
Scalable Store-Load Forwarding via
Store Queue Index Prediction

University of Pennsylvania
{shatingt, milom, amir}@cis.upenn.edu

Milo M.K. Martin, Amir RothTingting Sha,

addr
(CAM)

addr

data
(RAM)

data

addr
predictor

addr
(RAM)

==

[2]

Four Aspects of OoO Load/Store Execution

• The four aspects…
1. Commit stores in order
2. Detect memory-ordering violations
3. Reduce memory-ordering violations
4. Forward from stores to loads

• … and state-of-the-art implementations
1. Age ordered store queue (SQ)
2. Age ordered load queue (LQ) + associative search

• Proposed: in-order load re-execution [Cain+’04]

3. Dependence prediction [Kessler+‘94, Moshovos+’97, Chrysos+‘98…]

We consider the first three aspects “solved”

4. Associative store queue search4. Associative store queue search

[3]

The Problem

data
(RAM)D$

addr

data

addr
(CAM)

• Simple associative search: CAM is slow, difficult to pipeline
• But can be partitioned (to reduce wire delay)

• Age-ordered associative search is not scalable

age
logic

• Age-ordered associative search: CAM and age logic are slow
• And age logic makes partitioning difficult

• Load queue load re-execution [Cain+’04]

• Store queue ?

[4]

Possible Solutions

• Engineer around associative search
• Put your best designer on the store queue
• Longer access latency than D$ nasty scheduler, replays…

• Put your best designer on the scheduler

• Proposed: reduce associative search
• Reduce bandwidth

• Bloom-filtered SQ [Sethumadhavan+‘03]

• Reduce number of stores searched
• Pipelined/chained SQ [Park+‘03]

• Hierarchical/filtered SQ [Srinivasan+‘04, Ghandi+’05, Torres+‘05]

• Decomposed SQ [Roth‘05; Baugh+‘04]

Why not just eliminate associative search?

[5]

Our Solution

data
(RAM)

age
logic

addr
(CAM)D$

addr

data

data
(RAM)D$

addr

data

• Replace associative search with indexed access

==

•Keep address match allow false positives boost accuracy

SQ index predictor

•Predict one SQ index per load
• Predictor (e.g., Store Sets) is not on load critical path

addr
(RAM)

• Replace address CAM + age logic with address RAM

NOT SCALABLE

[6]

Verification

•Speculative indexed access requires verification
•In-order load re-execution prior to commit [Cain+’04]

•Store Vulnerability Window (SVW) re-execution filter [Roth’05]

+ On average 3% of loads re-execute almost free
+ Works unmodified for speculative indexed SQ (address check)

Re-execution + Indexed store queue = …
CAM-free load/store unit

[7]

Outline

Introduction and background
•Forwarding index prediction

•Mechanism
•Evaluation

•Delay index prediction
•Mechanism
•Evaluation

•Conclusion

[8]

SSNs: A Naming System for Dynamic Stores

•SSNs (Store Sequence Numbers)
•Required for SVW and more convenient than store queue indices

+ Can name committed stores
+ Fewer wrap-around issues

•Monotonically increasing
•SSNcommit: youngest committed store
•SSNdispatch: youngest dispatched store (SSNcommit + SQ.NUM)
•From SSN to store queue index?

• If st.SSN > SSNcommit, st.INDEX = (st.SSN % SQ.SIZE)

[9]

Indexed Forwarding Pipeline Actions
Fetch

address

Issue

&

• Issue: wait for load address, SSNfwd to execute
• Unify: SSNfwd used for both forwarding and scheduling

SSNfwd

Decode Rename

forwarding
predictor

• Decode/rename: predict forwarding store (SSNfwd)

Re-execSVW

• SVW/re-execute: verify forwarding

Commit

• Commit: train predictor

ExecuteExecute

D$

=SQ

• Execute: index SQ, forward if address matches

M
U

X data

[10]

Forwarding Index Predictor

•Design inspired by Store Sets [Chrysos+‘98]

•Used for load scheduling … and forwarding

Decode Rename

predictor SSNfwd
Load
PC

FSP

• Forwarding Store Predictor (FSP)
• Maps load PC to small set of likely-to-forward store PCs
• (Load) PC-indexed, set-associative, entry={tag, (2) store PCs}

PCfwd1

PCfwd2

SAT
SSNfwd1

SSNfwd2

• Store Alias Table (SAT)
• Maps store PC to its most recent store instance (SSN)
• (Store) PC-indexed, direct-mapped, entry={SSN}

MAX

• SSNfwd: largest SSN (youngest in-flight store)

[11]

Working Example: Forwarding (Store Part)

18 19Z

65

4

B

Y
18 A B

SQ

PC Z: store 8, A
PC W: ld A

Fetch Decode Issue Execute Re-exec CommitRename SVWW-back

Predictor

FSP SAT
W X Y Z

19
Z

Data cache

headtail

PC Z: store 8, A

SSNcommit = 17

tail

[12]

Working Example: Forwarding (Store Part)

18 19
A

Z

65

4

B

YZ
18 A B

SQ

PC Z: store 8, A
PC W: ld A

Fetch Decode Issue Execute Re-exec CommitRename SVWW-back

Predictor

FSP SAT
W X Y Z

19

8

Data cache

tail head

SSNcommit = 17

PC Z: store 8, A

[13]

Working Example: Forwarding (Load Part)

1918Z

65

48

BA

YZ
18 A B

SQ

PC Z: store 8, A
PC W: ld A

Fetch Decode Issue Execute Re-exec CommitRename SVWW-back

Predictor

FSP SAT
W X Y Z

19

Data cache
Z

headtail

PCfwd = ?

SSNcommit = 17

PC W: ld A

[14]

Working Example: Forwarding (Load Part)

1918Z

65

48

BA

YZ
18 A B

SQ

PC Z: store 8, A
PC W: ld A

Fetch Decode Issue Execute Re-exec CommitRename SVWW-back

Predictor

FSP SAT
W X Y Z

19

Data cache
19

headtail

SSNfwd =
PCfwd = Z

?

SSNcommit = 17

PC W: ld A

[15]

Working Example: Forwarding (Load Part)

1918Z

45

48

BA

YZ
18 A B

Fetch Decode Issue Execute Re-exec CommitRename SVWW-back

Predictor

FSP SAT
W X Y Z

19

Data cache

SQheadtail

SSNfwd = 19

SSNcommit = 18

PC W: ld A

PC Z: store 8, A
PC W: ld A

5

8

A

[16]

Working Example: Verification (Store Part)

18 19Z

45

48

BA

YZ
A B

Fetch Decode Issue Execute Re-exec CommitRename SVWW-back

Predictor

FSP SAT
W X Y Z

19
8

Data cache

SQhead
tail

SSNcommit = 19

PC Z: store 8, A

PC Z: store 8, A
PC W: ld A, 8

[17]

Working Example: Verification (Load Part)

1918Z

48

48

BA

YZ
A B

PC Z: store 8, A
PC W: ld A, 8

Fetch Decode Issue Execute Re-exec CommitRename SVWW-back

Predictor

FSP SAT
W X Y Z Data cache

8

SQhead
tail

Successful Forwarding

SSNcommit = 19

PC W: ld A

[18]

Forwarding Index Predictor Training

• Store Alias Table (SAT)
• Not a “predictor”, analogous to RAT (register alias table)

• Forwarding Store Predictor (FSP)
• Train on every load at commit
• Address-indexed tables track PCs, SSNs of last committed stores

if (SSNfwd == committed_store_SSN[load.addr])
correct -> re-inforce

else
if (load.PCfwd != committed_store_PC[load.addr])

wrong -> learn new load-store pair
else

wrong -> unlearn existing store-load pair (later)

[19]

So Far, How Well Are We Doing?

•Basic setup
•Simulator: simplescalar Alpha

• 8-way superscalar, 19 stage pipe, 512-entry ROB
•Benchmarks: SPEC2000, Mediabench (only show 9 benchmarks)

•What we care about
•Forwarding prediction accuracy
•Performance vs. associative SQ

•Important Parameters
•64KB D$: 3 cycles
•64-entry SQ: associative 3 & 5 cycles, indexed 3 cycles

• CACTI 3.2: 90nm, 1.1V, 3GHz
•FSP: 4K-entry, 2-way

• Bigger than Store Sets: all dependences, not just violations
• Probably OK: PC-indexed, in-order front-end, only 8KB

[20]

Forwarding Index Prediction Accuracy

•99.5%+ accuracy (better than branch prediction), why?
•~88% loads don’t forward

• Address check these ~88% are right “by design”
•~12% loads forward

• Forwarding patterns are stable [Moshovos+, ’97]

98

98.5

99

99.5

100

lucas jpeg.e perl.s apsi gsm.e eon.c vortex wupwise mesa.t

P
er

ce
nt

of
lo

ad
s

[21]

First Things First: Baseline Performance

1

1.05

1.1

1.15

lucas jpeg.e perl.s apsi gsm.e eon.c vortex wupwise mesa.t

• Baseline: 3 cycle associative SQ and perfect scheduling
 + (slightly modified) Store Sets scheduling

• Store sets is basically a “perfect”scheduler

 + 5 cycle associative SQ (forwarding triggers replays)
• Latency/replays cause extra 1-10% slowdown

R
el

at
iv

e
ex

ec
ut

io
n

tim
e

[22]

Indexed Forwarding Performance

1

1.05

1.1

1.15

lucas jpeg.e perl.s apsi gsm.e eon.c vortex wupwise mesa.t

 3 cycle indexed SQ (with unified scheduling)
+ Forwarding accuracy high outperforms 5-cycle associative

R
el

at
iv

e
ex

ec
ut

io
n

tim
e

– Forwarding accuracy low slowdowns

[23]

Sources of Low Forwarding Prediction Accuracy

1

1.05

1.1

1.15

gsm.e eon.c vortex wupwise mesa.t

– FSP limitation
• Our FSP: 2 stores per load
• eon.c and vortex

– “Not-most-recent”forwarding
• Example: for (;;) { X[J] = A * X[J–2]; }
• When J = 5, load X[5–2] depends on store X[3]…
• … but SAT tracks the most recent store instance (X[4])
• mesa.t

[24]

Delay Index Prediction for Difficult Loads

• Uniform solution to low forwarding prediction accuracy
• Convert flush (really bad) to scheduling delay (less bad)
• Delay load until uncertain stores commit, get value from cache

•Decode/rename: predict … + delay store (SSNdelay)
•Issue: wait for … + SSNdelay to commit

delay
predictor SSNdelay

Decode Rename Issue CommitW-backExecuteFetch Re-execSVW

forwarding
predictor

SSNfwd

address

&

D$

=SQ
M

U
X data

[25]

Delay Index Predictor

Delay predictor SSNdelay

Decode Rename

SSNfwd
Load
PC

FSP SAT MAX

• Inspired by Exclusive Collision Predictor [Yoaz+‘99]

• See our paper for training

SUB
SSNdispatch

• SSNdelay = SSNdispatch –Distancedelay

DDP Distancedelay

• Delay Distance Predictor (DDP)
• Maps load PC to distance (in stores) to forwarding store
• PC-indexed, set-associative table, entry = {tag, distance}

• Example: not-most-recent forwarding (for J=5)
• SSNdispatch (X[4]) –Distancedelay (1) SSNdelay (X[3])

[26]

Indexed Forwarding (with Delay) Performance

1

1.05

1.1

1.15

lucas jpeg.e perl.s apsi gsm.e eon.c vortex wupwise mesa.t

R
el

at
iv

e
ex

ec
ut

io
n

tim
e

[27]

Indexed Forwarding (with Delay) Performance

1

1.05

1.1

1.15

lucas jpeg.e perl.s apsi gsm.e eon.c vortex wupwise mesa.t

 3 cycle indexed SQ + delay
• Forwarding prediction is good: not much impact (sometimes ±1%)

R
el

at
iv

e
ex

ec
ut

io
n

tim
e

+ FSP 2-store limitation: a few short delays
± Not-most-recent forwarding: many long delays

• Better than flushing … but not much

[28]

Performance Summary

1

1.05

1.1

1.15

lucas jpeg.e perl.s apsi gsm.e eon.c vortex wupwise mesa.t

 3 cycle indexed SQ + delay
+ On average 3% slower than 3 cycle associative SQ (black)
+ On average as fast as 5-cycle associative SQ (blue)

R
el

at
iv

e
ex

ec
ut

io
n

tim
e

31 16

[29]

Conclusion

Indexed store queue + load re-execution =
CAM free in-flight load/store unit

• Problem
• Scalability of store-load forwarding

• Approach
• Keep age-ordered store queue
• Replace associative search with indexed access
• Adapted Store-Sets predictor predicts forwarding index
• Adapted Exclusive Collision predictor delays difficult loads

• Effectiveness
+ As fast as realistic 5 cycle associative SQ
+ But simpler: unified scheduler, no forwarding replays,…

[30]

The End

•Thank you!

