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Abstract

After adequately demonstrating the ability to solve different two-objective optimization
problems, multi-objective evolutionary algorithms (MOEAs) must now show their efficacy in
handling problems having more than two objectives. In this paper, we have suggested three
different approaches for systematically designing test problems for this purpose. The simplicity
of construction, scalability to any number of decision variables and objectives, knowledge of
exact shape and location of the resulting Pareto-optimal front, and introduction of controlled
difficulties in both converging to the true Pareto-optimal front and maintaining a widely
distributed set of solutions are the main features of the suggested test problems. Because
of the above features, they should be found useful in various research activities on MOEAs,
such as testing the performance of a new MOEA, comparing different MOEAs, and better
understanding of the working principles of MOEAs.

1 Introduction

Most earlier studies on multi-objective evolutionary algorithms (MOEAs) introduced test prob-
lems which were either simple or not scalable. Some test problems were too complicated to
visualize the exact shape and location of the resulting Pareto-optimal front. Schaffer’s (1984)
study introduced two single-variable test problems (SCH1 and SCH2), which have been widely
used as test problems. Kursawe’s (1990) test problem KUR was scalable to any number of decision
variables, but was not scalable in terms of the number of objectives. The same is true with Fon-
seca and Fleming’s (1995) test problem FON. Poloni et al.’s (2000) test problem POL used only
two decision variables. Although the mathematical formulation of the problem is non-linear, the
resulting Pareto-optimal front corresponds an almost linear relationship among decision variables.
Viennet’s (1996) test problem VNT has a discrete set of Pareto-optimal fronts, but was designed
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for three objectives only. Similar simplicity prevails in the existing constrained test problems
(Veldhuizen, 1999; Deb, 2001).

However, in 1999, the first author introduced a systematic procedure of designing test prob-
lems which are simple to construct and are scalable to the number of decision variables (Deb,
1999). In these problems, the exact shape and location of the Pareto-optimal solutions are also
known. The basic construction used two functionals g and h∗ with non-overlapping sets of decision
variables to introduce difficulties towards the convergence to the true Pareto-optimal front and to
introduce difficulties along the Pareto-optimal front for an MOEA to find a widely distributed set
of solutions, respectively. Although these test problems are used by many researchers since then,
they have been somewhat criticized for the relative independence feature of the functionals in
achieving both the tasks. Such critics have grossly overlooked an important aspect of that study.
The non-overlapping property of the two key functionals in the test problems was introduced for
an ease of the construction procedure. That study also suggested the use of a procedure to map
the variable vector (say y) to a different decision variable vector (say x). This way, although test
problems are constructed for two non-overlapping sets from y, each decision variable xi (on which
MOEA operators work) involves a correlation of all (or many) variables of y. Such a mapping
couples both aspects of convergence and maintenance of diversity and makes the problem harder
to solve. However, Zitzler, Deb, and Thiele (2000) showed that the uncorrelated version of the
test problems was even difficult to solve exactly using the then-known state-of-the-art MOEAs.

In the recent past, many MOEAs have adequately demonstrated their ability to solve two-
objective optimization problems. With the suggestion of a number of such MOEAs, it is time
that they must be investigated for their ability to solve problems with more than two objectives.
In order to help achieve such studies, it is therefore necessary to develop scalable test problems
for higher number of objectives. Besides testing an MOEA’s ability to solve problems with a large
number of objectives, the proposed test problems can also be used for systematically comparing
two or more MOEAs. Since one such test problem can be used to test a particular aspect of multi-
objective optimization, such as for convergence to the true Pareto-optimal front or maintenance
of a good spread of solutions, etc., the test problems can be used to identify MOEAs which are
better in terms of that particular aspect. For these reasons, these test problems may help provide
a better understanding of the working principles of MOEAs, thereby allowing a user to develop
better and more efficient MOEAs.

In the remainder of the paper, we first describe the essential features needed in a test problem
and then suggest three approaches for systematically designing test problems for multi-objective
optimization algorithms. Although most problems are illustrated for three objectives (for an ease
of illustration), the test problems are generic and scalable to an arbitrary number of objectives.

2 Desired Features of Test Problems

Based on the above discussion, we suggest that the following features must be present in a test
problem suite for adequately testing an MOEA:

1. Test problems should be easy to construct.

2. Test problems should be scalable to have any number of decision variables.

3. Test problems should be scalable to have any number of objectives.

4. The resulting Pareto-optimal front (continuous or discrete) must be easy to comprehend,
and its exact shape and location should be exactly known. The corresponding decision
variable values should also be easy to find.
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5. Test problems should introduce controllable hindrance to converge to the true Pareto-
optimal front and also to find a widely distributed set of Pareto-optimal solutions.

The popularity of two-objective test problems suggested earlier (Deb, 1999) in many research
studies is partly because of the ease of constructing the test problems and the ease of illustrating
the obtained set of Pareto-optimal solutions in two dimensions. Visually comparing the obtained
set of solutions against the true Pareto-optimal front provides a clear idea of the performance
of an MOEA. This can somewhat be achieved even for three objectives, with such a comparison
shown in three dimensions. But for problems with more than three objectives, it becomes difficult
to illustrate such a plot. Thus, for higher-objective test problems, it may be wise to have some
regularity in the search space so that the Pareto-optimal surface is easily comprehensible. One of
the ways to achieve this would be to have a Pareto-optimal surface symmetric along interesting
hyper-planes, such as f1 = f2 = · · · = fM−1 (where M is the number of objectives). This only
requires a user to comprehend the interaction between fM and f1, and the rest of the problem
can be constructed by using symmetry. Another interesting approach would be to construct a
problem for which the Pareto-optimal surface is a symmetric curve or at most a three-dimensional
surface. Although M -dimensional, the obtained solutions can be easily illustrated parametrically
in a two-dimensional plot in the case of a curve and in a three-dimensional plot in the case of the
three-dimensional surface.

It is now well established that MOEAs have two tasks to achieve: converging to the Pareto-
optimal front and finding a good distribution of solutions on the entire Pareto-optimal front.
An MOEA can, therefore, must be tested for each of the two tasks. Thus, some test problems
should test an MOEA’s ability to negotiate artificial hurdles which hinders its progress towards
converging to the true Pareto-optimal front. This can be achieved by placing some local Pareto-
optimal attractors or biased density of solutions away from the Pareto-optimal front. Some test
problems must also test an MOEA’s ability to find a diverse set of solutions. This can be achieved
by making the Pareto-optimal front nonconvex, discrete, and having variable density of solutions
along the front. Although these features of test problems were also suggested for two-objective
problems earlier (Deb, 1999), they are also applicable for a large number of objectives. Moreover,
the increased dimensionality associated with a large number of objectives may cause an added
difficulty to MOEAs.

In the following sections, we suggest different approaches of designing test problems for multi-
objective optimization.

3 Different Methods of Test Problem Design

Based on the above principles, there exist a number of different ways to systematically design test
problems for multi-objective optimization. Here we discuss three different methods:

1. Multiple single-objective functions approach,

2. Bottom-up approach,

3. Constraint surface approach.

The first approach is the most intuitive one and has been implicitly used by early MOEA re-
searchers to construct test problems. In this approach, M different single-objective functions are
used to construct a multi-objective test problem. To simplify the construction procedure, in many
cases, different objective functions are simply used as different translations of a single objective
function. For example, the problem SCH1 uses the following two single-objective functions for
minimization (Schaffer, 1984):

f1(x) = x2, f2(x) = (x − 2)2.
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Since the optimum x∗(1) for f1 is not the optimum for f2 and vice versa, the Pareto-optimal
set consists of more than one solution, including the individual minimum of each of the above
functions. All other solutions which make trade-offs between the two objective functions with
themselves and with the above two solutions become members of the Pareto-optimal set. In the
above problem, all solutions x∗ ∈ [0, 2] become member of the Pareto-optimal set. Similarly, the
problem FON shown below















Minimize f1(x) = 1 − exp
(

−
∑n

i=1(xi − 1√
n
)2
)

,

Minimize f2(x) = 1 − exp
(

−∑n
i=1(xi + 1√

n
)2
)

,

−4 ≤ xi ≤ 4 i = 1, 2, . . . , n.

(1)

has x∗
i = −1/

√
n for all i as the minimum solution for f1 and x∗

i = 1/
√

n for all i as the minimum
solution for f2. The Pareto-optimal set is constituted with all solutions in x∗

i ∈ [−1/
√

n, 1/
√

n]
for all i. Veldhuizen (1999) lists a number of such test problems. It is interesting to note that
such a construction procedure can be extended to higher-objective problems as well (Laumanns,
Rudolph, and Schwefel, 2001). In a systematic procedure, each optimum may be assumed to
lie on each of M (usually < n) coordinate directions. However, the Pareto-optimal set resulting
from such a construction depends on the chosen objective functions, thereby making it difficult
to comprehend the true nature of the Pareto-optimal front. Moreover, even in simple objective
functions (such as in SCH2 (Schaffer, 1984)), the Pareto-optimal front may be a combination of
disconnected fronts. Thus, a test problem constructed using this procedure must be carefully
analyzed to find the true Pareto-optimal set of solutions.

The latter two approaches of test problem design mentioned above directly involve the Pareto-
optimal front, thereby making them convenient to be used in practice. Since they require detailed
discussions, we devote two separate sections for describing them.

4 Bottom-Up Approach

In this approach, a mathematical function describing the Pareto-optimal front is assumed in the
objective space and an overall objective search space is constructed from this front to define the
test problem. For two objectives, one such construction was briefly suggested earlier (Deb, 1999)
and was extended for higher objectives elsewhere (Deb, 2001). But, here we make the idea more
clear by illustrating the principle in a three-objective example test problem. Later, we suggest a
generic procedure.

Let us assume that we would like to have a Pareto-optimal front where all objective functions
take non-negative values and the desired front is the first quadrant of a sphere of radius one (as
shown in Figure 1). With the help of spherical coordinates (θ, γ, and r = 1), the front can be
described as follows:

f1(θ, γ) = cos θ cos(γ + π/4),
f2(θ, γ) = cos θ sin(γ + π/4),
f3(θ, γ) = sin θ,
where 0 ≤ θ ≤ π/2,

−π/4 ≤ γ ≤ π/4.























(2)

It is clear from the construction of the above surface that if all three objective functions are
minimized, any two points on this surface are non-dominated to each other. Now, if the rest of
the objective search space is constructed above this surface, we shall have a problem where the
unit sphere constitutes the Pareto-optimal front. A simple way to construct the rest of the search
space is to construct surfaces parallel to the above surface. This means constructing spherical
surfaces with radius greater than one. This can be achieved by multiplying the above three
functions with a term, which takes a value greater than or equal to one. Different values of the
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Figure 2: Overall search space is bounded by
the two spheres.

third independent variable r (besides θ and γ) will construct different layers of spherical surfaces
on top of the Pareto-optimal sphere. Thus, the overall problem with the above three variables is
as follows:

Minimize f1(θ, γ, r) = (1 + g(r)) cos θ cos(γ + π/4),
Minimize f2(θ, γ, r) = (1 + g(r)) cos θ sin(γ + π/4),
Minimize f3(θ, γ, r) = (1 + g(r)) sin θ,

0 ≤ θ ≤ π/2,
−π/4 ≤ γ ≤ π/4,
g(r) ≥ 0.































(3)

As described earlier, the Pareto-optimal solutions for the above problem are as follows:

0 ≤ θ∗ ≤ π/2, −π/4 ≤ γ∗ ≤ π/4, g(r∗) = 0.

Figure 2 shows the overall objective search space with any function for g(r) with 0 ≤ g(r) ≤ 1. We
shall discuss more about different g(r) functions a little later. The above construction procedure
illustrates how easily a multi-objective test problem can be constructed from an initial choice of
a Pareto-optimal surface.

4.1 Construction of the decision space

Although the above three-objective problem requires three independent variables, the decision
search space can be higher than three-dimensional. The three variables used above (θ, γ, and r)
can all be considered as meta-variables and each of them can be considered as a function of n
decision variables of the underlying problem:

θ = θ(x1, x2, . . . , xn), (4)

γ = γ(x1, x2, . . . , xn), (5)

r = r(x1, x2, . . . , xn). (6)

The functions must be so chosen that they satisfy the lower and upper bounds of θ, γ and g(r)
mentioned in equation 3.

Although the above construction procedure is simple, it can be used to introduce different
modes of difficulty described earlier. In the following, we describe a few such extensions of the
above construction.
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4.2 Difficulty in converging to the Pareto-optimal front

The difficulty of a search algorithm to progress towards the Pareto-optimal front from the interior
of the objective search space can be introduced by simply using a difficult g function. It is clear
that the Pareto-optimal surface corresponds to the minimum value of function g. A multi-modal g
function with a global minimum at g∗ = 0 and many local minima at g∗ = νi value will introduce
global and local Pareto-optimal fronts, where a multi-objective optimizer can get stuck to.

Moreover, even using a unimodal g(r) function, variable density of solutions can be introduced
in the search space. For example, if g(r) = r10 is used, denser solutions exist away from the Pareto-
optimal front. Figure 3 shows 15,000 solutions, which are randomly created in the decision variable
space. On the objective space, they are shown to be biased away from the Pareto-optimal front.
For a such a biased search space away from the Pareto-optimal front, multi-objective optimizers
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3

2

2

f

1

f

0.5

1.5

f

0

0.5 1 1.5 2 0 0.5
1 1.5

20

Figure 3: The effect of a non-linear g function.

may have difficulties in converging quickly to the desired front.

4.3 Difficulties across the Pareto-optimal front

By using a non-linear mapping in equations 4 to 6, some portion of the search space can be made
to have more dense solutions than the rest of the search space.

In order to create a variable density of solutions on the Pareto-optimal front, the θ and γ
functions (as in equations 4 to 5) must be manipulated. For example, Figures 4 and 5 show the
problem stated in equation 3 with

θ(x1) = π
2 x1,

γ(x2) = π
2 x2 − π

4 .
and

θ(x1) = π
2 0.5

(

1 + [2(x1 − 0.5)]11
)

,
γ(x2) = π

2 0.5
(

1 + [2(x2 − 0.5)]11
)

− π
4 .

respectively. In both cases, g(r) = r = x3 is chosen. In order to satisfy the bounds in equation 3,
we have chosen 0 ≤ x1, x2, x3 ≤ 1 and 15,000 randomly created points (in the decision space) are
shown in each figure showing the objective space. The figures show the density of solutions in the
search space gets affected by the choice of mapping of the meta-variables. In the second problem,
there is a natural bias for an algorithm to find solutions in middle region of the search space1. In

1In three-objective knapsack problems, such a biased search space is observed elsewhere (Zitzler and Thiele,
1999).
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trying to solve such test problems, the task of an MOEA would be to find a widely distributed
set of solutions on the entire Pareto-optimal front despite the natural bias of solutions in certain
regions on the Pareto-optimal front.

4.4 Generic sphere problem

The following is a generic problem to that described in equation 3, having M objectives.

Minimize f1(θ, r) = (1 + g(r)) cos θ1 cos(θ2) · · · cos(θM−2) cos(θM−1),
Minimize f2(θ, r) = (1 + g(r)) cos θ1 cos(θ2) · · · cos(θM−2) sin(θM−1),
Minimize f3(θ, r) = (1 + g(r)) cos θ1 cos(θ2) · · · sin(θM−2),
...

...
Minimize fM−1(θ, r) = (1 + g(r)) cos θ1 sin(θ2),
Minimize fM(θ, r) = (1 + g(r)) sin θ1,

0 ≤ θi ≤ π/2, for i = 1, 2, . . . , (M − 1),
g(r) ≥ 0.



















































(7)

Note that the variables are mapped in a different manner here. The decision variables are mapped
to the meta-variable vector θ (of size (M − 1)) as follows:

θi =
π

2
xi, for i = 1, 2, . . . , (M − 1). (8)

The above mapping and the condition on θi in equation 7 restrict each of the above xi to lie
within [0, 1]. To simplify the matter, the function g(r) = r = x2

M (where xM ∈ [−1, 1]) can be
used. The Pareto-optimal surface occurs for the minimum of the g function, or at x∗

M = 0 and
the function values must satisfy the following condition:

M
∑

i=1

(f∗
i )2 = 1. (9)

As mentioned earlier, the difficulty of the above test problem can also be varied by using
different functionals for fi and g.
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4.5 Curve problem

Instead of having a complete M -dimensional surface as the Pareto-optimal surface, an M -dimensional
curve can also be chosen as the Pareto-optimal front to the above problem. We realize that in
this case there would be only one independent variable describing the Pareto-optimal front. A
simple way to achieve this would be to use the following mapping of variables:

θi =
π

4(1 + g(r))
(1 + 2g(r)xi) , for i = 2, 3, . . . , (M − 1), (10)

The above mapping ensures that the curve is the only non-dominated region in the entire search
space. Since g(r) = 0 corresponds to the Pareto-optimal front, θi = π/4 for all but the first
variable. The advantage of this problem over the generic sphere problem as a test problem is
that a two-dimensional plot of Pareto-optimal points with fM and any other fi will mark a curve
(circular or elliptical). A plot with any two objective functions (other than fM ) will show a
straight line. Figure 6 shows a sketch of the search space and the resulting Pareto-optimal curve
for a three-objective version of the above problem. One drawback with this formulation is that

1
2

Pareto−optimal
curve

3

1.5

0
0.5

1
1.5

0

0.5

1

1.5

2

1

0.5

f

0

f f

Figure 6: The search space and the Pareto-optimal curve.

the density of solutions closer to the Pareto-optimal curve is more than anywhere else in the
search space. In order to make the problem more difficult, a non-linear g(r) function with a
higher density of solutions away from g(r) = 0 (such as g(r) = 1/rα, where α ≫ 1) can be used.
Using a multi-modal g(r) function will also cause multiple local Pareto-optimal surfaces to exist.
Interestingly, this drawback of the problem can be used to create a hard maximization problem.
If the all objectives are maximized in the above problem, the top surface becomes the desired
Pareto-optimal front. Since there exists less dense solutions on this surface, this problem may be
a difficult maximization test problem.

4.6 Comet problem

To illustrate the concept of the bottom-up approach of test problem design further, we design
one more problem which has a comet-like Pareto-optimal front. Starting from a widely spread
region, the Pareto-optimal front continuously reduces to thinner region. Finding a wide variety
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of solutions in both broad and thin portions of the Pareto-optimal region simultaneously will be
a challenging task for any MOEA:

Minimize f1(x) = (1 + g(x3))(x
3
1x

2
2 − 10x1 − 4x2),

Minimize f2(x) = (1 + g(x3))(x
3
1x

2
2 − 10x1 + 4x2),

Minimize f3(x) = 3(1 + g(x3))x
2
1,

1 ≤ x1 ≤ 3.5,
−2 ≤ x2 ≤ 2,
g(x3) ≥ 0.































(11)

Here, we have chosen g(x3) = x3 and 0 ≤ x3 ≤ 1. The Pareto-optimal surface corresponds to
x∗

3 = 0 and for −2 ≤ x∗
1
3x∗

2 ≤ 2 with 1 ≤ x∗
1 ≤ 3.5. Figure 7 shows the Pareto-optimal front

on the x3 = 0 surface. For a better illustration purpose, the figure is plotted with negative of
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Figure 7: The comet problem.

all fi values. This problem illustrates that the entire g = g∗ surface need not correspond to the
Pareto-optimal front. Only the region which dominates the rest of the g = g∗ surface belongs to
the Pareto-optimal front.

We have designed this function and the curve function for a special purpose. Because of the
narrow Pareto-optimal region in both problems, we argue that the classical generating methods
will require a large computational overhead in solving the above problems. Figure 8 shows the
projection of the Pareto-optimal region in the f1-f2 space of the comet problem. For the use of the
ǫ-constraint method as a method of generating Pareto-optimal solutions (usually recommended
for its convergence properties), the resulting single-objective optimization problem, which has to
be solved for different combination of ǫ1 and ǫ2, is as follows:

Minimize f3(x),
subject to f2(x) ≤ ǫ2,

f1(x) ≤ ǫ1,
x ∈ D,















(12)

where D is the feasible decision space. It is well known that the minimum solution for the above
problem for any ǫ1 and ǫ2 (≥ 0) is either a Pareto-optimal solution or is infeasible (Mietinnen,
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1997). The figure illustrates a scenario with ǫ2 = −30. It can be seen from the figure that solution
of the above single-objective optimization problem for ǫ1 = −15 is not going to produce any new
Pareto-optimal solution other than that obtained for ǫ1 = −20 (for example) or for ǫ1 set to
get the Pareto-optimal solution at A. Thus, the above generating method will resort to solving
many redundant single-objective optimization problems. By calculating the area of the projected
Pareto-optimal region, it is estimated that about 88% of single-objective optimization problems
are redundant in the above three-objective optimization problem, if a uniform set of ǫ vectors are
chosen in the generating method. Compared to classical generating methods, MOEAs may show
superior performance in these problems in terms of overall computational effort needed in finding
multiple and well distributed Pareto-optimal solutions. This is mainly because of their implicit
parallel processing which enables them to quickly settle to feasible regions of interest and due to
their population approach which allow them to find a wide variety of solutions simultaneously
with the action of a niche-preserving operator.

4.7 Test Problem Generator

The earlier study (Deb, 2001) suggested a generic multi-objective test problem generator, which
belongs to this bottom-up approach. For M objective functions, with a complete decision variable
vector partitioned into M non-overlapping groups

x ≡ (x1,x2, . . . ,xM−1,xM )T ,

the following function was suggested:

Minimize f1(x1),
Minimize f2(x2),

...
...

Minimize fM−1(xM−1),
Minimize fM (x) = g(xM )h (f1(x1), f2(x2), . . . , fM−1(xM−1), g(xM )) ,

subject to xi ∈ R
|xi|, for i = 1, 2, . . . ,M.



































(13)

Here, the Pareto-optimal front is described by solutions which are global minimum of g(xM ) (with
g∗). Thus, the Pareto-optimal front is described as

fM = g∗h(f1, f2, . . . , fM−1). (14)
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Since g∗ is a constant number, the h function (with a fixed g = g∗) describes the Pareto-optimal
surface. In the bottom-up approach of test problem design, the user can first choose an h function
in terms of the objective function values, without caring about the decision variables at first. For
example, for constructing a problem with a non-convex Pareto-optimal front, a non-convex h
function can be chosen, such as the following:

h(f1, f2, . . . , fM−1) = 1 −
(

∑M−1
i=1 fi

β

)α

, (15)

where α > 1. Figure 9 shows a non-convex Pareto-optimal front with α = 2 for M = 3 and
β = 0.5.

A disjoint set of Pareto-optimal front can be constructed by simply choosing a multi-modal h
function as done in the case of two-objective test problem design (Deb, 1999). Figure 10 illustrates
a disconnected set of Pareto-optimal surfaces (for three-objectives), which can be generated from
the following generic h function:

h(f1, f2, . . . , fM−1) = 2M −
M−1
∑

i=1

(2fi + sin(3πfi)) . (16)
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Figure 9: A non-convex Pareto-optimal front.
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Once the h function is chosen, a g function can be chosen to construct the entire objective
search space. It is important to note that the g function is defined over a set of decision variables.
Recall that the Pareto-optimal front corresponds to the global minimum value of the g function.
Any other values of g will represent a surface parallel to the Pareto-optimal surface. All points
in this parallel surface will be dominated by some solutions in the Pareto-optimal surface. As
mentioned earlier, the g function can be used to introduce complexities in approaching towards
the Pareto-optimal region. For example, if g has a local minimum, a local Pareto-optimal front
exists on the corresponding parallel surface.

Once appropriate h and g functions are chosen, f1 to fM−1 can be chosen as functions of differ-
ent non-overlapping sets of decision variables. Using a non-linear objective function introduces a
variable density of solutions along that objective. The non-linearity in these functions will test an
MOEA’s ability to find a good distribution of solutions, despite the natural non-uniform density

11



in solutions in the search space. Another way to make the density of solutions non-uniform is to
use an overlapping set of decision variables for objective functions. To construct more difficult
test problems, the procedure of mapping the decision variables to an intermediate variable vector,
as suggested earlier (Deb, 1999) can also be used here.

4.8 Advantages and disadvantages of the bottom-up approach

The advantage of using the above bottom-up approach is that the exact form of the Pareto-
optimal surface can be controlled by the developer. The number of objectives and the variability
in density of solutions can all be controlled by choosing proper functions.

Since the Pareto-optimal front must be expressed mathematically, some complicated Pareto-
optimal fronts can be difficult to write mathematically. Nevertheless, the ability to control differ-
ent features of the problem is the main strength of this approach.

5 Constraint Surface Approach

Unlike starting from a pre-defined Pareto-optimal surface in the bottom-up approach, the con-
straint surface approach begins by a predefining the overall search space. Here, a simple geometry
such as a rectangular hyper-box is assumed. Each objective function value is restricted to lie within
a predefined lower and a upper bound. The resulting problem is as follows:

Minimize f1(x),
Minimize f2(x),
...

...
Minimize fM (x),

Subject to f
(L)
i ≤ fi(x) ≤ f

(U)
i for i = 1, 2, . . . ,M.



























(17)

It is intuitive that the Pareto-optimal set of the above problem has only one solution (the solution

with the lower bound of each objective (f
(L)
1 , f

(L)
2 , . . . , f

(L)
1 )T . Figure 11 shows this problem for

three objectives (with f
(L)
i = 0 and f

(U)
i = 1) and the resulting singleton Pareto-optimal solution

f = (0, 0, 0)T ) is also marked.
The problem is now made more interesting by adding a number of constraints (linear or

non-linear):
gj(f1, f2, . . . , fM) ≥ 0, for j = 1, 2, . . . , J. (18)

This is done to chop off portions of the original rectangular region systematically. Figure 12 shows
the resulting feasible region after adding the following two linear constraints:

g1 ≡ f1 + f3 − 0.5 ≥ 0,

g2 ≡ f1 + f2 + f3 − 0.8 ≥ 0.

What remains is the feasible search space. The objective of the above problem is to find the
non-dominated portion of the boundary of the feasible search space. Figure 12 also marks the
Pareto-optimal surface of the above problem. For simplicity and easier comprehension, each
constraint involving at most two objectives (similar to the first constraint above) can be used.

In addition to the complicated shape of the Pareto-optimal front, further difficulties can be
introduced by using varying density of solutions in the search space. This can be easily achieved
by using non-linear functionals for fi with the decision variables. Interestingly, there exist two-
variable and three-variable constrained test problems TNK (Tanaka, 1995) and Tamaki (1996) in
the literature using the above concept. In this problem, only two objectives (with fi = xi) and
two constraints were used. The use of fi = xi made a uniform density of solutions in the search
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space. As an illustration of further difficulties through non-linear fi, we construct the following
three-objective problem with a bias in the search space:

Minimize f1(x1) = 1 + (x1 − 1)5,
Minimize f2(x2) = x2,
Minimize f3(x3) = x3,
Subject to g1 ≡ f2

3 + f2
1 − 0.5 ≥ 0,

g2 ≡ f2
3 + f2

2 − 0.5 ≥ 0,
0 ≤ x1 ≤ 2,
0 ≤ x2, x3 ≤ 1.







































(19)

Figure 13 shows 25,000 feasible solutions randomly generated in the decision variable space. The
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Figure 13: Non-Linearity in functionals produces non-uniform density of solutions.

Pareto-optimal curve and the feasible region are shown in the figure. Because of the non-linearity
in the functional f1 with x1, the search space results in a variable density of solutions along the f1
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axis. Solutions are more dense near f1 = 1 than any other region in the search space. Although
this apparent plane (f1 = 1) is not a local Pareto-optimal front, an MOEA may get attracted
here simply because of sheer density of solutions near it.

It is clear that by choosing complicated functions of f1 to fM , more complicated search spaces
can be created. Since the task of an MOEA is to reach the Pareto-optimal region (which is located
at one end of the feasible search space), interesting hurdles in the search space can be placed to
provide difficulties to an MOEA to reach the desired Pareto-optimal front.

5.1 Advantages and Disadvantages

The construction process here is much simpler compared to the bottom-up approach. Simple
geometric constraints can be used to construct the feasible search space. Using this procedure,
different shapes (convex, nonconvex, or discrete) of the Pareto-optimal region can be generated.
Unlike the bottom-up approach, here the feasible search space is not constructed by layer-wise
construction from the Pareto-optimal front. Since no particular structure is used, the feasible
objective space can be derived with any non-linear mapping of the decision variable space.

However, the resulting Pareto-optimal front will, in general, be hard to express mathematically.
Moreover, although the constraint surfaces can be simple, the shape and continuity of the resulting
Pareto-optimal front may not be easy to visualize. Another difficulty is that since the Pareto-
optimal front will lie on one or more constraint boundaries, a good constraint-handling strategy
must be used with an MOEA. Thus, this approach may be ideal for testing MOEAs for their
ability to handle constraints.

6 Difficulties with Existing MOEAs

Most MOEA studies up until now have considered two objectives, except a few application studies
where more than two objectives are used. This is not to say that the existing MOEAs cannot be
applied to problems having more than two objectives. Developers of the state-of-the-art MOEAs
(such as PAES (Knowles and Corne, 1999), SPEA (Zitzler and Thiele, 1999), NSGA-II (Deb et al.,
2000) and others) have all considered the scalability aspect while developing their algorithms. The
domination principle, non-dominated sorting algorithms, elite-preserving and other EA operators
can all be extended for handling more than two objectives. Although the niching operator can also
be applied in most cases, their computational issues and ability in maintaining a good distribution
of solutions are needed to be investigated in higher-objective problems. For example, a niching
operator may attempt to maintain a good distribution of solutions by replacing a crowded solution
with a less crowded one and the crowding of a solution may be determined by the distance from
its neighbors. For two objectives, the definition of a neighbor along the Pareto-optimal curve
is clear and involves only two solutions (left and right solutions). However, for more than two
objectives, when the Pareto-optimal front is a higher-dimensional surface, it is not clear which
(and how many) solutions are neighbors of a solution. Even if a definition can be made, finding
a distance metric from all distances of its neighbors gets computationally expensive because of
the added dimensionality. Because of the higher dimensionality of the Pareto-optimal front, more
computationally effective distribution metrics may be needed. Although a widely distributed set
of solutions can be found, as using NSGA-II or SPEA2 (a modified version of SPEA suggested
in (Zitzler, Laumanns, and Thiele, 2001)) shown in the next section, the obtained distribution
can be far from being a uniformly distributed set of 100 points on the Pareto-optimal surface.
The niching method are usually designed to attain a uniform distribution (provided that the EA
operators are able to generate the needed solutions), the overall process may be much slower in
problems with large number of objectives. The test problems suggested in this paper will certainly
enable researchers to make such a complexity study for the state-of-the-art MOEAs.
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Although the distribution of solutions is a matter to test for problems with large number
of objectives, the convergence to the true Pareto-optimal front is also important to keep track
of. Because of sheer increase in the dimensionality in the objective space, interactions among
decision variables may produce difficulties in terms of having local Pareto-optimal fronts and
variable density of solutions. An increase in dimensionality of the objective space also causes a
large proportion of a random initial population to be non-dominated to each other (Deb, 2001),
thereby reducing the effect of selection operator in an MOEA. Thus, it is also important to test
if the existing domination-based MOEAs can reach the true Pareto-optimal front in such test
problems. Since the desired front will be known in test problems, a convergence metric (such as
average distance to the front) can be used to track the convergence of an algorithm. We discuss
more about performance metrics in the next section.

7 Performance Metrics

A number of performance metrics for MOEA studies have been discussed in Veldhuizen (1999)
and Deb (2001). The latter study has classified the metrics according to the aspect measures by
them and suggested three different categories:

1. Metrics that evaluate closeness to the Pareto-optimal front,

2. Metrics that evaluate diversity in obtained solutions, and

3. Metrics that evaluate both the above.

Most of the existing metrics require a pre-specified set of Pareto-optimal (reference) solutions P ∗.
The obtained set Q is compared against P ∗.

In the first category, almost all metrics suggested in the context of two-objective problems can
be applied to problems having more than two objectives. The error ratio metric, which counts
the number of solutions common to P ∗ and Q can be used in higher dimensions. The set coverage
metric which calculates the proportion of solutions in Q which are dominated by P ∗ can also
be used in higher dimensions. The generational distance metric, which calculates the geometric
mean of the nearest Euclidean distances of solutions Q from members of P ∗, can also be used in
higher dimensions.

However, most of the metrics suggested for measuring the spread in two-objective problems
may not be possible to use in higher-objective problems so easily. For example, the spacing metric,
which calculates the standard deviation in the distances between consecutive solutions, would be
difficult to use in higher dimensions. The concept of consecutive solutions in higher dimensions
does not simply exist. Although Schott’s (1995) suggestion of using the minimum objective-wise
distance to any other solution can be used in higher-objective problems, a Q with a good spacing
metric does not necessarily mean a good distribution of solutions in the entire Pareto-optimal
front. To ensure a good distribution in the entire Pareto-optimal front, the obtained set Q must
be compared with the known Pareto-optimal front P ∗, so that the obtained set is evaluated
for its spread with the extreme solutions of the front. Although the spread metric, which uses
consecutive distances, is a way to consider the extreme solutions in the metric evaluation, it
cannot be used in problems having more than two objectives. The maximum spread metric, which
measures the Euclidean distance between extreme solutions, does not reveal the true distribution
of intermediate solutions anyway. However, the chi-square-like deviation measure can be used
with a user-defined neighborhood parameter σ. In this metric, for each solution of P ∗ the number
of points in Q which are within a σ away can be counted. Such a count vector can then be
compared with a pre-defined (in most cases, a uniform) distribution and the deviation measure
can be calculated. Alternatively, the Pareto-optimal front can represented into a number of small
hyper-boxes. Thereafter, the number of solutions (of Q) present in each hyper-box is counted.
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Using these counts, either the chi-square-like deviation measure (from a uniform distribution of
solutions in all hyper-boxes) or simply the number of occupied hyper-boxes can be used as a
distribution metric.

In the third category, the hyper-volume metric, measuring the overall hyper-volume covered
by the set Q, in combination with the relative set coverage metric were designed with respect
to an arbitrary number of objectives and have been used already on 2, 3, and 4-objective knap-
sack problems (Zitzler and Thiele, 1999). The mutual non-covered hyper-volume metric (Zitzler,
1999), which is similar to the set coverage metric, is applicable in higher-objective problems as
well. Nevertheless, the convergence to coverage issue may not become clear from one such metric.
Furthermore, the attainment surface metric is in another method independent of the number of
objectives, but repeatedly finding the intersection of cross-lines with higher-dimensional attain-
ment surfaces may be computationally expensive.

From the above discussion, it is clear that some of the existing performance metrics for eval-
uating the distribution of solutions can be used in higher-objective problems but they must be
evaluated with caution. Further research in this direction is necessary to develop faster and better
performance metrics.

8 Test Problem Suite

Using the latter two approaches of test problem design discussed in this paper, we suggest here
a representative set of test problems. However, other more interesting and useful test problems
can also be designed using the techniques of this paper.

8.1 Test Problem DTLZ1

As a simple test problem, we construct an M -objective problem with a linear Pareto-optimal
front:

Minimize f1(x) = 1
2x1x2 · · · xM−1(1 + g(xM )),

Minimize f2(x) = 1
2x1x2 · · · (1 − xM−1)(1 + g(xM )),

...
...

Minimize fM−1(x) = 1
2x1(1 − x2)(1 + g(xM )),

Minimize fM(x) = 1
2(1 − x1)(1 + g(xM )),

subject to 0 ≤ xi ≤ 1, for i = 1, 2, . . . , n.



































(20)

The functional g(xM ) requires |xM | = k variables and must take any function with g ≥ 0. We
suggest the following:

g(xM ) = 100

[

|xM | +
∑

xi∈xM

(xi − 0.5)2 − cos(20π(xi − 0.5))

]

. (21)

The Pareto-optimal solution corresponds to xM = 0 and the objective function values lie
on the linear hyper-plane:

∑M
m=1 fm = 0.5. A value of k = 5 is suggested here. In the above

problem, the total number of variables is n = M + k − 1. The difficulty in this problem is to
converge to the hyper-plane. The search space contains (11k − 1) local Pareto-optimal fronts,
each of which can attract an MOEA. NSGA-II nd SPEA2 with a population size of 100 is run
for 300 generations using a real-parameter SBX crossover operator (ηc = 15) and a variable-
wise polynomial mutation operator (ηm = 20). The crossover probability of 1.0 and mutation
probability of 1/n are used. After a variable is crossed with the SBX probability distribution,
they are exchanged with a probability 0.5. The performances of NSGA-II and SPEA2 are shown
in Figures 14 and 15, respectively. The figure shows that both NSGA-II and SPEA2 come close to
the Pareto-optimal front and the distributions of solutions over the Pareto-optimal front are also
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Figure 15: The SPEA2 population on test
problem DTLZ1.

not bad. In this problem and in most of the latter problems, we observed a better distribution of
solutions with SPEA2 compared to NSGA-II. However, the better distributing ability of SPEA2
comes with a larger computational complexity in its selection/truncation approach compared to
that in the objective-wise crowding approach of NSGA-II.

The problem can be made more difficult by using other difficult multi-modal g functions
(using a larger k) and/or replacing xi by non-linear mapping xi = Ni(yi) and treating yi as
decision variables.

For a scale-up study, we suggest testing an MOEA with different values of M , may be in the
range M ∈ [2, 10]. It is interesting to note that for M > 3 cases all Pareto-optimal solutions on a
three-dimensional plot involving fM and any two other objectives will lie on or below the above
hyper-plane.

8.2 Test Problem DTLZ2

This test problem is identical to the problem described in subsection 4.4:

Minimize f1(x) = (1 + g(xM )) cos(x1π/2) cos(x2π/2) · · · cos(xM−2π/2) cos(xM−1π/2),
Minimize f2(x) = (1 + g(xM )) cos(x1π/2) cos(x2π/2) · · · cos(xM−2π/2) sin(xM−1π/2),
Minimize f3(x) = (1 + g(xM )) cos(x1π/2) cos(x2π/2) · · · sin(xM−2π/2),
...

...
Minimize fM−1(x) = (1 + g(xM )) cos(x1π/2) sin(x2π/2),
Minimize fM (x) = (1 + g(xM )) sin(x1π/2),

0 ≤ xi ≤ 1, for i = 1, 2, . . . , n,
where g(xM ) =

∑

xi∈xM
(xi − 0.5)2.



















































(22)
The Pareto-optimal solutions corresponds to x∗

M = 0.5 and all objective function values must
satisfy the equation 9. Here, we recommend k = |xM | = 10. The total number of variables is
n = M +k−1. NSGA-II and SPEA2 with identical parameter setting as in DTLZ1 simulation run
finds Pareto-optimal solutions very close to the true Pareto-optimal front, as shown in Figures 16
and 17, respectively.

This function can also be used to investigate an MOEA’s ability to scale up its performance
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in large number of objectives. Like in DTLZ1, for M > 3, the Pareto-optimal solutions must lie
inside the first quadrant of the unit sphere in a three-objective plot with fM as one of the axes.
To make the problem difficult, each variable xi (for i = 1 to (M − 1)) can be replaced by the
mean value of p variables: xi = 1

p

∑ip

k=(i−1)p+1 xk.

8.3 Test Problem DTLZ3

In order to investigate an MOEA’s ability to converge to the global Pareto-optimal front, we
suggest using the above problem with the g function given in equation 21:

Minimize f1(x) = (1 + g(xM )) cos(x1π/2) cos(x2π/2) · · · cos(xM−2π/2) cos(xM−1π/2),
Minimize f2(x) = (1 + g(xM )) cos(x1π/2) cos(x2π/2) · · · cos(xM−2π/2) sin(xM−1π/2),
Minimize f3(x) = (1 + g(xM )) cos(x1π/2) cos(x2π/2) · · · sin(xM−2π/2),
...

...
Minimize fM−1(x) = (1 + g(xM )) cos(x1π/2) sin(x2π/2),
Minimize fM (x) = (1 + g(xM )) sin(x1π/2),

0 ≤ xi ≤ 1, for i = 1, 2, . . . , n,

where g(xM ) = 100
[

|xM | +∑xi∈xM
(xi − 0.5)2 − cos(20π(xi − 0.5))

]

.























































(23)
Here, we suggest k = |xM | = 10. There are a total of n = M + k − 1 decision variables in this
problem. The above g function introduces (3k − 1) local Pareto-optimal fronts, and one global
Pareto-optimal front. All local Pareto-optimal fronts are parallel to the global Pareto-optimal
front and an MOEA can get stuck at any of these local Pareto-optimal fronts, before converging
to the global Pareto-optimal front (at g∗ = 0). The global Pareto-optimal front corresponds to
xM = (0.5, . . . , 0.5)T . The next local Pareto-optimal front is at g∗ = 1. NSGA-II and SPEA2
populations after 500 generations are shown in the true Pareto-optimal fronts in Figures 18 and
19. It is seen that both algorithms could not quite converge on to the true front, however both
algorithms have maintained a good diversity of solutions on the true front. The problem can be
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made more difficult by using a large k or a higher-frequency cosine function.

8.4 Test Problem DTLZ4

In order to investigate an MOEA’s ability to maintain a good distribution of solutions, we modify
problem DTLZ2 with a different meta-variable mapping:

Minimize f1(x) = (1 + g(xM )) cos(xα
1 π/2) cos(xα

2 π/2) · · · cos(xα
M−2π/2) cos(xα

M−1π/2),
Minimize f2(x) = (1 + g(xM )) cos(xα

1 π/2) cos(xα
2 π/2) · · · cos(xα

M−2π/2) sin(xα
M−1π/2),

Minimize f3(x) = (1 + g(xM )) cos(xα
1 π/2) cos(xα

2 π/2) · · · sin(xα
M−2π/2),

...
...

Minimize fM−1(x) = (1 + g(xM )) cos(xα
1 π/2) sin(xα

2 π/2),
Minimize fM (x) = (1 + g(xM )) sin(xα

1 π/2),
0 ≤ xi ≤ 1, for i = 1, 2, . . . , n,

where g(xM ) =
∑

xi∈xM
(xi − 0.5)2.



















































(24)
The parameter α = 100 is suggested here. Here, too, all variables x1 to xM−1 are varied in
[0, 1]. We also suggest k = 10 here. There are n = M + k − 1 decision variables in the problem.
This modification allows a dense set of solutions to exist near the fM -f1 plane (as in Figure 5).
NSGA-II and SPEA2 populations at the end of 200 generations are shown in Figures 20 and 21,
respectively. For this problem, the final population is dependent on the initial population. But in
both methods, we have obtained three different outcomes: (i) all solutions are in the f3-f1 plane,
(ii) all solutions are in the f1-f2 plane and (iii) solutions are on the entire Pareto-optimal surface.
Since the problem has more dense solutions near the f3-f1 and f1-f2 planes, some simulation runs
of both NSGA-II and SPEA2 get attracted to these planes. Problems with a biased density of
solutions at other regions in the search space may also be created using the mapping suggested in
subsection 4.3. It is interesting to note that although the search space has a variable density of
solutions, the classical weighted-sum approaches or other directional methods may not have any
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added difficulty in solving these problems compared to DTLZ2. Since MOEAs attempt to find
multiple and well-distributed Pareto-optimal solutions in one simulation run, these problems may
hinder MOEAs to achieve a well-distributed set of solutions.

8.5 Test Problem DTLZ5

The mapping of θi in the test problem DTLZ2 can be replaced with that given in equation 10:

Minimize f1(x) = (1 + g(xM )) cos(θ1π/2) cos(θ2π/2) · · · cos(θM−2π/2) cos(θM−1π/2),
Minimize f2(x) = (1 + g(xM )) cos(θ1π/2) cos(θ2π/2) · · · cos(θM−2π/2) sin(θM−1π/2),
Minimize f3(x) = (1 + g(xM )) cos(θ1π/2) cos(θ2π/2) · · · sin(θM−2π/2),
...

...
Minimize fM−1(x) = (1 + g(xM )) cos(θ1π/2) sin(θ2π/2),
Minimize fM (x) = (1 + g(xM )) sin(θ1π/2),
where θi = π

4(1+g(r)) (1 + 2g(r)xi) , for i = 2, 3, . . . , (M − 1),

g(xM ) =
∑

xi∈xM
(xi − 0.5)2,

0 ≤ xi ≤ 1, for i = 1, 2, . . . , n.































































(25)

The g function with k = |xM | = 10 variables is suggested. As before, there are n = M + k − 1
decision variables in this problem. This problem will test an MOEA’s ability to converge to a
curve and will also allow an easier way to visually demonstrate (just by plotting fM with any
other objective function) the performance of an MOEA. Since there is a natural bias for solutions
close to this Pareto-optimal curve, this problem may be easy for an algorithm to solve, as shown
in Figure 22 and 23, obtained using NSGA-II and SPEA2 after 200 generations and with other
parameter setting as before. Because of its simplicity and ease of representing the Pareto-optimal
front, we recommend that a higher-objective (M ∈ [5, 10]) version of this problem be used to
study the computational time complexity of an MOEA.
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Figure 22: The NSGA-II population on test
problem DTLZ5.
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Figure 23: The SPEA2 population on test
problem DTLZ5.

8.6 Test Problem DTLZ6

The above test problem can be made harder by doing similar modification to the g function in
DTLZ5 as done in DTLZ3. However, in DTLZ6, we use a different g function:

g(xM ) =
∑

xi∈xM

x0.1
i . (26)

The size of xM vector is chosen as 10 and the total number of variables is identical as in DTLZ5.
The above change in the problem makes NSGA-II and SPEA2 difficult to converge to the true
Pareto-optimal front as in DTLZ5. The population after 500 generations of both algorithms are
shown in Figures 24 and 25, respectively. The Pareto-optimal curve is also marked on the plots.
It is clear from the figures that both NSGA-II and SPEA2 do not quite converge to the true
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Figure 24: The NSGA-II population on test
problem DTLZ6.
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Figure 25: The SPEA2 population on test
problem DTLZ6.

Pareto-optimal curve. The lack of convergence to the true front in this problem causes these
MOEAs to find a dominated surface as the obtained front, whereas the true Pareto-optimal front
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is a curve. In real-world problems, this aspect may provide misleading information about the
properties of the Pareto-optimal front, a matter which we discuss more in subsection 8.9 in this
paper.

8.7 Test Problem DTLZ7

This test problem is constructed using the problem stated in equation 13. This problem has a
disconnected set of Pareto-optimal regions:

Minimize f1(x1) = x1,
Minimize f2(x2) = x2,

...
...

Minimize fM−1(xM−1) = xM−1,
Minimize fM (x) = (1 + g(xM ))h(f1, f2, . . . , fM−1, g),

where g(xM ) = 1 + 9
|xM |

∑

xi∈xM
xi,

h(f1, f2, . . . , fM−1, g) = M −∑M−1
i=1

[

fi

1+g
(1 + sin(3πfi))

]

,

subject to 0 ≤ xi ≤ 1, for i = 1, 2, . . . , n.























































(27)

This test problem has 2M−1 disconnected Pareto-optimal regions in the search space. The func-
tional g requires k = |xM | decision variables and the total number of variables is n = M + k − 1.
We suggest k = 20. The Pareto-optimal solutions corresponds to xM = 0. This problem will test
an algorithm’s ability to maintain subpopulation in different Pareto-optimal regions. Figures 26
and 27 show the NSGA-II and SPEA2 populations after 200 generations. It is clear that both
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Figure 26: The NSGA-II population on test
problem DTLZ7.
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Figure 27: The SPEA2 population on test
problem DTLZ7.

algorithms are able to find and maintain stable and distributed subpopulations in all four dis-
connected Pareto-optimal regions. The problem can be made harder by using a higher-frequency
sine function or using a multi-modal g function as that described in equation 21.
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8.8 Test Problem DTLZ8

Here, we use the constraint surface approach to construct the following test problem:

Minimize fj(x) = 1
⌊ n

M
⌋
∑⌊j n

M
⌋

i=⌊(j−1) n
M

⌋ xi, j = 1, 2, . . . ,M,

Subject to gj(x) = fM (x) + 4fj(x) − 1 ≥ 0, for j = 1, 2, . . . , (M − 1),

gM (x) = 2fM (x) + minM−1
i,j=1

i6=j

[fi(x) + fj(x)] − 1 ≥ 0,

0 ≤ xi ≤ 1, for i = 1, 2, . . . , n.























(28)

Here, the number of variables is considered to be larger than the number of objectives or n > M .
We suggest n = 10M . In this problem, there are a total of M constraints. The Pareto-optimal
front is a combination of a straight line and a hyper-plane. The straight line is the intersection
of the first (M − 1) constraints (with f1 = f2 = · · · = fM−1) and the hyper-plane is represented
by the constraint gM . MOEAs may find difficulty in finding solutions in both the regions in this
problem and also in maintaining a good distribution of solutions on the hyper-plane. Figures 28
and 29 show NSGA-II ands SPEA2 populations after 500 generations. The Pareto-optimal region
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Figure 28: The NSGA-II population of non-
dominated solutions on test problem DTLZ8.
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Figure 29: The SPEA2 population of non-
dominated solutions on test problem DTLZ8.

(a straight line and a triangular plane) is also marked in the plots. Although some solutions on
the true Pareto-optimal front are found, there exist many other non-dominated solutions in the
final population. These redundant solutions lie on the adjoining surfaces to the Pareto-optimal
front. Their presence in the final non-dominated set is difficult to eradicate in real-parameter
MOEAs, a matter which we discuss in the next subsection.

8.9 Test Problem DTLZ9

This test problem is also created using the constraint surface approach:

Minimize fj(x) =
∑⌊j n

M
⌋

i=⌊(j−1) n
M

⌋ x0.1
i , j = 1, 2, . . . ,M,

Subject to gj(x) = f2
M(x) + f2

j (x) − 1 ≥ 0, for j = 1, 2, . . . , (M − 1),

0 ≤ xi ≤ 1, for i = 1, 2, . . . , n.











(29)

Here too, the number of variables is considered to be larger than the number of objectives. For this
problem, we suggest n = 10M . The Pareto-optimal front is a curve with f1 = f2 = · · · = fM−1,
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similar to that in DTLZ5. However, the density of solutions gets thinner towards the Pareto-
optimal region. The Pareto-optimal curve lies on the intersection of all (M − 1) constraints.
This feature of this problem may cause MOEAs difficulty in solving this problem. However,
the symmetry of the Pareto-optimal curve in terms of (M − 1) objectives allows an easier way to
illustrate the obtained solutions. A two-dimensional plot of the Pareto-optimal front with fM and
any other objective function should represent a circular arc of radius one. A plot with any two
objective functions except fM should show a 45o straight line. Figures 30 and 31 show NSGA-II
and SPEA2 populations after 500 generations on a f3-f1 plot of the 30-variable, three-objective
DTLZ9 problem. The Pareto-optimal circle is also shown in the plots. It is clear that both
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Figure 30: The NSGA-II population on test
problem DTLZ9.
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Figure 31: The SPEA2 population on test
problem DTLZ9.

algorithms could not cover the entire range of the circle and there exist many non-dominated
solutions away from the Pareto-optimal front.

Many of the above test problems (such as DTLZ6, DTLZ8, and DTLZ9) introduce another
aspect of difficulty to large-objective real-parameter optimization techniques. In these problems,
the Pareto-optimal curve or line (whatever may be the case) is weakly non-dominated with the
adjoining surfaces (whose intersections give rise to the Pareto-optimal front). If a good repre-
sentative set of solutions is not found on the true Pareto-optimal curve or line, a real-parameter
optimization algorithm (such as an MOEA) can find a set of non-dominated solutions all of which
may not be on the true Pareto-optimal curve or line. Figure 32 demonstrates this matter. With
respect to two Pareto-optimal solutions A and B in the figure, any other solution in the shaded
region is non-dominated to both A and B. The figure clearly demonstrates the fact the although
a solution may not be on the true Pareto-optimal front (the straight line in the figure), it can
exist in a set of non-dominated solutions obtained using an MOEA. In such problems, the ob-
tained set of solutions may wrongly find a higher-dimensional surface as the Pareto-optimal front,
although the true Pareto-optimal front may be of smaller dimension. It is interesting to note
that this difficulty can also occur in problems having an M -dimensional Pareto-optimal front,
as long as the Pareto-optimal surface is weakly non-dominated with adjoining surfaces. Another
study (Kokolo, Kita, and Kobayashi, 2001) has also recognized that this feature of problems can
cause MOEAs difficulty in finding the true Pareto-optimal solutions. However, in handling such
problems, MOEAs with the newly-suggested ǫ-dominance concept (Laumanns et al., 2001) intro-
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Figure 32: The shaded region is non-dominated with Pareto-optimal solutions A and B.

duced by the authors may be found useful. However, it is worth highlighting here that with the
increase in the dimensionality of the objective space, the probabilities of occurrence of such diffi-
culties is more. We term this additional difficulty as the problem of ‘redundancy’ in the obtained
non-dominated solutions.

9 Conclusions

In this paper, we have suggested three approaches for systematically designing test problems for
multi-objective optimization. The first approach simply uses a different, mostly-translated single-
objective function as an objective. Although the construction procedure is simple, the resulting
Pareto-optimal front may be difficult to comprehend. The second approach (we called a bottom-
up approach) begins the construction procedure by assuming a mathematical formulation of the
Pareto-optimal front. Such a function is then embedded in the overall test problem design so
that two different types of difficulties of converging to the Pareto-optimal front and maintaining
a diverse set of solutions can also be introduced. The third approach (we called the constraint
surface approach) begins the construction process by assuming the overall search space to be a
rectangular hyper-box. Thereafter, a number of linear or non-linear constraint surfaces are added
one by one to eliminate some portion of the original hyper-box. The remaining enclosed region
becomes the feasible search space. A few three-objective test problems are constructed illustrating
the latter two approaches to demonstrate their relative advantages and disadvantages. Finally, a
number of test problems have been suggested and attempted to solve using two popular state-of-
the-art MOEAs (NSGA-II and SPEA2) for their systematic use in practice.

In this paper, we have not suggested any explicit constrained test problem, although problems
constructed using the constraint surface approach can be treated as constrained test problems.
However, other difficulties pertinent to the constrained optimization suggested in two-objective
constrained test problem design elsewhere (Deb et al., 2000) can also be used with the proposed
procedures for constrained test problem design.
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