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Abstract—As tile linear algebra algorithms continue achieving
high performance on shared-memory multicore architectures, it is
a challenging task to make them scalable on distributed-memory
multicore cluster machines. The main contribution of this pa-
per is the extension to the distributed-memory environment of
the previous work done by Hadri et al. on Communication-
Avoiding QR (CA-QR) factorizations for tall and skinny matrices
(initially done on shared-memory multicore systems). The fine
granularity of tile algorithms associated with communication-
avoiding techniques for the QR factorization presents a high
degree of parallelism where multiple tasks can be concurrently
executed, computation and communication largely overlapped,
and computation steps fully pipelined. A decentralized dynamic
scheduler has then been integrated as a runtime system to
efficiently schedule tasks across the distributed resources. Our
experimental results performed on two clusters (with dual-core
and 8-core nodes, respectively) and a Cray XT5 system with
12-core nodes show that the tile CA-QR factorization is able to
outperform the de facto ScaLAPACK library by up to 4 times
for tall and skinny matrices, and has good scalability on up to
3,072 cores.

I. INTRODUCTION

The method of least squares has been used in many scientific

fields such as mathematics, physics, statistics, and economics

where applications of data fitting, regression analysis, and

production function modeling happen frequently. The problem

is to find the solution of an overdetermined system of linear

equations Ax = b with more equations than unknowns. The

shape of the matrix A is tall and skinny. The modern classical

method to solve such a system is based upon QR factorization

by first computing A = QR followed by solving the upper-

triangular system Rx = Q∗b for x.

Various numerical libraries have supplied the QR factoriza-

tion subroutine. LAPACK [1] provides a collection of linear

algebra software for shared-memory systems. ScaLAPACK

[2], [3] includes a subset of LAPACK subroutines that is

redesigned for distributed-memory message-passing systems.

This material is based upon work supported by the NSF grant CCF-
0811642, and by Microsoft Research. This work also used resources of
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In addition, a number of vendors provide libraries optimized

for their own hardware such as Intel MKL, AMD ACML, IBM

ESSL (PESSL), and Cray XT LibSci. All the vendor libraries

include the subroutines of LAPACK and ScaLAPACK.

However, with the increment of the number of cores on

each chip, these existing libraries start to see degrading

performance on multicore (or manycore) architectures. One

important reason is that the libraries use the fork-join approach

for parallelism to implement their routines. The join operation

works as a barrier and increases the task graph’s critical

path length substantially. Assuming a fixed number of tasks,

increasing the length of the critical path can seriously affect

the program performance. For instance, the subroutine for QR

factorization in LAPACK uses a block algorithm. Given an

m× n matrix A that is partitioned as follows:

A =

(

A1:b,1:b A1:b,b+1,n

Ab+1:m,1:b Ab+1:m,b+1:n

)

,

where b is the block size, the block algorithm 1) first fac-

torizes the left column panel A1:m,1:b; 2) applies the panel

factorization result to the top row panel A1:b,b+1,n; 3) then

to the trailing submatrix of Ab+1:m,b+1:n. All the three steps

are executed in a fork-join manner for which the length of

the critical path is increased. The same set of steps will be

applied recursively to the submatrix of Ab+1:m,b+1:n until

the submatrix merely consists of a single column panel. The

ScaLAPACK QR factorization subroutine uses the same block

algorithm as LAPACK. In this paper, we use the term “block

QR factorization” to refer to this algorithm.

During the last several years we have been working on

designing new parallel linear algebra software for multicore

architectures. We believe that the new software for multicore

architectures should have the following characteristics: fine-

grain tasks for a higher degree of parallelism, asynchronous

execution to eliminate synchronization points, and good local-

ity to improve data reuse. The tile algorithms designed in our

Parallel Linear Algebra Software for Multicore Architectures

(PLASMA) project [4] exhibit the three desirable characteris-

tics. The subroutine for QR factorization in PLASMA adopts
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Fig. 1. Tile QR factorization on a square matrix with 5× 5 tiles. Each tile
is of size b× b and corresponds to a fine grain task. The arcs show the data
dependencies between the tasks.

an updating-based algorithm that operates on matrices stored

in a tile data layout [5], [6]. A tile is a b× b square submatrix

and is stored in memory contiguously. In this paper, we use

the term “tile QR factorization” to refer to the updating-based

QR factorization.
Unlike the block QR factorization that operates on panels,

the tile QR factorization operates on much smaller tiles (hence

more fine-grained). Given a matrix A consisting of mb × nb

tiles, matrix A can be expressed as follows:

A =











A1,1 A1,2 . . . A1,nb

A2,1 A2,2 . . . A2,nb

...
...

. . .
...

Amb,1 Amb,2 . . . Amb,nb











,

where Ai,j is a square tile of size b× b. In the first iteration,

the tile QR factorization computes the QR factorization for tile

A1,1. The factorization output of A1,1 is then used to update

the set of tiles on A1,1’s right hand side in an embarrassingly

parallel fashion, that is, {A1,2, . . . , A1,nb
}. As soon as the

update on any tile A1,j is finished, the update on tile A2,j can

read the modified A1,j and proceed. In other words, whenever

a tile-update on the i-th row completes, its below tile on

the (i + 1)-th row can start if Ai+1,1 also completes. After

updating the tiles on the last mb-th row, tile QR applies the

same steps to the trailing submatrix A2:mb,2:nb
recursively.

Figure 1 illustrates the data dependency relationships between

tasks during the first iteration given a 5 × 5 tiled matrix.

Each tile located at [i, j] corresponds to a task that reads a

couple of inputs and modifies A[i, j]. For instance, tile A[2,

4] corresponds to a task that reads the output of two tasks

located at [1, 4] and [2, 1] and then modifies A[2, 4]. In

the tile QR factorization, the tasks within each row can be

executed in embarrassingly parallel. However, the sequential

dependency between tasks along a column clearly makes the

algorithm inefficient, especially for tall and skinny matrices.
Hadri et al. presented a strategy to compute the QR fac-

torization on shared-memory multicore machines for tall and

skinny matrices [7]. Their approach considerably increases

the number of parallel tasks located in the same column.

Their work was inspired by the tile QR factorization (avail-

able in PLASMA) and a communication-avoiding technique

(known as CAQR) that was introduced by Demmel [8]. Their

original idea was to increase the degree of parallelism in

a shared-memory context. However, this algorithm has not

been explored on distributed-memory systems. We investigate

and extend the algorithm to modern large-scale distributed-

memory machines and demonstrate its high efficiency and

scalability. We call the distributed-version algorithm “dis-

tributed tile communication-avoiding QR factorization.”

In this paper, we also analyze the tile CA-QR factorization

in terms of operation count, number of messages, and commu-

nication volume. We then compare the algorithm to previous

work such as LAPACK, ScaLAPACK, tile QR (PLASMA),

TSQR and CAQR [8]. The tile CA-QR factorization has an

operation count that could be comparable to that of LAPACK

and ScaLAPACK by choosing appropriate parameters. The

communication volume it performs is optimal (up to a factor

of two) and is better than that of ScaLAPACK, CAQR, and

tile QR. It also has much less number of messages than tile

QR.

The distributed tile CA-QR factorization partitions a ma-

trix’s rows into D blocks of rows (i.e., D domains). Then

on a distributed-memory system with P compute nodes, it

continues to partition the D domains into P subsets (one

subset per node) using a 1D block distribution, where D ≥ P .

Each node runs a single MPI process and is responsible for

computing a number D
P of domains. For each column panel (of

a tile width), the factorization algorithm performs independent

QR factorizations in each domain by different processes in

parallel. Then, each domain updates its trailing submatrix

concurrently. The third and final step, the local R factors from

each domain are reduced by different processes to the final R

factor and the corresponding block-rows are again updated.

The reduction operation among the domains adopts a

binary-tree to attain the final R factor. Due to the complex

binary-tree reduction residing on the critical path of the com-

putation’s task graph, we extended our dynamic scheduling

runtime system [9] to support distributed tile CA-QR more

efficiently. We added new features such as look-ahead depth

and three levels of task priority to the runtime system. A

collection of trace analysis show that the new scheduling

runtime system has been improved significantly.

This paper evaluates the efficiency of distributed tile CA-QR

by comparing it to vendor optimized ScaLAPACK libraries.

We conducted both strong-scalability and weak-scalability

experiments on two clusters and a Cray XT5 system consisting

of hundreds of thousands of 12-core nodes. The experimental

results show that our program is able to outperform ScaLA-

PACK by up to 4 times, and exhibits good scalability from 1

to 3,072 cores (3,072 cores is the largest experiment we have

attempted).

This paper includes the following new and original work:

(1) A major extension and improvement from shared-memory

systems to distributed-memory systems. (2) First to analyze

the algorithm with respect to operation count, number of mes-



sages, and communication volume. (3) An extended runtime

system to enable an efficient implementation of the distributed

algorithm. (4) First to demonstrate good scalability of the

algorithm on modern large-scale distributed-memory systems

using up to 3,072 cores.

The rest of the paper is organized as follows. Section II

introduces the related work. Sections III and IV describe

the tile CA-QR factorization algorithm and the analysis of

the algorithm, respectively. Section V provides an overview

of the dynamic scheduling runtime system and explains our

extensions. Section VI presents the performance evaluation

on three distributed-memory systems. Section VII summarizes

our work.

II. RELATED WORK

In the mid 70s, Morven Gentleman introduced for sparse

matrices [10] the approach of splitting a matrix into submatri-

ces allowing the reduction to be done independently and recur-

sively for the submatrices. Then, Pothen and Raghavan [11]

developed the idea of parallelizing the factorization of a panel

by implementing distributed orthogonal factorizations using

Householder and Givens algorithms. Their approach divides

the columns into P subcolumns (where P is the number of

processors) and performs factorizations locally from which the

final triangular factors are merged.

Based on Pothen and Raghavan’s work, Demmel et al. [8]

proposed a class of QR factorizations with the parallel panel

factorization, called Communication-Avoiding QR (CAQR).

The approach consists of performing the panel factorization

on several columns thanks to a new algorithm called TSQR

(Tall Skinny QR). The panels are divided into block-rows, and

they are factorized independently and then merged by using

either a binary or general reduction tree. An estimate of the

performance for CAQR has been provided by the authors.

Assuming that the QR factorization of a tall and skinny

matrix can be represented as a reduction, Langou [12] im-

plemented a methodology to perform the reduction by using

user-defined MPI operation and MPI Reduce. Moreover, in

the context of grid computing, by identifying bottlenecks in

ScaLAPACK, Agullo et al. [13] developed an approach to

computing the QR factorization by articulating the CAQR

factorization with a topology-aware middleware in order to

confine intensive communications. Contrary to all the previous

work on QR, they build trees that are adapted for a particular

grid environment.

III. TILE CA-QR FACTORIZATION

Essentially the tile CA-QR factorization is an integration

(or mixed version) of the CAQR factorization and the tile

QR factorization. The basic idea is to store a matrix in

a tile data layout and divide the matrix into a number of

domains (i.e., blocks of rows). Each domain performs a local

QR factorization independently. After finishing the local QR

factorization, each domain participates in a global reduction

to compute the final R factor.

Suppose an m×n matrix A consists of mb×nb tiles (m >

n), and b is the tile size for which mb = m
b and nb = n

b .

Tile CA-QR partitions the matrix’s m rows into D blocks:

A = [A1;A2; . . . ;AD], where Ai is of dimension m
D × n and

is called “Domain i.” Note that matrix A is stored in b×b tiles.

The tiled matrix A that is divided into D horizontal domains

can be expressed as follows:

A =





































A1,1 A1,2 . . . A1,nb

· · · · · ·

. . . · · ·

Amb
D

,1 Amb
D

,2 . . . Amb
D

,nb

Amb
D

+1,1 Amb
D

+1,2 . . . Amb
D

+1,nb

· · · · · ·

. . . · · ·

A 2mb
D

,1
A 2mb

D
,2

. . . A 2mb
D

,nb

...
...

. . .
...

Amb,1 Amb,2 · · · Amb,nb





































,

where Ai,j is a tile of size b × b. In the first step, all the

domains start to execute the tile QR factorization on the first

panel and the associated updates concurrently as shown in Fig.

1. There is no data dependency or communication between

different domains. That is, each domain is independent of

the other domains. After the QR factorization of the first

panel within each domain is finished, each domain i gets a

b×b upper triangular factor R̂i located at A(i−1)×
mb
D

+1,1. For

instance, R̂1 is located at A1,1 and R̂2 is located at Amb
D

+1,1.

Note that all the R̂i’s belong to the first block-column for

the first iteration. Next, the tile CA-QR factorization performs

a reduction among all the R̂i’s, where i ∈ {1, . . . , D}. The

output of the reduction is the final factor of R1,1 assuming

A = QR and R is stored in tiles. Then the final R1,1 will

be applied to the top block-row {A1,2, . . . , A1,nb
} to compute

{R1,2, . . . , R1,nb
}. The next iteration of the factorization can

be initiated on A2:mb,2:nb
while the previous iteration is

still in progress as long as the dependencies are satisfied.

The factorization iterations are therefore pipelined which can

potentially hide the light points of synchronizations required

during the reduction step.

Before describing the distributed tile CA-QR factorization,

we briefly overview the six kernel subroutines used by the

factorization. For more details of these kernels, please refer to

Section 3 of the Hadri et al. paper [7].

The first four kernel subroutines are invoked locally within

a domain.

• dgeqrt: R[k,k], V[k,k], T[k,k] ← dgeqrt(A[k,k])

dgeqrt computes the QR factorization of a tile A[k,k]

and generates three outputs: an upper triangular tile

R[k,k], a unit lower triangular tile V[k,k] containing the

Householder reflectors, and an upper triangular tile T[k,k]

for storing the accumulated transformations.

• dtsqrt: R[k,k], V[i,k], T[i,k] ← dtsqrt(R[k,k], A[i,k])

After dgeqrt is called, dtsqrt stacks tile R[k,k] on top

of tile A[i,k] and computes an updated QR factorization.



The subroutine updates the tile R[k,k] and generates a tile

V[i,k] and an upper triangular tile T[i,k]. V[i,k] and T[i,k]

store the Householder reflectors and the accumulated

transformations, respectively.

• dormqr: R[k,j] ← dormqr(V[k,k], T[k,k], A[k,j])

dormqr applies dgeqrt’s output (i.e., V[k,k], T[k,k]) to

tile A[k,j] located on the right hand side of A[k,k] and

computes the R factor R[k,j].

• dtsssmqr: R[k,j], A[i,j] ← dtsssmqr(V[i,k], T[i,k],

R[k,j], A[i,j])

dtsssmqr applies dtsqrt’s output (i.e., V[i,k], T[i,k]) to a

stacked R[k,j] and A[i,j], and then updates the R factor

R[k,j] and A[i,j], respectively.

The Domain_Tile_QR algorithm applies the above four

kernel subroutines to factorize a domain of size nrows × ncols

tiles starting from the position A[I, J]. For instance, Fig. 1 can

be viewed as a single domain that applies this algorithm. Note

that here I, J are indexed from 0.

Algorithm 1 Domain Tile QR Algorithm

Domain Tile QR(A, I, J, nrows, ncols)
R[I,J], V[I,J], T[I,J] ← dgeqrt(A[I,J])
for j ← J+1 to J+ncols-1 /*along I-th row*/ do

A[I,j] ← dormqr(V[I,J], T[I,J], A[I,j])
end for

for i ← I+1 to I+nrows-1 /*along J-th column*/ do

R[I,J], V[i,J], T[i,J] ← dtsqrt(A[I,J], A[i,J])
end for

for i ← I+1 to I+nrows-1 /*trailing submatrix update*/ do

for j ← J+1 to J+ncols-1 do

R[I,j], A[i,j]←dtsssmqr(V[i,J], T[i,J], R[I,j], A[i,j])
end for

end for

The remaining two kernel subroutines are used in the

reduction step that involves merging a collection of domains.

• dttqrt: R[i1,k],V[i2,k],T[i2,k]←dttqrt(R[i1,k], R[i2,k])

This is the “merge” operation. dttqrt stacks one domain’s

factor R[i1,k] on top of another domain’s R[i2,k] and

computes an updated R[i1,k]. It also generates an upper

triangular tile V[i2,k] and an upper triangular tile T[i2,k].

• dttssmqr: A[i1,j], A[i2,j] ← dttssmqr(V[i2,k], T[i2,k],

A[i1,j], A[i2,j])

After dttqrt is called, dttssmqr applies the output of dttqrt

to update A[i1,j] and A[i2,j] (j ∈ [k + 1, nb]) that are

located on the right hand side of R[i1,k] and R[i2,k],

respectively.

The Merge_Domains algorithm merges two R factors

from a pair of domains and updates two trailing rows on their

right hand sides.

Algorithm 2 Merge Domains Algorithm

Merge Domains(R, A, i1, i2, k, ncols)
/*merge two R factors from two domains*/
R[i1,k], V[i2,k], T[i2,k] ← dttqrt(R[i1,k], R[i2,k])
/*update the coupled i1-th and i2-th rows*/
for j ← k+1 to k+ncols-1 do

A[i1,j], A[i2,j] ← dttssmqr(V[i2,k], T[i2,k], A[i1,j], A[i2,j])
end for

Distributed Tile CA-QR Factorization: Given P processes

on a distributed-memory system, we distribute a matrix’s D

domains across different processes by 1-D block distribution.

Each process Pi owns a number D
P of domains from DD

P
i to

DD
P
(i+1)−1. Although D is a parameter used at the algorithm

level, we assume D ≥ P so that a process owns at least one

domain. A process may consist of one or more threads running

on multiple cores. The algorithm of the distributed tile CA-QR

factorization is shown as follows:

Algorithm 3 Distributed Tile CAQR Algorithm

Distributed Tile CAQR(A, mb, nb, D, P)
nr ← mb

P
/*number of rows per process*/

nd← D
P

/*number of domains per process*/

ds← mb

D
/*domain size*/

for each tile column k ← 0 to nb − 1 do

root ← ⌊k/ds⌋ /*get the index of the current root domain*/
/*process Pmy rank can factorize its own nd domains in parallel*/
for each domain i ← 0 to nd− 1 do

if (d← my rank × nd+ i) ≥ root then

I ← my rank × nr + i× ds
/*[I,k] is the top left corner of domain d*/
Domain Tile QR(A, I, k, (my rank+1)×nr-I, nb-k)

end if

end for
/*binary-tree merge*/
LB ← my rank × nd, UB ← LB+nd-1
for m ← 1 to ⌈log2(D − root)⌉ do

d1 ← root, d2 ← d1 + 2m−1

while d2 < D do

if ∀ d1, d2 /∈ [LB, UB] then

continue
end if

P1 ← d1/nd, P2 ← d2/nd
i1 ← d1 × ds, i2 ← d2 × ds
Processes P1, P2 exchange A[i1, k. . .nb-1], A[i2, k. . .nb-1]
Merge Domains(R, A, i1, i2, k, nb-k)
d1 += 2m, d2 += 2m

end while
end for

end for

Figure 2 illustrates the operations of Distributed_
Tile_CAQR. It shows a matrix of 12 × 3 tiles that is

distributed across four domains. Each domain is stored and

computed by one process and has a submatrix of 3 × 3 tiles.

The figure shows the corresponding operations in the first

iteration. That is, each domain invokes Domain_Tile_QR
in parallel followed by a binary-tree merge between the first

panels of each domain. The second iteration would be the same

as the first iteration except for working on a trailing submatrix

of size 11× 2 tiles.

IV. ALGORITHM ANALYSIS

In this section, we present the total number of operations

(for both sequential and parallel versions), the number of

messages and communication volume for the tile CA-QR

factorization. We also compare the metrics to those of related

QR factorizations.

A. Operation Count

We use aggregate analysis to calculate the number of

operations for each kernel. Note that each kernel takes as input

tiles of size b× b.
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Fig. 2. The operations of distributed tile CA-QR. (a) Matrix A is divided
into four domains horizontally. (b) We now apply Domain_Tile_QR to
each domain in parallel. (c) Each domain computed an R factor located in
the first column. We merge R0 and R1, R2 and R3. (d) We merge R0 and
R2 and get the final factor R0. (e) At the beginning of the second iteration,
domain D0 has 2 × 2 tiles and the other three domains have 3 × 2 tiles.
Similarly, we continue to apply (b), (c), (d) to the four new domains in the
trailing submatrix.

dgeqrt does 2b3 floating point operations. For each iteration
k, dgeqrt is invoked D− k−1

mb/D
times. There are nb iterations,

thus

Tdgeqrt =

nb
∑

k=1

(D −

k − 1

mb/D
)× 2b3

= 2b3nbD − b3(
nb − 1

mb/D
)(2nb −

mb

D
−

mb

D

nb − 1

mb/D
)

dormqr does 3b3 floating point operations. At iteration k,
there exist D − k−1

mb/D
domains each of which has a number

nb − k + 1 of tile columns. Every domain applies dormqr to
all the tiles on its top row except for the first one.

Tdormqr =

nb
∑

k=1

(D −

k − 1

mb/D
)(nb − k)× 3b3 ≃

3

2
b3Dn2

b

dtsqrt does 10
3 b3 floating point operations. At iteration k,

there exist D − k−1
mb/D

domains and one of them is the root

domain. The root domain has mb

D − (k mod mb

D )+1 tile rows
while the other domains have mb

D tile rows.

Tdtsqrt =

nb
∑

k=1

(
mb

D
− k mod

mb

D
+ (D −

k − 1
mb

D

− 1)
mb

D
)
10b3

3

≃ (2mbnb − nb(nb +min(nb,
mb

D
)))

5

3
b3

dtsssmqr does 4b3+sb2 floating point operations, where s is
a parameter used to implement dtsssmqr. s is the inner tile size
which divides the tile size b. At iteration k, there are D− k−1

mb/D

domains. The root domain consists of mb

D − (k mod mb

D ) + 1
tile rows and nb−k+1 tile columns. The remaining domains

are of size mb

D × (nb − k + 1) tiles.

Tdtsssmqr = (4b3 + sb2)

nb
∑

k=1

[(
mb

D
− k mod

mb

D
)(nb − k) +

(D −

k − 1

mb/D
− 1)

mb

D
(nb − k)]

= 2b3n2
b(1 +

s

4b
)(mb −

nb

3
)

dttqrt is the merge operation and does 5
3b

3 floating opera-
tions. At iteration k, the binary tree has D− k+1 leaf nodes
and D − k internal nodes.

Tdttqrt =

nb
∑

k=1

(D − k)
5

3
b3 =

5

6
b3nb(2D − nb)

dttssmqr does 1
2 (4b

3+sb2) floating point operations. Every
merge operation dttqrt is followed by a number nb − k of
dttssmqr operations.

Tdttssmqr =

nb
∑

k=1

(D − k)(nb − k)
1

2
(4b3 + sb2)

= 2b3n2
b(1 +

s

4b
)(
D

2
−

nb

6
)

The total number of operations of the sequential tile CA-QR
is the sum of the above six equations:

Ttile-caqr = Tdgeqrt + Tdormqr + Tdtsqrt

+Tdtsssmqr + Tdttqrt + Tdttssmqr

≃ 2n2(1 +
s

4b
)(m−

n

2
+

Db

2
)

Compared to the operation count of the standard LAPACK
QR factorization, that is, TLapack = 2n2(m− n

3 ),

Ttile-caqr

TLapack

=
2n2(1 + s

4b
)(m−

n

2
+ Db

2
)

2n2(m−
n

3
)

= (1+
3Db − n

6m− 2n
)(1+

s

4b
).

Based upon the above equation, we can make the following

observations:

• If m≫ n and b≫ s,
Ttile-caqr

TLapack
≃ 1+ 1

2
mb
D

. Note that mb

D

is the domain size and typically a large number.

• If D = mb,
Ttile-caqr

TLapack
= 3

2 (1 +
s
4b ).

• If we choose domain size mb

D ≥ 10 and b
s ≥ 5, the

operation count of tile CA-QR is comparable to that of

LAPACK.

We also use the same method as used by Ttile-caqr to

compute the number of operations for the parallel tile CA-

QR. Instead of counting all the D domains, we only count

the number of D
P domains located within a process to com-

pute Tdgeqrt, Tdormqr, Tdtsqrt, and Tdtsssmqr. Moreover, the

process can participate in at most a number of log(D) dttqrt

and log(D)(nb − k) dttssmqr operations at each iteration k.

Therefore,

Tpar. tile-caqr ≃

2n2(m−
n

3
)(1 + s

4b
)

P
+ n2b(1 +

s

4b
) logD.



TABLE I
COMPARISON OF TILE CA-QR WITH RELATED ALGORITHMS

Operation Count (Sequential) Operation Count (Parallel) # Messages Communication Volume

LAPACK 2n2(m−
n

3
) – – –

ScaLAPACK 2n2(m−
n

3
)

2n2(m−

n
3
)

P
3n logP (n2 + bn) logP

CAQR 2n2(m−
n

3
)

2n2(m−

n
3
)

P

3n
b
logP (n2 + bn

2
) logP

TSQR 2n2(m−
n

3
) 2n2m

P
−

n3

3
+ 2

3
n3 logP logP n2

2
logP

Tile QR 2n2(m−
n

3
)(1 + s

4b
)

2n2(m−

n
3
)(1+ s

4b
)

P
(n
b
)2 Pr

Pc

m

b
n2 Pr

Pc

m

b

Tile CA-QR 2n2(m−
n

2
+ Db

2
)(1 + s

4b
)

2n2(m−

n
3
)(1+ s

4b
)

P
+ n2b(1 + s

4b
) logD (n

b
)2 logP n2 logP

B. Number of Messages

We compute for the process that has the maximum number

of messages. We know that communication only occurs during

the binary tree merge where the dttqrt and dttssmqr operations

are involved. Each dttqrt is followed by (nb − k) dttssmqr

operations and both dttqrt and dttssmqr require two message

exchanges to stack two tiles. Given P processes, for each

iteration k, a process is involved in at most log2 P merge

stages, thus,

Messagepar. tile-caqr =

nb
∑

k=1

log2(P )(nb − k + 1)× 2

≃ log2(P )n2
b = log2(P )

n2

b2
.

C. Communication Volume

Similar to computing the number of messages, we compute

for the process that has the maximum number of words com-

municated with other processes. Since each message contains

a tile of b2 words,

Wordpar. tile-caqr = log2(P )n2.

D. Comparison with Related Algorithms

We compare tile CA-QR with LAPACK, ScaLAPACK,

CAQR, TSQR, and tile QR factorizations for tall and skinny

matrices. The numbers for CAQR and TSQR are provided by

Demmel’s paper [8]. As for ScaLAPACK and CAQR, we let

Pr ≫ Pc assuming a very tall and skinny matrix input.

We have implemented the tile QR factorization on

distributed-memory systems in our previous work [9]. We

briefly introduce it here. The distributed tile QR factorization

maps tiles to a Pr × Pc process grid using the 2-D block

cyclic data distribution. P = Pr × Pc is the total number

of processes. A tile indexed by [i, j] will be allocated to the

process P [i mod Pr , j mod Pc] so that each process stores

a set of tiles and computes the tasks that modify the tiles. We

skip the calculation of the number of messages and words for

tile QR and give the result in Table I.

As shown in Table I, the first two columns present the num-

ber of floating point operations for sequential algorithms and

parallel algorithms, respectively. For the sequential algorithms,

tile QR and tile CA-QR have more operations than the other

algorithms by s
4b . Note that s is an inner tile size which divides

the tile size b and is typically a small number. For the operation

count of the parallel algorithms, from the least to the most are

ScaLAPACK, CAQR, tile QR, tile CA-QR, and TSQR.

LAPACK is a library used for share-memory systems and

thus does not have any communication. Although TSQR has

the minimum number of messages, it uses a much larger tile

size such that b = n given an m × n matrix. CAQR also

has a smaller number of messages than tile CA-QR, but the

algorithm typically uses the fork-join approach and is not

suited for dynamic scheduling (e.g., the whole step of panel

factorization must be completed before the step of trailing

matrix update can start). Differently, tile CA-QR provides

more fine grain tasks operating on tiles and is able to be

executed in a fully asynchronous manner where computation

and communication can be overlapped greatly. At first glance

it might appear that the binary tree merge in tile CA-QR is

also a barrier, but it does not necessarily lead to idle CPU

time since the amount of fine grain tasks on each process (i.e.,

the existing tasks before the merge and the newly generated

dttssmqr tasks) can keep the process’s cores busy and hide

the merge-related communication. On the other hand, in the

case of a 1-D block row layout, the communication volume of
n2

2 logP has been proven to be optimal for QR factorization

considering the length of a critical path is at least logP [8].

V. THE DISTRIBUTED FRAMEWORK

We build upon our previous work of Task-based Basic

Linear Algebra Subroutines (TBLAS) dynamic runtime system

[9], [14] to realize tile CA-QR on distributed-memory systems.

This section first overviews the TBLAS runtime system, then

describes how we extend TBLAS to support tile CA-QR

efficiently.

Given a matrix A of mb × nb tiles and a multicore cluster

consisting of N nodes each with T cores, we launch on each

node Ni a process Pi, respectively. The rows of matrix A

are preallocated to N nodes by 1D block distribution. That

is, Pi (on nodeNi) stores a submatrix of A from (mb

N i)-th to

(mb

N (i+1)−1)-th tile-rows. Note that by default TBLAS uses

a general 2D block cyclic data distribution. But the 1D data

distribution which is a special case of 2D data distribution is

more suitable for tall and skinny matrices.



A. TBLAS Runtime System

Every process runs an instance of the TBLAS runtime

system in parallel, which are started by mpirun. As shown

in Fig. 3, the TBLAS runtime system includes three types

of threads: task-generation thread, computing thread, and

communication thread. Given a node with T cores, we launch

T computing threads on T different cores, as well as a

task-generation thread and a communication thread on two

arbitrary cores. The task-generation thread executes a tile CA-

QR program and generates tasks to fill in its node’s local task

queues. Also, whenever becoming idle, a computing thread

picks up a ready task from the ready task queue and computes

it. After finishing a task, the computing thread scans the

task queues to resolve data dependency and finds the finished

task’s children and starts them. The communication thread is

responsible for sending and receiving data between a parent

task and its children to meet the data dependency demands.

An advantage of the tile CA-QR factorization is that we do

not need a dedicated core to perform MPI communications

because of the high parallelism degree and the minimized

communication cost of the algorithm.

B. Extensions

Our first implementation of tile CA-QR with the original

TBLAS runtime system did not yield good performance au-

tomatically. By profiling the execution using the Intel trace

analyzer and collector [15], we found that each core’s comput-

ing time is only half of the wall-clock execution time, which

implies there is nearly 50% idle time on each core.

Figure 4 a) shows an example trace of the first version of tile

CA-QR running on 16 dual-core nodes. The colored regions

represent the computation time, and the gaps represent the idle

time during the execution. By analyzing the trace, we found

a few reasons for the poor performance. 1) In the program’s

corresponding task graph, between domains, tasks from two

...      task window: 

... ready task queue: 

Task-generation 

thread 

... Computing thread Computing thread Computing thread 

Network 

outbox 

inbox 

Communication 

thread 

Fig. 3. TBLAS runtime system.

iterations (i.e., from i-th and i+1-th panels) are connected

by tasks computing the global binary-tree reduction across

domains. The merge tasks must be executed earlier in order

to pull tasks from the next iteration to execute. 2) Within a

domain, the panel factorization tasks should also be executed

as early as possible because many trailing-matrix update tasks

are awaiting a single panel-factorization task. 3) Lookahead

to the next d iterations can help pull tasks not only from the

next iteration but also from the next d iterations.
Essentially we want to make sure the TBLAS runtime

system executes the tasks on the critical path as early as

possible. We modified the runtime system in the following

ways:

• We added the lookahead feature to the runtime system.

The lookahead depth d is a parameter to the runtime

system and has been tuned to provide the best per-

formance. A depth of d means that before the current

iteration’s submatrix update is completed, the next d

panels belonging to the next d iterations can be factorized

immediately after the panels are updated.

• We assign priorities to different tasks. The binary-tree

merge tasks have the highest priority. At iteration i,

the tasks located between the i-th column and (i+d)-th

column have the 2nd highest priority given a lookahead

depth of d. The remaining tasks have a regular priority.

• We also added message priorities to the communication

subsystem of the runtime system. The output of a high

priority task will be assigned a high priority accordingly

and sent out by the communication thread earlier than

the other messages. Similarly, the receiver will process

the high priority message earlier too.

• The task window size has been tuned to optimize the

program performance. With a small window size, the

runtime system is not able to see tasks in the other

domains and the following iterations so that there is a

lesser degree of parallelism. But a large window size

will increase the runtime system overhead due to longer

queues and lengthy access time to search for and resolve

data dependencies in the queues.

Figure 4 displays examples of traces for three different

versions of the runtime system. Figure 4 a) shows the trace of

the original version that has significant idle time. After setting

appropriate task priorities, the performance is improved by

27% as shown in b). Figure 4 c) shows the trace of our final

optimized version after applying all the above modifications

and tunings. The final version is better than the original one

by 35%. It is easy to see the significantly reduced empty gaps

(i.e., idle time) in the figure.

VI. PERFORMANCE EVALUATION

In this section, we provide strong scalability and weak

scalability performance results on three different distributed-

memory machines. We also present the crossover point of

distributed tile CA-QR for matrices that are not tall and skinny.
We conducted experiments on two clusters (Grig and

Newton at University of Tennessee) and a Cray XT5 system



(a) The original version (b) An improved version (c) The final version

Fig. 4. Traces for tuning the TBLAS runtime system. The dark regions denote computation time and the empty gaps denote idle time. After applying a
number of modifications, the final version of the TBLAS runtime system has much less idle time and is faster than the original version by 35%.

(Jaguar at Oak Ridge National Laboratory) to compare tile

CA-QR with the ScaLAPACK library. Whenever possible,

we use a vendor-optimized ScaLAPACK library. Table II

lists the hardware and software resources we used to do our

experiments. The Grig cluster has two cores per node, the

Newton cluster has eight cores, and the Cray XT5 system has

12 cores per node. On Newton and the Cray XT5 system,

we use Intel MKL and Cray XT LibSci libraries to conduct

ScaLAPACK experiments, respectively.

A. Strong Scalability

For strong scalability experiments, we fix the matrix size

and increase the number of cores to solve the matrix. Then

we compare the overall number of GFLOPS (i.e., TotalF lops
Time )

between tile CA-QR and ScaLAPACK.

The matrix input to the Newton cluster and Cray XT5

system is of 512× 32 tiles with a tuned tile size of b = 200.

The matrix input to the Grig cluster is a bit smaller (due to

its smaller memory), that is, 512 × 16 tiles with a tile size

200. Since the configuration of a process grid Pr × Pc can

affect the performance of ScaLAPACK significantly, we tried

all possible grid configurations and used the best process grid

for ScaLAPACK. We also found that running one MPI process

per core provides better performance than running one MPI

per node with multithreaded computational kernels for tall and

skinny matrices (i.e., up to 27% faster on the clusters and

150% faster on the Cray XT5 system). Thus we use one MPI

process per core in our ScaLAPACK experiment.

Figure 5 displays the overall performance of tile CA-QR

and ScaLAPACK on three systems. On the Grig cluster, as we

increase the number of cores from 1 to 64, the performance

of tile CA-QR increases from 4.3 GFLOPS to 206 GFLOPS.

By contrast ScaLAPACK increases from 2.4 GFLOPS to 112

GFLOPS.

On Newton, between 1 and 128 cores, the performance of

tile CA-QR increases from 7.3 to 620 GFLOPS at which time

the parallel efficiency is 66.4%. Then from 128 cores to 256

cores, tile CA-QR’s parallel efficiency decreases slightly and

its overall performance rises to 810 GFLOPS. The perfor-

mance of ScaLAPACK is less than that of tile CA-QR, which

rises from 7.1 to 423 GFLOPS.

On the Cray XT5 system (Fig. 5 c), with an increasing

number of cores from 1 to 384, tile CA-QR improves from

7.5 to 1700 GFLOPS while ScaLAPACK improves from 5.8

to 947 GFLOPS with a slowdown in the end.

B. Weak Scalability

For weak scalability experiments, we fix the amount of

computation on each core. When we double the number

of cores, we also double the total amount of computation

accordingly. Weak scalability demonstrates a program’s ability

to solve larger problems with more resources.

In our experiment, each matrix input has a fixed number

of eight tile-columns but different number of tile-rows. When

we double the number of cores, we double the number of tile-

rows in the input. For instance, the input to the single-core

experiment has 64× 8 tiles. And the two-core experiment has

a matrix input of 128× 8 tiles.

Figure 6 shows the performance of the weak scalability

experiments on three different systems. Besides tile CA-

QR and ScaLAPACK, we also display the theoretical peak

performance and the serial DGEMM performance times the

number of cores for each system. The DGEMM performance

serves as an upper bound for all of our experiments. Again for

ScaLAPACK, we always choose the best process grid and use

the vendor optimized ScaLAPACK library whenever possible.

There are two subfigures for each system. The top subfigure

shows the overall number of GFLOPS, and the bottom one

shows the number of GFLOPS per core (i.e., the overall

GFLOPS divided by the total number of cores). Ideally the

number of GFLOPS per core is a constant and does not change

from 1 to n cores so that the per-core performance curve is

flat.

In Fig. 6, a) and b) display the overall performance and

per-core performance of tile CA-QR and ScaLAPACK on the

Grig cluster, respectively. We set the tile size b = 200. As

shown in b), the per-core performance of tile CA-QR keeps at

a rate of 4 GFLOPS that outperforms ScaLAPACK by nearly

four times.

On the Newton cluster, the ScaLAPACK experiment invokes

the QR factorization subroutine provided by Intel MKL 10.1

and sets tile size b = 200. Figure 6 d) shows that the per-

core performance of tile CA-QR decreases slowly from 6.9 to

6.0 GFLOPS from 1 to 256 cores. But ScaLAPACK does not



TABLE II
EXPERIMENT RESOURCES

Grig cluster Newton cluster Cray XT5

Processor Intel Xeon 3.2GHz Intel Xeon E5530 2.4GHz AMD Opteron 2.6GHz

Cores per processor 1 4 6

Processors per node 2 2 2

Nodes 60 170 18,688

Memory per node 4 GB 16 GB 16 GB

Peak perf. per core 6.4 GFLOPS 9.6 GFLOPS 10.4 GFLOPS

Serial DGEMM perf. 5.6 GFLOPS 8.96 GFLOPS 9.7 GFLOPS

Network Myrinet Infiniband Cray SeaStar2+

OS Linux 2.6 Scientific Linux 5.3 Compute Node Linux 2.2

Compilers gcc 64bit 3.4.4 Intel compilers 11.0 PGI 9.0.4

MPI lib mpich-mx 1.1 OpenMPI 1.2.8 Cray XT MPT 3.5.1

BLAS/LAPACK lib Goto 1.26 Intel MKL 10.1 Cray XT LibSci 10.4.4

ScaLAPACK lib Netlib ScaLAPACK 1.8 Intel MKL 10.1 Cray XT LibSci 10.4.4
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Fig. 5. Strong scalability. The input size is fixed while increasing the number of cores.
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(d) Per-core performance on Newton
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Fig. 6. Weak scalability. The input size increases with the increment of the number of cores.
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Fig. 7. Crossover point. The input has a fixed number of 512 tile rows.

perform as well as tile CA-QR. For instance, the performance

of ScaLAPACK on 256 cores is only 1/6 of that of tile CA-QR.

On the Cray XT5 system, we use the ScaLAPACK sub-

routine provided by Cray XT LibSci 10.4.4 and let tile size

b = 300. In Fig. 6 e), with an increasing number of cores

from 1 to 3,072, tile CA-QR increases from 7.4 GFLOPS to

17.5 TFLOPS while ScaLAPACK increases from 4.4 GFLOPS

to 4.4 TFLOPS. In f), the per-core performance of tile CA-

QR decreases gradually from 7.4 GFLOPS to 6.3 GFLOPS

between 1 and 12 cores. The reason for the performance drop

is related to the NUMA node architecture and requires an

optimized memory-affinity setup. Afterward tile CA-QR scales

well from 12 to 3,072 cores. By contrast ScaLAPACK drops

from 4.4 to 1.4 GFLOPS per core as we increase the number

of cores, which is 1/4 of that of tile CA-QR.

C. Crossover Point

This section discusses how distributed tile CA-QR behaves

if the matrix is not tall and skinny. In our experiment, a matrix

has a fixed number of 512 tile-rows but an increasing number

of tile-columns. The tile size is set to b = 200. Since we

want to view the number of columns as a unique variable,

we choose to use a fixed number of 192 cores. We conducted

the experiment on the Cray XT5 system. Note that 192 cores

correspond to 16 nodes.

Figure 7 shows the crossover point when a matrix becomes

wider and wider until it is eventually square. We can see that

the performance of tile CA-QR becomes worse than that of

ScaLAPACK after the number of columns is greater than 1/4

of the number of rows. This is because the matrix’s 512 tile-

rows have been distributed to 16 processes by the 1D block

distribution. Every process is allocated with 32 tile-rows and is

only responsible for the computation on its own 32 tile-rows.

As the algorithm visits and computes the matrix from top left

to bottom right, more and more processes on the top become

idle, which results in a load imbalance and poor performance.

Figure 8 shows an example of the tile CA-QR factorization

that explains the cause of idle processes. The matrix input has

8×4 tiles and is partitioned across eight processes. We can see

from the figure that when the algorithm is working on the third

tile-column, processes P0 and P1 become idle until the end of

RR RR RR R

R R R

P0

P1
P2

P3

P4
P5

P6

P7

Fig. 8. An example of existing idle processes given a matrix of 8× 4 tiles
that are distributed across eight processes in a 1D block row layout. In the
figure, black tiles denote the final result and red tiles (or gray tiles in black
and white) denote the first panel of the remaining computation. Since the
third iteration (i.e., from the third column), P0 and P1 have finished all their
allocated tasks and then become idle.

the factorization. A two-dimensional block cyclic distribution,

similar to ScaLAPACK, would then be necessary to efficiently

handle general matrix sizes and overcome this bottleneck. This

would also require a revision of the algorithm correspondingly.

This is out of the scope of this paper which focuses on how

to factorize tall and skinny matrices in a more efficient way.

VII. CONCLUSION AND FUTURE WORK

The QR factorization of tall and skinny matrices has been

used in many scientific fields that require solving least square

problems. This paper extends an existing algorithm for shared-

memory architectures and enables it to work efficiently on

modern large-scale distributed-memory systems. We have im-

plemented the algorithm with an augmented TBLAS runtime

system. The distributed tile CA-QR factorization has a high

degree of parallelism and allows for a fully dynamic execution

that can overlap computation and communication greatly. We

have presented the algorithm, the analysis of the algorithm,

the extension of the runtime system, and the performance

evaluation. Our experiments on two multicore clusters and

a Cray XT5 system demonstrate that the tile CA-QR factor-

ization is scalable on up to 3,072 cores and can outperform

the ScaLAPACK library by up to 4 times for tall and skinny

matrices.

In summary, we make the following contributions: (1) An

extension from shared-memory systems to distributed-memory

systems; (2) A detailed analysis of the algorithm with respect

to operation count, number of messages, and communication

volume; (3) An extended TBLAS runtime system to support

an efficient distributed implementation; (4) First demonstration

of the scalability of the algorithm on large scale distributed-

memory systems. The design principles and implementation

techniques of our tile CA-QR approach can also be applied to

other parallel software on modern manycore cluster systems.

It is important for the software to create fine-grain tasks, have

asynchronous execution, good data locality, and minimized

communication cost to achieve high performance.

Our future work includes looking for new methods to

partition matrices across processes to improve load balance

for general size matrices, and applying the approach to solving

other linear algebra problems on distributed-memory multicore

systems.
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