
Scalable Techniques for Clustering the Web

Extended Abstract

Taher H. Haveliwala
Stanford University

taherh@db.stanford.edu

Aristides Gionis
Stanford University

gionis@db.stanford.edu

Piotr Indyk
Stanford University

indyk@db.stanford.edu

ABSTRACT
Clustering is one of the most crucial techniques for dealing
with the massive amount of information present on the web.
Clustering can either be performed once offline, indepen-
dent of search queries, or performed online on the results
of search queries. Our offline approach aims to efficient-
ly cluster similar pages on the web, using the technique of
Locality-Sensitive Hashing (LSH), in which web pages are
hashed in such a way that similar pages have a much higher
probability of collision than dissimilar pages. Our prelimi-
nary experiments on the Stanford WebBase have shown that
the hash-based scheme can be scaled to millions of urls.

1. INTRODUCTION
Clustering, or finding sets of related pages, is currently one
of the crucial web-related information-retrieval problems.
Various forms of clustering are required in a wide range of
applications, including finding mirrored web pages, detect-
ing copyright violations, and reporting search results in a
structured way. With an estimated 1 billion pages current-
ly accessible on the web [19], the design of highly scalable
clustering algorithms is required.

Recently, there has been considerable work on web cluster-
ing. The approaches can be roughly divided into two cate-
gories1

• Offline clustering, in which the entire web crawl data
is used to precompute sets of pages that are related
according to some metric. Published work on very-
large-scale offline clustering has dealt mainly with a
metric that provides a syntactic notion of similarity
(initiated by Broder et al. [5], see also [9]), where the
goal is to find pairs or clusters of web pages which are
nearly identical.

• Online clustering, in which clustering is done on the
results of search queries, according to topic. Recent
work has included both link-based (initiated by Dean
and Henzinger [8]), and text-based (see Zamir and Et-
zioni [18]) methods.

1As far as the published results are concerned. Several ma-
jor search engines, including AOL, Excite, Google and In-
foseek, offer the “find related web pages” option, but the
details of their algorithms are not publicly available.

Although the syntactic approach for finding duplicates has
been tried offline on a large portion of the web, it cannot be
used when the form of documents is not an issue (e.g, when
two pages, one devoted to “automobiles” and the other fo-
cused on “cars,” are considered similar). The approaches
taken by [5, 9, 17] can not scale to the case where we are
looking for similar, as opposed to almost identical, docu-
ments. Computing the document-document similarity ma-
trix essentially requires processing the self-join of the rela-
tion DOCS(doc, word) on the word attribute, and counting
the number of words each pair of documents has in common.
The syntactic clustering algorithms [5, 9], on the other hand,
use shingles or sentences rather than words to reduce the size
of the self-join; this of course only allows for copy detection
type applications. Although clever algorithms exist which
do not require the self-join to be represented explicitly [9],
their running time is still proportional to the size of the self-
join, which could contain as many as 0.4× 1013 tuples if we
are looking for similar, rather than identical, documents2.
Assuming the processing power of, say, 0.5 × 106 pairs per
second3, the running time of those algorithms could easily
exceed 90 days.

Online methods based on link structure and text have been
applied successfully to finding pages on related topics. Un-
fortunately, the text-based methods are not in general scal-
able to an offline clustering of the whole web. The link-based
methods, on the other hand, suffer from the usual drawbacks
of collaborative filtering techniques:

• At least a few pages pointing to two pages are neces-
sary in order to provide evidence of similarity between
the two. This prevents search engines from finding the
relations early in the page’s life, e.g., when a page is
first crawled. Pages are discovered to be similar only
when a sufficient number of people cocite them. By
that time, the web pages are likely to already have
been included in one of the popular web directories
(e.g., Yahoo! or Open Directory), making the discov-
ery less attractive.

• Link-based methods are sensitive to specific choices
made by the authors of web pages; for example, some

2Our estimation using the sketching approach of [5], see Sec-
tion 3 for more details of that technique. Unfortunately, the
relation is too large to compute its exact size.
3Estimation based on the experiment in [17], page 45

people use (and point to) CNN weather information,
while others prefer MSNBC, in which case there might
be no “bridge” between these two pages.

We describe an ongoing project at Stanford whose goal is
to build a scalable, offline clustering tool that overcomes
the limitations of the above approaches, allowing topical
clustering of the entire web. Our approach uses the text
information from the pages themselves and from the pages
pointing to them. In the simplest scenario, we might want
to find web pages that share many similar words.

We use algorithms based on Locality-Sensitive Hashing (LSH),
introduced by Indyk and Motwani [14]4. The basic idea is
to hash the web pages in a way such that the pages which
are similar, according to metrics we will discuss later, have
a much higher probability of collision than pages which are
very different. We show that using LSH allows us to cir-
cumvent the “self-join bottleneck” and make web clustering
possible in a matter of a few days on modest hardware,
rather than months if the aforementioned techniques were
used.

In Section 2 we describe our representation of documents.
In Section 3 we discuss our similarity measure and provide
evidence of its validity. In Section 4 we show how we use
LSH techniques to efficiently find pairs of similar documents,
and in Section 5 we use the set of similar pairs to generate
clusters. We present our initial timing results in Section 6
and finally end with future work in Section 7.

2. BAG GENERATION
We now describe our representation of a given document.
The most common representation used in the IR community
is based on the vector space model, in which each document
is treated as an n-dimensional vector, where dimension i
represents the frequency of termi [16]. Because similarity
metric, described further in Section 3, is based on the in-
tersection and union of multisets, we will use an equivalent
characterization in which each document docu is represented
by a bag Bu = {(wu

1 , fu
1), . . . , (wu

k , fu
k)} where wu

i are the
words present in the bag and fu

i are the corresponding fre-
quencies. We consider two options for choosing which terms
are assigned to a document’s bag. In the first strategy, we
take the obvious approach, and say that Bu for docu is given
by the multiset of words appearing in docu. Our second ap-
proach is to define Bu to be the union of all anchor-windows
referring to docu. We will define anchor-windows in detail
in Section 2.2, but briefly, it means that termj appears in
Bu for each occurrence of termj occurring near a hyperlink
to docu. We chose to drop both low frequency and high fre-
quency words from all bags. For both the content-based and
anchor-based approach, we have the option of applying one
of the commonly used variants of TFIDF scaling; we scale
each word’s frequency according to tfidfu

i =
p

fu
i ×log(N

dfi
),

where N is the number of documents, dfi is the overall doc-
ument frequency of word i, and fu

i is as before [16]. Finally
we normalize the frequencies within each bag so all frequen-
cies sum to a fixed number (in our implementation 100).
4A similar algorithm has been independently discovered by
Broder [3]

2.1 Content-Based Bags
The generation of content based bags is straightforward.
We scan through the web repository, outputting normalized
word-occurrence frequencies for each document in turn. The
following three heuristics are used to improve the quality of
the word bags generated:

• All HTML comments, Javascript code, and non-alphabetic
characters are removed. All HTML tags are removed,
although image ‘alt’ text is preserved.

• A custom stopword list containing roughly 750 terms
is used. Roughly 300 terms were taken from a popular
indexing engine. We then inspected the 500 highest
frequency terms from a sample of the repository and
included all words except for names of companies and
other terms we subjectively decided could be meaning-
ful.

• The well known Porter’s stemming algorithm is used
to remove word endings [15].

Note that the content-based bags never need to be stored
to disk; rather, the stream of bags is piped directly to the
min-hash generator described in 3.

2.2 Anchor-Based Bags
The use of page content for clustering is problematic for
several reasons. Often times the top level pages in a site
contain mostly navigational links and image maps, and may
not contain content useful for clustering [1]. Different pages
use different styles of writing, leading to the well known
linguistic problems of polysemy and synonymy [16].

One way to alleviate these problems is to define the bag rep-
resenting a document to be the multiset of occurrences of
words near a hyperlink to the page. When pages are linked
to, the anchor text, as well as the text surrounding the link,
henceforth referred to collectively as anchor-windows, are of-
ten succinct descriptions of the page [1, 6]. The detrimental
effects of synonymy in particular is reduced, since the union
of all anchor-windows will likely contain most variations of
words strongly indicative of the target page’s content.

Also note that with the anchor-based approach, more docu-
ments can be clustered: because it currently is not feasible
to crawl the entire web, for any web-crawl repository of size
n, references to more than n pages will be made in anchors.

We now discuss the generation of anchor-based bags. We
sequentially process each document in the web repository
using the same heuristics given in Section 2.1, except that
instead of outputting a bag of words for the current doc-
ument, we output bag fragments for each url to which the
document links. Each bag fragment consists of the anchor
text of the url’s link, as well as a window of words imme-
diately preceding and immediately following the link. The
issue of what window size yields the best results is still be-
ing investigated; initial experiments led us to use a window
of size 8 (before and after the anchortext) for the result-
s presented in this paper. In addition to anchor-windows,

we generate an additional bag fragment for docu consisting
solely of the words in the title of docu.

As they are generated, we write the bag fragments to one
of M on-disk buckets, based on a hash of the url, where M
is chosen such that a single bucket can fit in main memory.
In our case, M = 256. After all bag fragments are gen-
erated, we sort (in memory) each bucket, collapse the bag
fragments for a given url, apply TFIDF scaling as discussed
in Section 2, and finally normalize the frequencies to sum to
100.

The remainder of our discussion will be limited to the use
of anchor-based bags for representing documents.

3. SIMILARITY MEASURE
The key idea of our approach is to create a small signature
for each url, to ensure that similar urls have similar sig-
natures. Recall that each url docu is represented as a bag
Bu = {(wu

1 , fu
1), . . . , (wu

k , fu
k)}. For each pair of urls u and

v, we define their similarity as sim(u, v) = |Bu∩Bv |
|Bu∪Bv | . The ex-

tension of the operation of intersection (union, resp.) from
sets to bags is defined by taking as the resulting frequency of
a word w the minimum (maximum, resp.) of the frequencies
of w in the two bags to be intersected (merged, resp.).

Before discussing how we can efficiently find similar docu-
ments, we provide evidence suggesting that the above simi-
larity metric applied to anchor-based bags as defined in Sec-
tion 2.2 provides intuitive and useful results.

For all of our experiments, we used the first 12 million pages
of the Stanford WebBase repository, on a crawl performed
in January 1999 [11]. The 12 million pages led to the gen-
eration of anchor-based bags for 35 million urls.

We tested our approach to defining document-document sim-
ilarity as follows. We gathered all urls contained at the sec-
ond level of the Yahoo! hierarchy. We randomly chose 20
of the Yahoo! urls, and found the 10 nearest-neighbors for
each among our collection of 35 million urls, using the simi-
larity measure defined above. To find the neighbors for each
of the 20 urls, we simply scan through our bags and keep
track of the 10 nearest-neighbors for each. Of course this
brute force method will not work when we wish to discover
pairwise similarities among all 35 million urls in our collec-
tion; we will discuss in detail in Section 4 how to use LSH
to do this efficiently.

Note that we never utilize Yahoo’s classifications; we simply
use Yahoo! as a source of query urls. By inspecting the sets
of neighbors for each of the Yahoo! urls, we can qualitatively
judge how well our measure of document-document similar-
ity is performing. Substantial work remains in both measur-
ing and improving the quality of our similarity measure; a
quantitative comparison of how quality is affected based on
our parameters (i.e., adjusting anchor-window sizes, using
other IDF variants, using page content, etc...) is beyond the
scope of our current presentation, but is an important part
of our ongoing work. Our initial results suggest that using
anchor-windows is a valid technique for judging the simi-

larity of documents. We list seven of the nearest-neighbor
sets below. The basic topics of the sets are, respectively:
(1) English language studies (2) Dow Jones Index (3) roller-
coasters (4) food (5) French national institutes (6) headline
news, and (7) pets. In each set, the query url from Yahoo!
is first, followed by its 10 nearest neighbors.

1:

eserver.org

www.links2go.com/go/humanitas.ucsb.edu

eng.hss.cmu.edu

www.rci.rutgers.edu/~wcd/engweb1.htm

www.mala.bc.ca/~mcneil/template.htx

www.links2go.com/more/humanitas.ucsb.edu

www.teleport.com/~mgroves

www.ualberta.ca/~englishd/litlinks.htm

www.links2go.com/add/humanitas.ucsb.edu

english-www.hss.cmu.edu/cultronix

sunsite.unc.edu/ibic/guide.html

2:

www.dowjones.com

bis.dowjones.com

bd.dowjones.com

businessdirectory.dowjones.com

www.djinteractive.com/cgi-bin/NewsRetrieval

www.dow.com

www.motherjones.com

www.yahoo.com/Business

rave.ohiolink.edu/databases/login/abig

www.bankhere.com/personal/service/cssurvey/1,1695,,00.html

www.gamelan.com/workbench/y2k/y2k_052998.html

3:

www.casinopier-waterworks.com

www.cite-espace.com

www.rollercoaster.com/census/blands_park

world.std.com/~fun/clp.html

www2.storylandnh.com/storyland

www.storylandnh.com

www.rollercoaster.com/census/funtown_pier.html

www.wwtravelsource.com/newhampshire.htm

www.rollercoaster.com/census/casino_pier.html

www.dinosaurbeach.com

www.usatoday.com/life/travel/leisure/1998/t1228tw.htm

4:

www.foodchannel.com

www.epicurious.com/a_home/a00_home/home.html

www.gourmetworld.com

www.foodwine.com

www.cuisinenet.com

www.kitchenlink.com

www.yumyum.com

www.menusonline.com

www.snap.com/directory/category/0,16,-324,00.html

www.ichef.com

www.home-canning.com

5:

www.insee.fr

www.ined.fr

www.statistik-bund.de/e_home.htm

www.ineris.fr

cri.ensmp.fr/dp

www.ping.at/patent/index.htm

www.inist.fr

www.inrp.fr

www.industrie.gouv.fr

www.inpi.fr

www.adit.fr

6:

www.nando.net/nt/world

www.cnn.com/WORLD/index.html

www.oneworld.org/news/index.html

www.iht.com

www2.nando.net/nt/world

www.rferl.org

www.politicsnow.com

www.cfn.cs.dal.ca/Media/TodaysNews/TodaysNews.html

www.csmonitor.com

www.herald.com

www.pathfinder.com/time/daily

7:

www.petnewsinc.com

www.petchannel.com/petindustry/print/vpn/main.htm

www.pettribune.com

www.nwf.org/rrick

www.petchannel.com/reptiles

www.petsandvets.com.au

www.moorshead.com/pets

www.ecola.com/news/magazine/animals

www.thevivarium.com

www.petlifeweb.com

www.menagerie.on.ca

4. LOCALITY SENSITIVE HASHING
To describe our algorithms, let us assume for a moment that
Bu, as defined in Section 2, is a set instead of a bag. For this
case, it is known that there exists a family H of hash func-
tions (see [5]) such that for each pair of pages u, v we have
Pr[mh(u) = mh(v)] = sim(u, v), where the hash function
mh is chosen at random from the family H. The family H is
defined by imposing a random order on the set of all words
and then representing each url u by the smallest (according
to that random order) element from Bu. In practice, it is
quite inefficient to generate fully random permutation of all
words. Therefore, Broder et al [5] use a family of random
linear functions of the form h(x) = ax + b mod P ; we use
the same approach (see Broder et al [4] and Indyk [13] for
theoretical background of this technique).

A simple observation is that the notion of a min-wise in-
dependent family of hash functions can be extended nat-
urally from sets to bags. This is done by replacing each
bag B = {(w1, f1), . . . , (wk, fk)} by the set S = {w11, . . . ,
w1f1, . . . , wk1, . . . wkfk}, where by wij we denote the con-

catenation of the word wi with the number j. It is easy to
see that for any two bags Bu and Bv we have |Bu ∩ Bv| =
|Su ∩ Sv| and |Bu ∪ Bv| = |Su ∪ Sv|.

After flattening each bag Bu to the set Su, a Min Hash sig-
nature (MH-signature) can be computed as minw{h(w)|w ∈
Su}, where h(·) is a random linear function as described
above. Such an MH-signature has the desired property that
the same value indicates similar urls. However, the method
is probabilistic and therefore both false positives and false
negatives are likely to occur. In order to reduce these in-
accuracies, we apply the Locality Sensitive Hashing (LSH)
technique introduced by Indyk and Motwani [14]. Accord-
ing to the LSH scheme, we generate m MH-signatures for
each url, and compute an LSH-signature by concatenating
k of these MH-signatures. Since unrelated pages are unlike-
ly to agree on all k MH-signatures, using an LSH-signature
decreases the number of false positives, but as a side effect,
increases the number of false negatives. In order to reduce
the latter effect, l different LSH-signatures are extracted for
each url. In that way, it is likely that two related urls agree
on at least one of their LSH-signatures5.

The above discussion motivates our algorithm:

• In the first step, url bags are scanned and m MH-
signatures are extracted from each url. This is very
easy to implement with one pass over the url bags.
This is the only information about urls used by the
rest of the algorithm.

• In the second step, the algorithm generates LSH-signatures
and outputs similar pairs of urls according these LSH-
signatures.

This second step is done as follows:

Algorithm: ExtractSimilarPairs
Do l times
Generate k distinct random indices,
each from the interval {1 . . . m}

For each url u
Create an LSH-signature for u, by concatenating
the MH-signatures pointed by the k indices

Sort all urls by their LSH-signatures
For each run of urls with matching LSH-signatures
Output all pairs

The output pairs are written to the disk.

To enhance the quality of our results and reduce false pos-
itives, we perform a post-filtering stage on the pairs pro-
duced by the ExtractSimilarPairs algorithm. During
this stage, each pair (u, v) is validated by checking whether
the urls u and v agree on a fraction of their MH-signatures
which is at least as large as the desired similarity level (say
20%). If the condition does not hold, the pair is discarded.

5For a more formal analysis of the LSH technique see [14,
10, 7].

The implementation of the filtering stage requires a linear
scan over the pairs, assuming that all m MH-signatures for
all urls fit in the main memory. If this is not the case, more
passes over the pair file might be needed. Notice that this
step is the most main memory intensive part of our algo-
rithm. In our actual implementation we used two additional
techniques to reduce the memory requirements. The first is
to keep in memory only one byte from each MH-signature.
The second is to validate the pairs on less than m MH-
signatures. Both techniques introduce statistical error.
Implementation choices: We chose to represent each
MH-signature with w = 3 bytes. For each url we extract
m = 80 MH-signatures, which leads to a space requirement
of 240 bytes per url. By picking k = 3 the probability that
two unrelated urls end up having the same LSH-signature
is low; e.g., the probability that two urls with disjoint bags
collide is at most 1/28∗w∗k = 1/248, which guarantees a very
small number of false positives (for about 20 million urls).
On the other hand, since we look for pairs with similari-
ty at least 20%, a fixed pair of urls with similarity 20% gets
the same MH-signature with probability 2/10, and the same
LSH-signature with probability (2/10)k = 1/125. In order
to ensure that the pair would finally be discovered, that is,
to ensure a small probability of false negatives, we have to
take about 125 different LSH-signatures (l = 125).

5. CLUSTERING
The set of similar document pairs S, generated by the al-
gorithm discussed above, must then be sorted. Note that
each pair appears twice, both as (u, v) and (v, u). Sorting
the pairs data, which is close to 300 GB for 20 million urls,
is the most expensive step of our procedure. After the sort
step, we can efficiently build an index over the pairs so that
we can respond to “What’s Related” type queries: given a
query for document u we can return the set {v|(u, v) ∈ S}.

We can proceed further by using the set of similar pairs,
which represents the document-document similarity matrix,
to group pages into flat clusters. The clustering step allows
a more compact final representation than document pairs,
and would be a necessary for creating hierarchies6.

To form flat clusters, we use a variant of the C-LINK al-
gorithm due to Hochbaum and Shmoys [12], which we call
CENTER. The idea of the algorithm is as follows. We can
think of the similar pairs generated earlier as edges in a
graph (the nodes correspond to urls). Our algorithm parti-
tions the graph in such a way that in each cluster there is
a center node and all other nodes in the cluster are “close
enough” to the center. For our purposes, “close enough”
means that there is an edge in the graph; that it, there is a
pair found in the previous phase that contains the node and
its center.

CENTER can be implemented very efficiently. The algo-
rithm performs a sequential scan over the sorted pairs. The
first time that node u appears in the scan, it is marked as a
cluster center. All subsequent nodes v that appear in pairs
of the form (u, v) are marked as belonging to the cluster of
u and are not considered again.

6We have not yet explored generating hierarchies

6. RESULTS
We discuss only the anchor-window approach here, although
the content based approach requires a similar running time.
As discussed in Section 3, our dataset consists of 35 million
urls whose anchor-bags were generated from 12 million web
pages. For the timing results presented here, we applied our
LSH-based clustering technique to a subset of 20 million
urls.

The timing results of the various stages are given in Table 1.
We ran the first four steps of the experiment on dual Pen-
tium II 300 MHz, with 512 MB of memory. The last two
steps were performed on dual Pentium II 450 MHz, with
1 GB of memory. The timings for the last two steps are
estimated from the time needed to generate the first 10,000
clusters, which is as many as we can inspect manually.

Algorithm step No. CPUs Time
bag generation 2 23 hours
bag sorting 2 4.7 hours
MH-signature generation 1 26 hours
pair generation 1 16 hours
filtering 1 83 hours
sorting 1 107 hours
CENTER 1 18 hours

Table 1: Timing results

Developing an effective way to measure cluster quality when
the dataset consists of tens of millions of urls is an extremely
challenging problem. As discussed more formally in [14, 10,
7], the LSH technique has probabilistic guarantees as to how
well nearest-neighbors are approximated. Thus the initial
results for the quality of exact nearest-neighbors that we
described in Section 3 are indicative of our clustering quality.
We are currently investigating techniques to analyze more
thoroughly the overall clustering quality given the scale of
our input.

7. FUTURE WORK
We are actively developing the techniques we have intro-
duced in this paper. We plan to integrate our clustering
mechanism with the Stanford WebBase to facilitate user
feedback on our cluster quality, allowing us to both mea-
sure quality and make further enhancements. We also plan
to experiment with a hybrid approach to clustering, by first
using standard supervised classification algorithms to pre-
classify our set of urls into several hundred classes, and then
applying LSH-based clustering to the urls of each of the re-
sulting classes. This would help desensitize our algorithm
from word ambiguity, while still allowing for the generation
of fine-grained clusters in a scalable fashion.

8. REFERENCES
[1] E. Amitay, “Using common hypertext links to

identify the best phrasal description of target web
documents ”, SIGIR’98 (Workshop on Hypertext
Information Retrieval for the Web).

[2] A. Broder, “On the resemblance and containment of
documents”, SEQUENCES’98, p. 21-29.

[3] A. Broder, “Filtering near-duplicate documents”,
FUN’98.

[4] A. Broder, M. Charikar, A. Frieze, M.
Mitzenmacher, “Min-wise independent
permutations”, STOC’98.

[5] A. Broder, S. Glassman, M. Manasse, G. Zweig,
“Syntactic clustering of the Web”, WWW6, p.
391-404, 1997.

[6] M. Craven, D. DiPasquo, D. Freitag, A. McCallum,
T. Mitchell, K. Nigam and S. Slattery, “Learning to
Extract Symbolic Knowledge from the World Wide
Web”, AAAI’98

[7] E. Cohen, M. Datar, S. Fujiware, A. Gionis, P.
Indyk, R. Motwani, J. Ullman, and C. Yang,
“Finding interesting associations without support
pruning”, ICDE’2000.

[8] J. Dean, M. Henzinger, “Finding related web pages
in the world wide web”, WWW8, p., 389-401, 1999.

[9] M. Fang, H. Garcia-Molina, R. Motwani, N.
Shivakumar and J. Ullman , “Computing iceberg
queries efficiently”, VLDB’98.

[10] A. Gionis, P. Indyk, R. Motwani, “Similarity search
in high dimensions via hashing”, VLDB’99.

[11] J. Hirai, S. Raghavan, H. Garcia-Molina, A.
Paepcke, “WebBase: A repository of web pages”,
WWW9

[12] D. Hochbaum, D. Shmoys, “A best possible
heuristic for the k-center problem”, Mathematics of
Operations Research, 10(2):180-184, 1985.

[13] P. Indyk, “A small minwise independent family of
hash functions”, SODA’99.

[14] P. Indyk, R. Motwani, “Approximate nearest
neighbor: Towards removing the curse of
dimensionality”, STOC’98.

[15] M. Porter “An algorithm for suffix stripping”,
Program 14(3):130-137, 1980.

[16] G. Salton, M. J. McGill “Introduction to Modern
Information Retrieval”, McGraw-Hill Publishing
Company, New York, NY, 1983.

[17] N. Shivakumar, “Detecting Digital Copyright
Violations on the Internet” Ph.D. thesis, Stanford
University, 1999.

[18] O. Zamir, O. Etzioni “Web document clustering: A
feasibility demonstration”, SIGIR’98.

[19] “Inktomi WebMap”,
http://www.inktomi.com/webmap/

