 |4 SSN.ommit = 17
tail > head

UNIVERSITY of PENNSYLVANIA v P
ﬂ C 1141 '@ ICI
"y " Usirvemsrry af Pesinsmuvasas

ARCHITECTURE *+ COMPILERS GROUP

Working Example: Forwarding (Load Part)

PC Z: store 8, A
SSNiwa =19 pow: 1dA
PCW:Id A

Fetch Decode Rename Issue Execute W-back A Re-exec Commit

19,18 A B |
FSP SAT vl % 5 B
W X Y Z B Data cache
Z 18119
Predictor 4 SSN.ommit = 18

tail head °F

H‘: UNIVERSITY of PENNSYLVANIA mﬂP nn
S : ARCHITECTURE + COMPILERS GROUP [15] Le.uu

Working Example: Verification (Store Part)

PC Z: store 8, A
PCW: IdA,S8

PC Z: store 8, A

Fetch Decode Rename Issue Execute W-back A Re-exec @ Commit

19 A B
FSP SAT z |y EN:
W X Y 7 A |B Data cache
Z 18 |19
Predictor 8 |4 SSN.ommit = 19
head SQ

ﬂ ‘: UNIVERSITY of PENNSYLVANIA mﬂP nn
N ARCHITECTURE *+ COMPILERS GROUP [16] L.“..Q-l--.um-.w*

Working Example: Verification (Load Part)
PC Z: storeg, A

PCW: Id A

PCW:IdA

Successful Forwarding

Fetch Decode Rename Issue Execute W-back A Re-exec @ Commit

A B
FSP SAT z |y BN+
W X Y 7 A |B Data cache
Z 18 19
Predictor 8 |4 SSN.ommit = 19
head SQ

H‘: UNIVERSITY of PENNSYLVANIA mﬂP nn
S : ARCHITECTURE + COMPILERS GROUP [17] Le.uu

Forwarding Index Predictor Training

 Forwarding Store Predictor (FSP)
e Train on every load at commit
e Address-indexed tables track PCs, SSNs of last committed stores

1 f (SSN,4, == comm tted_store_SSN | oad. addr])
correct -> re-inforce
el se
1 f (load. PG ,!= commtted_store_PC | oad. addr])
wrong -> learn new | oad-store pair
el se
wrong -> unlearn existing store-load pair (later)

o Store Alias Table (SAT)
* Not a “predictor”, analogous to RAT (register alias table)

UNIVERSITY of PENNSYLVANIA > P nn
ﬂ c G ARCHITECTURE *+ COMPILERS GROUP [18] & le.*

So Far, How Well Are We Doing?

 What we care about
* Forwarding prediction accuracy
» Performance vs. associative SQ

« Basic setup
« Simulator: simplescalar Alpha
« 8-way superscalar, 19 stage pipe, 512-entry ROB
 Benchmarks: SPEC2000, Mediabench (only show 9 benchmarks)

e Important Parameters
 64KB D$: 3 cycles
e 64-entry SQ: associative -» 3 & 5 cycles, indexed — 3 cycles
« CACTI 3.2: 90nm, 1.1V, 3GHz
 FSP: 4K-entry, 2-way
* Bigger than Store Sets: all dependences, not just violations
* Probably OK: PC-indexed, in-order front-end, only 8KB

UNIVERSITY of PENNSYLVANIA E:IZEJF)
n CG ARCHITECTURE OMPILERS GROUP [19] &L”enn

Forwarding Index Prediction Accuracy

lucas jpeg.e perl.s apsi gsm.e eon.c vortex wupwise mesa.t

100

Percent of loads

* 99.5%+ accuracy (better than branch prediction), why?
» ~88% loads don’t forward

» Address check — these ~88% are right “by design”
e ~12% loads forward

o Forwarding patterns are stable [Moshovos+, '97]

¥ Be UNIVERSITY of PENNSYLVANIA mP
ﬂcs ARCHITECTURE + COMPILERS GROUP [20] & lb@m

First Things First: Baseline Performance

1.15

1.1

SINTA

lucas jpeg.e perl.s apsi gsm.e eon.c vortex wupwise mesa.t

Relative execution time

e Baseline: 3 cycle associative SQ and perfect scheduling
B + (slightly modified) Store Sets scheduling
» Store sets is basically a “perfect” scheduler

NS cycle associative SQ (forwarding triggers replays)
* Latency/replays cause extra 1-10% slowdown

UNIVERSITY of PENNSYLVANIA > P nn
ﬂ c G ARCHITECTURE + COMPILERS GROUP [21] & Le.*

Indexed Forwarding Performance

1.15

1.1

1.05

Relative execution time

lucas jpeg.e perl.s apsi gsm.e eon.c vortex wupwise mesa.t

M 3 cycle indexed SQ (with unified scheduling)

+ Forwarding accuracy high — outperforms 5-cycle associative
— Forwarding accuracy low — slowdowns

¥ Be UNIVERSITY of PENNSYLVANIA mP
ﬂcs ARCHITECTURE + COMPILERS GROUP [22] & lb@m

Sources of Low Forwarding Prediction Accuracy

1.15

11

— FSP limitation 1.05

e Qur FSP: 2 stores per load
e eon.c and vortex

gsm.e eon.c vortex wupwise mesa.t

— “Not-most-recent” forwarding
o Example:for (;;) { X[J] = A* X[J-2]; }
« WhenJ = 5, load X[5-2] depends on store X[3] ...
o ... but SAT tracks the most recent store instance (X[4])

* mesa.t

¥ Be UNIVERSITY of PENNSYLVANIA mP
ﬂcs ARCHITECTURE + COMPILERS GROUP [23] & lb@m

Delay Index Prediction for Difficult Loads

« Uniform solution to low forwarding prediction accuracy
« Convert flush (really bad) to scheduling delay (less bad)
* Delay load until uncertain stores commit, get value from cache

Fetch Decode Rename Issue Execute W-back SVW Re-exec Commit

address =
forwarding
predictor
delay
predICtOF SSNdelay

 Decode/rename: predict ... + delay store (SSNgg)
e Issue: wait for ... + SSNy,,, t0 cOmmit

: w UNIVERSITY of PENNSYLVANIA EI..EJP
ﬂ CG ARCHITECTURE + COMPILERS GROUP [24] & l.eI-]"I*lﬁ

—) data

Delay Index Predictor

Decode Rename

Load
PC

[D=lay predictor — SGN
dispatch

delay

Delay Distance Predictor (DDP)
 Maps load PC to distance (in stores) to forwarding store
 PC-indexed, set-associative table, entry = {tag, distance}

. SSI\Idelay = SSNdispatch _ I:)iStancedelay
o Example: not-most-recent forwarding (for J=5)

* SSNgisparcn (X[4]) — Distance oy (1) > SSNgeja, (X[3])
 Inspired by Exclusive Collision Predictor [Yoaz+99]
e See our paper for training

ﬂ ‘:(; UNIVERSITY of PENNSYLVANIA mﬂP nn
3, ARCHITECTURE + COMPILERS GROUP [25] Le.w*

Indexed Forwarding (with Delay) Performance

O 1.15
£
-
c
@)
= 1.1
-
O
@
>
(4})
o 105
=
e
@©
Q
nd 1

lucas jpeg.e perl.s apsi gsm.e eon.c vortex wupwise mesa.t

\CG UNIVERSITY of PENNSYLVANIA mP
N |
ﬁ\ s - ARCHITECTURE + COMPILERS GROUP [26] &lﬂem

Indexed Forwarding MHWN NETTSE

(D] 1.15
j= / ?&
-

Cr

o

] 1.1
=)

(@)

(D)

X

(D)

O 1.05
B

-

©

(D]

nd 1

lucas jpeg.e perl.s apsi

1 PV
95 W
B 3 cycle indexed SQ + delay

* Forwarding prediction is good: not much impact (sometimes +£1%)

+ FSP 2-store limitation: a few short delays

+ Not-most-recent forwarding: many long delays
« Better than flushing ... but not much

ﬂ‘ : ‘; UNIVERSITY of PENNSYLVANIA EIE'.'JP
St S+ —ARCHITECTURE + COMPILERS GROUP [27] 'Y leI,]-Il

Performance Summary

1.15

1.1

1.05

Relative execution time

lucas jpeg.e perl.s apsi gsm.e eon.c vortex wupwise mesa.t

B 3 cycle indexed SQ + delay
+ On average 3% slower than 3 cycle associative SQ (black)
+ On average as fast as 5-cycle associative SQ (blue)

e UNIVERSITY of PENNSYLVANIA EI'.EJP
\HCG ARCHITECTURE + COMPILERS GROUP [28] &lel.m

Conclusion

 Problem
« Scalability of store-load forwarding

e Approach
« Keep age-ordered store queue
* Replace associative search with indexed access

« Adapted Store-Sets predictor predicts forwarding index
« Adapted Exclusive Collision predictor delays difficult loads

« Effectiveness
+ As fast as realistic 5 cycle associative SQ
+ But simpler: unified scheduler, no forwarding replays,...

Indexed store queue + load re-execution =
CAM free in-flight load/store unit

UNIVERSITY of PENNSYLVANIA E':I"'T‘:]F) nn
ﬂ c G ARCHITECTURE [29] & I.e PesniamivanA

+ COMPILERS GROUP

The End
e Thank you!

¥ B UNIVERSITY of PENNSYLVANIA P
ﬂc“x 85— ARCHITECTURE + COMPILERS GROUP [30] & leI]Il

