
Scalable Target Coverage in Smart Camera Networks∗

Vikram P. Munishwar
Computer Science

State University of New York at Binghamton
vmunish1@cs.binghamton.edu

Nael B. Abu-Ghazaleh
†

School of Computer Science
Carnegie Mellon University, Qatar

naelag@cmu.edu

ABSTRACT
Smart camera networks are becoming increasingly popu-
lar in a number of application domains. In many appli-
cations, cameras are required to collaboratively track ob-
jects (e.g., habitat monitoring, or surveillance). In smart
networks, camera coverage control is necessary to allow au-
tomatic tracking of targets without human intervention, al-
lowing these systems to scale. In this paper, we consider the
problem of automatic control of the cameras to maximize
coverage of a set of targets. We formulate an optimization
problem with the goal of maximizing the number of cov-
ered targets. Since the optimization problem is NP-hard,
even for static targets, we propose a computationally effi-
cient heuristic to reach near-optimal solution. Centralized
solutions achieve excellent coverage, and can work well for
small-scale networks, however they require significant com-
munication cost for large scale networks. As a result, we
propose an algorithm that spatially decomposes the network
and computes optimal solutions for individual partitions.
By decomposing the partitions in a way that minimizes de-
pendencies between them, this approach results in coverage
quality close to the centralized optimal solution, with an
overhead and reaction time similar to those of distributed
solutions.
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Figure 1: A general network of wireless PTZ cam-
eras. The goal is to maximize the number of targets
covered, where each camera can cover only a spher-
ical sector of limited angle (field-of-view).
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1. INTRODUCTION
Recent technological developments in processing and imag-

ing have created an opportunity for the development of smart
camera nodes that can operate autonomously and collabo-
ratively to meet an application’s requirements. There is a
wide variety of camera nodes available that can be used in
camera networks deployments. The camera nodes in such
networks can range from low-cost, low-resolution embedded
camera sensors [10, 23, 24] to medium resolution webcams,
to high-resolution, configurable PTZ (pan, tilt, and zoom)
cameras.

Smart camera networks have a wide range of applications
in areas such as security monitoring and surveillance, locat-
ing and tracking people, traffic management, health care and
telemedicine [2]. Wireless camera networks can integrate
with an existing fixed infrastructure to substantially improve
the coverage and agility of these networks [6,11]. Moreover,
they can enable ad hoc surveillance where a group of wire-
less cameras are deployed in situations where infrastructure
is unavailable or expensive, or quick deployment is desired.
For instance, such networks can be used by emergency re-
covery teams to monitor a disaster area to guide the search
and rescue operation [20]. They can also monitor industrial
plants to quickly locate personnel in the event of accidents,



and to protect the plant from illegal intruders [29]. Camera
networks also have applications in domains such as environ-
mental monitoring and habitat monitoring for endangered
animals [7, 14,18].

The cameras must be controlled (pan, and if available, tilt
and zoom) to provide the best possible coverage of events
happening within the area of interest. As the scale of cam-
eras grows from tens to hundreds of cameras, it is imprac-
tical to rely on humans to control their setting to achieve
the best combined coverage. Thus, supporting autonomous
configuration of cameras to maximize their collective cover-
age is a critical problem in smart camera networks. Figure 1
presents a general camera network scenario, with multiple
PTZ cameras and a set of targets that need to be monitored.
Specifically, the goal here is to maximize the number of tar-
gets covered by all cameras which can cover only a limited
spherical sector (in 3-D) of the sphere of their potential cov-
erage region at a given time. Each target may have different
importance level. Moreover, the coverage for a given target
may vary from different cameras depending on resolution,
distance, and aspect of the target they capture.

We formulate the coverage problem in general; however,
our evaluation assumes wireless camera networks to study
some of the tradeoffs between delay, overhead and cover-
age quality in those networks. Although, a camera network
would need to track multiple mobile targets in the presence
of occlusions in a realistic scenario, we consider the prob-
lem of coverage of a static set of targets using a number of
pre-deployed cameras as a first step in this direction. This
represents the base case that we intend to later adapt to
account for mobility and occlusions.

We first present an Integer Linear Programming (ILP)
based formulation of the camera coverage optimization prob-
lem, which is based on the similar problem in the context of
directional sensor networks [1]. This is an NP-hard problem;
the decision version of this problem is based on the classical
MAX-COVER [12] problem, which is NP-complete. Due to
the high computational complexity of this problem for large-
scale networks, we present a novel centralized force-based
approach (CFA) which can compute close-to-optimal solu-
tion in polynomial time. We show that the solution obtained
by using CFA is very close to the optimal compared with
the existing heuristics (centralized as well as distributed)
for maximizing static targets coverage.

The centralized approach to compute optimal solution is
useful for small-scale networks, since the computation time
and the network delay for collecting the current states of all
cameras and targets at a central node, and disseminating
optimal configurations back to all cameras is small. As the
size of the network increases, the overhead of centralized
approaches becomes prohibitive. On the other hand, as we
validate in the evaluation section, the quality of the solutions
obtained from purely distributed protocols is significantly
worse than optimal. To address this problem, we propose to
use a semi-centralized approach–a hierarchical solution–that
attempts to combine the strengths of both approaches: the
coverage quality obtained via centralized solutions and the
low overhead and fast reaction time of distributed solutions.
This intuition is borne by our simulation studies.

The main contributions of this paper are:

1. An Integer Linear Programming (ILP) based formu-
lation of the camera coverage maximization problem,
based on the similar problem in the context of direc-

Figure 2: Camera coverage parameters

tional sensor networks [1].

2. A new centralized heuristic (CFA) to obtain a close-to-
optimal solution for the camera coverage maximization
problem in polynomial time.

3. A hierarchical approach to coverage maximization that
addresses the scalability problem associated with cen-
tralized (optimal and CFA) solutions.

The remainder of the paper is organized as follows. Sec-
tion 2 presents an Integer Linear Programming (ILP) formu-
lation for solving coverage maximization problem for static
targets, followed by the polynomial time, centralized force-
directed approach (CFA) presented in Section 3. Section 4
presents the hierarchical approach for addressing the scala-
bility problem. In Section 5, we present performance evalua-
tion of centralized, distributed, and hierarchical approaches
for maximizing the coverage gain. Section 6 presents the
related work in this area. The concluding remarks and di-
rections for future work are present in the Section 7.

2. BACKGROUND
We consider the general problem of maximizing target

coverage by a pre-deployed camera network. Without loss
of generality, we consider coverage as the total number of
unique targets covered by the cameras. Thus, all targets
are considered of equal importance and coverage of targets
by cameras is boolean. In this section, we first present a
brief overview of camera’s field-of-view, and then give an
overview of the ILP based problem formulation for maximiz-
ing the number of targets covered by cameras. For this work,
we consider a camera node as a PTZ camera attached with
an embedded board having sufficient processing capacity to
carry out the simple processing required for the proposed
algorithms.

2.1 Field-of-view of a camera
A field-of-view (FoV) of a camera represents the extent of

its visible field. Typically, FoV is represented by its angle-of-
view (θ) and depth-of-field (R). Angle-of-view is represented
in terms of the horizontal angle-of-view (θh) and vertical
angle-of-view (θv).The depth-of-field represents the area of
the visual scene that is acceptably sharp. Thus, for a given
target, and a given level of acceptable sharpness, the depth-
of-field of a camera spans from Rmin to Rmax. In order to
simplify and abstract away the details, we consider the FoV
of a camera as a spherical sector, which can be described by
its angle-of-view (θ), and depth-of-field (Rmin and Rmax).



2.2 ILP Problem Formulation
We make the following assumptions in the formulation.

We assume that the positions of uncovered targets can be
obtained through an external localization mechanism, such
as using stereo cameras or a set of wide FoV cameras that
can report approximate positions of targets. This assump-
tion is consistent with those made by other works [17, 25].
PTZ cameras send their FoV and nearby targets’ positions
to a central node for computing optimal FoV parameters for
all cameras. We consider that a target is either covered or
not covered by a camera [19]; it should be possible to gen-
eralize to consider a more continuous measure of coverage
in the future. Moreover, the model can generalize to con-
sider occlusions as uncovered targets even when they are in
the camera’s FOV. For our experiments, we assume that the
cameras are homogeneous but the formulation can naturally
incorporate heterogeneous cameras. Thus, PTZ cameras can
choose from a discrete set of pans (we do not consider tilt
and zoom).

Consider a set of N static cameras trying to monitor M
static targets (or objects) present in an area free of obstacles.
Each camera is capable of panning to one of a discrete set of
pans, P . The output of the optimization program is the list
of camera ∈ N , pan ∈ P pairs that collectively maximize
the number of targets ∈M covered.

The following additional variables are also used in the for-
mulation as shown in the Figure 2:
~vij : Camera-Object vector from camera i to object j
~dik: Camera direction vector defining camera i’s orientation

in direction (or pan) k.

φij : The angle between ~vij and ~dik.
θ: Angle of field-of-view of camera, defining the visible area
for the camera.
Rmax: Maximum length of the field-of-view of camera.
Rmin: Minimum length of the field-of-view of camera.
P : A set of possible discrete pan values for a camera.

The camera angle φij is calculated by using elementary
trigonometry as:

φij = cos−1

(
~dik. ~vij

| ~dik|| ~vij |

)
. (1)

An object j is covered by camera i if

φij ≤
θ

2
. (2)

Rmin ≤ | ~vij | cosφij ≤ Rmax. (3)

Using the above coverage test, each camera can generate its
coverage matrix AM

N×P as:

ajik =

{
1 if camera i with pan k covers object j.
0 otherwise.

The utility of each object j is assumed to be equal; the
overall objective is to maximize the overall number of cov-
ered targets. A target covered by multiple cameras only
counts as one target towards the overall objective.

Maximize
∑
j∈M

γj . (4)

Where, γj is a binary variable taking value 1 when target j
is covered by at least one camera, and 0 otherwise.

Figure 3: Illustration of Force-directed Approach

Figure 4: A counter example for CFA

The constraints of the problem can be represented as:

∑
k∈P

Xik ≤ 1 ∀i ∈ N. (5)

∑
i∈N,k∈P a

j
ikXik

L
≤ γj ≤

∑
i∈N,k∈P

ajikXik ∀j ∈M. (6)

X ∈ {0, 1} , γ ∈ {0, 1} . (7)

where Xik is a binary variable which takes value 1 if pan k
is selected for camera i; L is an arbitrary large value (L ≥
‖N‖); and Equation 5 specifies the constraint that only a
single pan can be assigned to a camera at a given time.
Equation 6 allows the binary variable γj to assign itself a
value 1 if target j is covered by at least one camera, and 0
otherwise.

The above problem is an Integer Linear Programming
(ILP) problem. A similar problem formulation in the con-
text of directional sensor networks has shown to be NP-
hard [1]. Thus, in the following section, we present a polynomial-
time, near-optimal, heuristic.

3. CENTRALIZED FORCE-DIRECTED AL-
GORITHM (CFA)

Since the optimal problem is NP-hard, we present a computationally-
efficient heuristic that provides near-optimal camera config-
urations. We consider the objects covered in a particular
pan as exerting a force proportional to the number of cov-
ered objects in that direction. More precisely, the force Fik

on camera i for selecting pan k is computed as:

Fik =
|Mik|
|Mi|

i ∈ N, k ∈ P (8)

where Fik is a ratio of |Mik|, the number of objects covered
by camera i in pan k, and |Mi|, the number of objects that
camera i can potentially cover (in all possible pans). Fig-
ure 3 presents an example of the computation of the force.

The proposed approach is a greedy based solution that
iteratively selects camera-pan assignment pairs in decreasing
order of their force magnitudes, as presented in Algorithm 1.

CFA has three loops: the outer while loop runs N times,
and the inner loops run for each camera-pan pair (i.e. |N |×



Algorithm 1: Centralized Force-directed Approach

input : N = {set of cameras}; M = {set of objects};
P = {set of discrete pans}

output: Z; Camera-pan pairs given by CFA.

while N 6= {} do1

Compute Fik for each i ∈ N and k ∈ P ;2

Insert {i, k} with highest Fik in Z;3

Remove selected camera from N ;4

Remove selected targets from M ;5

|P | times). Thus, the time complexity of CFA is O(N2P ).
Given a large network where N is large, the complexity is
O(N2)

While our experiments show that CFA gives near-optimal
solutions in most cases, since it is a greedy algorithm, it can
fail to produce optimal coverage. Figure 4 shows one of the
cases where CFA finds a suboptimal configuration. Cam-
era C1 will first choose pan P1 as it has the highest value
of F1,1 = 0.75. Subsequently, for the remaining cameras,
the value of force along pan P1 becomes F2,1 = 1, F3,1 =
1, F4,1 = 1, while for pan P2 of the remaining cameras, the
force is zero. Thus, any camera can proceed given their equal
force magnitude, and the algorithm will terminate since all
cameras have either their pans assigned, or have zero force.
This configuration only covers 3 targets, whereas the op-
timal configuration covers all 4 as can be seen in the fig-
ure. Nonetheless, in the experimental evaluation section we
discover that in large random deployments of cameras and
targets, CFA performs very close to optimal in most cases.

4. ADDRESSING SCALABILITY PROBLEM:
HIERARCHICAL APPROACH

The centralized approaches discussed so far work well for
small sized networks, however they scale poorly for large-
sized networks due to: (1) Computational complexity: The
computational complexity of solving the ILP-based opti-
mization problem increases exponentially w.r.t the number
of cameras. (2) Large response delay: The response delay–
the time difference between the request transmission by the
first camera and the response reception by the last camera–
is directly proportional to the number of cameras in the
network.

To address these problems, we propose to use hierarchi-
cal mechanism for coverage maximization in large-scale net-
works. The intuition is to spatially decompose cameras
within the network into small-sized partitions to take advan-
tage of separation among cameras due to their geographical
positions or presence of obstacles. The more separated the
cameras are, the more independence they get in terms of
coverage.

4.1 Modified Single-Linkage Algorithm (SLA)
In order to create clusters within the network, we mod-

ify the existing, well known hierarchical clustering approach,
Single-Linkage Clustering [27], where distance between two
cluster is considered as the minimum distance between two
points from the two clusters. The modifications to this al-
gorithm are specific to the camera-coverage problem:

1. Termination condition for cluster merging: Single-linkage

clustering approach is a bottom-up clustering approach,
which starts with each camera as a separate cluster,
and merges clusters ‘close-enough’ with each other into
a single cluster at different levels of the hierarchy. We
employ a limit on the merging operation if the smallest
distance between two clusters is greater than 2∗Rmax,
where Rmax is maximum sensing radius of a camera,
since decisions of such clusters will be completely in-
dependent of each other.

2. Cluster size (Smax): This is an important parame-
ter, specific to the resource-constrained camera node,
which may act as a cluster-head to compute optimal
parameters for its cluster-members. Since, the num-
ber of pans a camera can take is constant, the time
required to compute optimal result on a camera node
(e.g. PTZ camera connected with a Soekris board [28])
is directly proportional to its cluster size. Thus, cluster-
merging operation is terminated if the resultant size of
the merged cluster will be greater than Smax.

The modified Single-Linkage Algorithm (SLA) is described
in Algorithm 2. Essentially, during each iteration, the while
loop increments d and tries to merge more clusters, such
that the combined size of the clusters is less than Smax, and
the minimum Eucledian distance between them is at most
d. If at least one merged-cluster is created, a new level is
added to the hierarchy. Once the clusters are formed, the
cluster-member that is minimum hop away from the rest of
the cluster members is chosen as the cluster head.

Algorithm 2: Modified Single Linkage Algorithm

input : A = {Adjacency matrix of Eucledian distances
among cameras}; Smax = Maximum cluster
size; R = Coverage range of a camera

output: Z; Set of final clusters

` = 0; Current level of hierarchy;1

d = Bound on distance between two cluster members;2

∆ = Distance increment;3

Clusters` = List of clusters. Each camera is an4

individual cluster initially;
while d ≤ 2 ∗R do5

NewClusters = {};6

foreach Ci ∈ Clusters` do7

NewC = {};8

foreach unused Cj ∈ Clusters` do9

if ‖Ci‖+ ‖Cj‖ ≤ Smax &10

MinDist(Ci, Cj) ≤ d then
NewC = NewC ∪ Cj ;11

set Cj to be a used cluster;12

if ‖NewC‖ > 0 then13

add(NewClusters,NewC);14

if ‖NewClusters‖ 6= ‖Cluster`‖ then15

Clusters`+1 = NewClusters;16

`+ +;17

d = d+ ∆;18

Z = Clusters`;19

Using the clusters provided by the modified SLA algo-
rithm, optimal camera configurations can be computed for
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Figure 5: Study of varying number of targets.

individual clusters, instead of computing them in a global
manner. Specifically, each cluster-member sends a request
to its cluster-head, and the cluster-head computes and sends
the optimal camera configurations back to the members.

Hierarchical approach may produce sub-optimal results
when the cameras on the boundaries of different clusters
end up covering the same targets due to the computations
performed for individual clusters. However, such scenarios
have appeared very infrequently in our experimental evalu-
ation conducted by varying the density of targets and cam-
eras. Thus, we do not incorporate a solution to handle this
problem. However, if in certain scenarios, the coverage loss
is significant, the boundary camera coverage problem can
be solved by allowing border cameras that are covering re-
dundant targets to collaborate with each other and choose
different pans in a greedy manner.

5. EXPERIMENTAL EVALUATION
In this section, we present experimental evaluation for

coverage maximization policies for static targets. We have
simulated the proposed coverage approaches using QualNet
simulator [26]. Nodes are categorized into camera nodes and
targets, and are assigned respective functionalities. Each
camera is set with a pre-defined maximum length of the FoV
Rmax = 100, minimum length of FoV Rmin = 0, and FoV
angle θ = 45◦. The camera can choose from 8 discrete pan
values as its orientation, however the proposed approaches
can use higher number of pans, which could be overlapping.
For evaluating the hierarchical approach, the maximum al-
lowed cluster size is set to be Smax = 10, in order to get
reasonable number of clusters. Each experiment was run for
500 seconds. We compare six different coverage policies rep-
resenting centralized, distributed, and semi-centralized ap-
proaches. We first overview the existing heuristics that are
used as benchmarks for our protocol evaluation, followed by
the detailed evaluation of proposed approaches.

5.1 Existing Heuristics
Abouzeid et al [1] provide two greedy heuristic-based poly-

nomial time algorithms to solve the similar problem in the
context of directional sensor networks:

1. Centralized Greedy Approach (CGA): CGA starts with
making all cameras inactive, and selecting an inactive
camera in each iteration that can cover maximum num-
ber of objects in a single direction.

2. Distributed Greedy Approach (DGA): In DGA, all sen-
sors assign themselves a unique priority value, and ini-

tialize their direction in a random manner. Each sen-
sor detects the total number of targets it can cover
in each direction, and selects the direction covering
maximum targets. It then sends this direction infor-
mation to its sensing neighbors (neighbors in 2*sens-
ing range radius). Overlaps in the target coverage are
avoided by accepting the decision of higher priority
sensor node. The priority assignment scheme of DGA
ensures that the algorithm will terminate. However,
the algorithm converges in iterative fashion, stabiliz-
ing from the highest priority node in the network.

Greedy Approach: We also use the typical greedy approach
as our benchmark, where each camera autonomously assigns
a pan that maximizes the number of targets covered from
its potential targets.

5.2 Study of Varying Number of Targets
We have modeled the ILP problem formulation using AMPL-

CPLEX [15]. We compare the proposed CFA approach with
the optimal result obtained by solving the ILP, and also
with the other centralized approach, CGA, distributed ap-
proaches DGA and Greedy, and the hierarchical approach.

Figure 5 shows a comparison of six policies, where Optimal
policy is the answer computed by solving the ILP, while the
Hierarchical policy results are obtained by solving ILP for
individual clusters and noting the collective coverage gain.
X-axis represents the varying number of targets used for
the experiment, and the Y-axis represents Percent Coverage,
which is calculated as:

PercentCoverage =
|Mcovered|
|Mpotential|

(9)

where, |Mcovered| are the number of targets covered by all
cameras, while |Mpotential| are the number of targets present
in the sensing radius of all cameras. Thus, we exclude tar-
gets that are not placed in the potential coverage area of
all cameras from the percent-coverage calculation. This ex-
periment is run with 50 cameras deployed randomly on a
1000 sq. meter terrain. The objects are also deployed in
a random fashion. The reason behind choosing the ran-
dom deployment policy for cameras and targets was that
the mixture of regions with dense and sparse deployment of
cameras, which typically reflects the real-world settings, is
possible with random deployment, compared with the uni-
form deployment. Essentially, in real-world settings, more
cameras would need to be deployed at the places with large
interesting activity, while a few cameras would suffice where
the activity of interest is minimal.

We also test the proposed policies for scenarios where tar-
gets could be present in groups, by creating inhomogeneous
node distributions for targets [3]. Figure 6 shows comparison
of the coverage policies for covering clustered targets.

As it can be observed, the CFA not only outperforms the
other heuristics, but also gives extremely close to optimal
results. Moreover, the hierarchical policy also tracks the op-
timal very closely even when the terrain is densely populated
with targets. However, since the CFA and the hierarchical
policies are heuristics, they do not always behave optimally,
as discussed in the respective sections. Although, it is possi-
ble to handcraft scenarios where hierarchical approach per-
forms poorer than the optimal solution, such situations have
rarely occurred in the randomly generated deployments of
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Figure 8: Study of overhead for
varying number of cameras.

cameras and targets. Even when such scenarios are present,
their effect is insignificant, when compared with the respec-
tive optimal solutions.

5.3 Study of Varying Number of Cameras
Figure 7 shows a comparison of the six policies for vary-

ing number of cameras. The number of targets were set to
100, and terrain dimension as 1000 sq. meters. As it can
be noted from the graph, CFA and Hierarchical approaches
outperform the other approaches and track the optimal val-
ues closely, if not overlapping. CFA and Hierarchical policies
deviate slightly from the optimal for larger number of cam-
eras deployed in a fixed sized terrain, in comparison with the
smaller number of cameras. The reason behind this loss of
coverage can be attributed to the existence of the counter-
example case for the CFA, as described in Section 3, while
the lack of coordination among cameras lying on the bound-
aries of different clusters, for the Hierarchical policy.

Figure 8 shows the overhead incurred by different policies
in terms of the end-to-end delay. Specifically, for centralized
approaches (Optimal, CFA, CGA), we define the end-to-end
delay as the difference of time when the first camera sent its
request to the base-station, and when the last camera re-
ceived the optimal configuration from the base-station. For
the DGA, end-to-end delay is the difference in time when
the first camera sent the DGA packet to its neighbors, and
when the last camera reconfigured itself without updating
the neighbors. As it can be noted from the graph, overhead
of centralized policies increases drastically as the number of
cameras increases, while the increase in overhead for the dis-
tributed and semi-centralized approaches is minimal. Also,
the Hierarchical approach outperforms DGA in terms of the
end-to-end delay, even for networks with larger scale, since
the DGA is inherently iterative in its approach. Note that
the delay for centralized approaches is very high, especially
for larger number of cameras. This is because the overall
response time is severely affected even if the data for one
camera is delayed from the base station, since the base sta-
tion backs off multiplicatively on packet losses, based on the
TCP’s congestion control mechanism.

5.4 Study of Hierarchical Policy for Varying
Camera Density

Figure 9 shows the comparison of the hierarchical policy
with optimal in terms of the target-based coverage achieved.
For this experiment, we have used 30 cameras, and 100 ob-
jects. We vary the terrain dimension from 200 sq. meters to

1000 sq. meters. Each cluster computes optimal value for
its members by solving the ILP.

As it can be seen from the graph, the hierarchical policy
gives close-to-optimal results. Both the approaches appear
to give almost the same performance at extremes: as the
terrain size increases, the cameras get placed more sparsely
so that they have minimal dependence in terms of coverage
on each other. On the other hand, for 200 sq. meters terrain
scenario, cameras are densely packed within the small area,
and thus end up covering most of the terrain area.

5.5 Study of the Impact of Smax

In Figure 10 and 11, we study the impact of varying the
maximum allowed cluster size Smax on the perceived cover-
age gain and the overhead (in terms of end-to-end delay).
For this experiment, we deployed 50 cameras and 100 targets
in random fashion on a 500 sq. meter terrain. As it can be
noted from the graphs, the difference between the coverage
gain reduces as the value of Smax increases, reaching optimal
when there is only a single cluster. In terms of the end-to-
end delay based overhead, the hierarchical approach has an
order of magnitude less overhead compared with the central-
ized optimal solution, when there are at least two clusters
present. This represents the benefit of spatially decomposing
the network. The overhead increases drastically when there
is a single cluster, however it does not meet the overhead of
centralized policies, since for hierarchical policy, the cluster-
head itself is a camera, while for the centralized policies, the
base-station is not. Thus, by carefully selecting the value
of Smax, the hierarchical policy provides near-optimal cov-
erage with the response time close to that of the distributed
policies.

6. RELATED WORK
One of the classic coverage optimization problems, the Art

Gallery Problem [31], focuses on placing minimum number
of security guards in an art gallery so that all points in the
whole gallery will be under observation. In the context of Di-
rectional Sensor Networks (DSNs), Cheng et al [5] have pro-
posed Maximum Directional Area Coverage (MDAC) prob-
lem to maximize the total area covered by a DSN, while
minimizing the number of active sensors. In another in-
stance, Erdem et al. [9] consider the problem of determining
automatic camera deployment layout to satisfy task-specific
and floorplan-specific coverage requirements. Hoffmann et
al [13] propose a distributed approach to maximize the total
area coverage, where each camera tries to minimize cover-
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Figure 10: Study of Smax on the per-
ceived coverage gain.
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Figure 11: Study of Smax on the end-
to-end delay.

age overlaps with its neighboring cameras. Although, these
works address the problem of maximizing coverage by direc-
tional sensors, they focus mainly on maximizing the coverage
of a given area, which is different from our goal of maximiz-
ing target-oriented coverage.

Significant research has been done on tracking a single
or multiple targets [8, 21, 30]. However, this research is not
targeted towards maximizing the number of targets under
observation (the coverage maximization problem).

Some of the recent works in the context of directional sen-
sor networks have provided optimization based solutions to
address a basic instance of the problem of covering maxi-
mum targets [1, 4, 5]. Abouzeid et al [1] formulate the cov-
erage optimization problem as a Maximum Coverage with
Minimum Sensors (MCMS) problem, and show that MCMS
is NP-complete. They formulate the MCMS problem as an
Integer Linear Programming (ILP)problem to propose a cen-
tralized approach to solve the problem. However, since the
centralized approach is not scalable, they provide greedy
based centralized and distributed approaches for coverage
maximization for DSNs, as described in Section 5.1.

Cai et al [4] focus on the problem of maximizing the life-
time of directional sensor network. Essentially, they com-
pute Multiple Directional Cover Sets (MDCSs) for a given
set of targets, where a Directional Cover Set (DCS) is a
subset of directions of the sensors, which can cover all the
targets present in the area under observation. Thus, by
computing multiple such DCSs, they can alternately acti-
vate only one DCS at any given time, while keeping the
other sensors in sleep state. This helps them increase the
overall network lifetime. The authors have shown that the
problem of computing DCS and MDCS is NP-complete.

Krahnstoever et al [16], propose a solution for a typical
surveillance class applications, where the goal is to cover
each target for a fixed interval. Thus, this paper focuses
on obtaining optimal scheduling pattern for covering tar-
gets, such that the total information gain from the overall
coverage is maximum. Qureshi et al [22] present a plan-
ning strategy to achieve a close-up biometric coverage of
selected pedestrians till they are present in the coverage re-
gion. These works differ from our work in terms of the ob-
jective: we focus on applications where it is important to
track targets continuously as much as possible.

7. CONCLUSION AND FUTURE WORK
Smart camera networks are gaining increasing popularity

due to their applicability in a number of real-world scenar-

ios. In smart camera networks, coverage control is necessary
to allow automatic tracking of targets without human inter-
vention, allowing these systems to scale. In this paper, we
consider the problem of automatic control of the cameras
to maximize coverage of a set of targets. To address this
problem, we first present an ILP based formulation of the
coverage optimization problem, which is based on the simi-
lar work in the context of directional sensor networks. Since,
the ILP problem is NP-hard, we proposed a novel polyno-
mial time force-directed approach (CFA), which performs
very close to the optimal as shown in the experimental evalu-
ation section. Since, the purely centralized solutions are not
scalable, we proposed a hierarchical approach that spatially
decomposes the network and computes optimal solutions for
individual partitions. We validated experimentally that the
hierarchical policy gives close to the optimal results, while
maintaining the overhead close to the distributed approaches
with careful selection of parameters (especially Smax).

In future, we plan to extend the proposed solutions for
ensuring maximum coverage in case of mobile targets, and
study the effectiveness of centralized, distributed, and semi-
centralized approaches for different target-mobility scenarios
in simulations as well as on a real testbed. Next, we would
like to focus on maximizing coverage when static/mobile ob-
stacles are present in the deployment area.
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