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Abstract

Time-scaled phylogenetic trees are both an ultimate goal of evolutionary biology and a1

necessary ingredient in comparative studies. While accumulating genomic data has moved2

the field closer to a full description of the tree of life, the relative timing of certain3

evolutionary events remains challenging even when this data is abundant, and absolute4

timing is impossible without external information such as fossil ages and morphology. The5

field of phylogenetics lacks efficient tools integrating probabilistic models for these kinds of6

data into unified frameworks for estimating phylogenies. Here, we implement, benchmark7

and validate popular phylogenetic models for the study of paleontological and8

neontological continuous trait data, incorporating these models into the BEAST2 platform.9

Our methods scale well with number of taxa and of characters. We tip-date and estimate10

the topology of a phylogeny of Carnivora, comparing results from different configurations11

of integrative models capable of leveraging ages, as well as molecular and continuous12

morphological data from living and extinct species. Our results illustrate and advance the13

paradigm of Bayesian, probabilistic total evidence, in which explanatory models are fully14

defined, and inferential uncertainty in all their dimensions is accounted for.15

[Continuous trait, Brownian motion, total evidence, Carnivora]16
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2 ZHANG, DRUMMOND AND MENDES

The advent of molecular sequencing has unquestionably revolutionized comparative17

biology, giving phylogeneticists unprecedented power to recover species relationships and18

date important evolutionary events (e.g., Jarvis et al., 2014; Zhang et al., 2014; Suh et al.,19

2015; Pease et al., 2016; Kawahara et al., 2019; Vanderpool et al., 2020), describe drivers of20

diversification (Condamine et al., 2013; Morlon, 2014; Sánchez-Reyes et al., 2017;21

Condamine et al., 2019), and their relationship with ecologically relevant traits (Goldberg22

and Igić, 2012; Burin et al., 2016; de Alencar et al., 2017). The accumulation of genomic23

data further allowed the identification of problems or gaps in molecular evolution models24

(or their usage; e.g., Sullivan and Swofford 1997; Kolaczkowski and Thornton 2004;25

Mendes and Hahn 2018), which led to improvements in their realism (Yang, 2006; Rannala26

and Yang, 2003; Degnan and Salter, 2007), as well as the development of a plethora of27

computational tools for empiricists wishing to use such models (e.g., Lartillot and28

Philippe, 2004; Stamatakis, 2014; Nguyen et al., 2015; Chifman and Kubatko, 2015; Höhna29

et al., 2016; Zhang et al., 2018; Suchard et al., 2018; Bouckaert et al., 2019).30

Despite all progress, abundant genomic sequences and more complex substitution31

models have not been a panacea for phylogenetic studies, in which species trees measured32

in absolute time are either the ultimate goal (Philippe et al., 2011) or a critical ingredient33

for downstream analyses (Felsenstein, 1985; Uyeda et al., 2018). First, while molecular34

data informs us on the relative timing of evolutionary events, inferring mutation rates35

remains challenging (Kong et al., 2012; Besenbacher et al., 2015; Wang et al., 2020), as36

does reconciling estimates obtained at different evolutionary timescales (Ho et al., 2005;37

Penny, 2005; Ho et al., 2007). Second, dating the tree of life in absolute time is38

complicated by the absence of a universal strict molecular clock (Zuckerkandl and Pauling,39

1965; Ayala, 1997; Lanfear et al., 2010). Molecular rates have been shown to vary among40

loci and species (Li, 1997; Larracuente et al., 2008; Bromham, 2009), and to correlate with41

phenotypic and natural history traits (Martin and Palumbi, 1993; Smith and Donoghue,42

2008), the environment (Bleiweiss, 1998; Wright et al., 2006; Gillman et al., 2009), and43
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SCALABLE TOTAL EVIDENCE WITH CONTINUOUS TRAITS 3

even the process of speciation (Webster et al., 2003; Witt and Brumfield, 2003; Venditti44

and Pagel, 2010). Finally, although non-contemporaneous DNA can help circumvent the45

aforementioned issues and improve the estimation of substitution rates and divergence46

times (Rieux and Balloux, 2016), extracting DNA from well-preserved ancient remains has47

so far been limited to evolutionary young material. This process is also non-trivial and48

prone to contamination, usually yielding fragmentary data (Cooper and Poinar, 2000;49

Hagelberg et al., 2015). These complications often lead to phylogenetic trees being50

reported in lengths of expected substitutions per site – in these “substitution trees”, time51

and evolutionary rates are conflated.52

As a reaction to these findings, the past few decades saw improved descriptions of53

the substitution process from more realistic clock models (Thorne and Kishino, 2005; Ho54

and Duchêne, 2014), as well as the development of methods for calibrating substitution55

trees into time-scaled trees. “Node dating” (as dubbed by Ronquist et al. 2012), for56

example, refers to a collection of techniques whereby a specialist determines an age (range)57

for a node using fossil occurrence or biogeographical data (Ho and Phillips, 2009). Node58

dating is complicated by the difficulty in estimating the age of fossils, choosing which59

fossils to use (Parham et al., 2012) – in many cases information is lost because younger60

fossils of a group are excluded in favor of the oldest one – and what nodes to assign them61

to, and choosing probability distributions for their age ranges, a crucial ad hoc step that62

can introduce bias and circularity to an analysis (Warnock et al., 2011; Field et al., 2020).63

These issues are further compounded by the analysis sensitivity to node-time priors (Welch64

et al., 2005), unclear implicit prior probabilities on node times (Heled and Drummond,65

2012), and overly simplistic molecular clock models (Berv and Field, 2018).66

As an alternative to node dating, the “tip-dating” approach consists of making67

direct use of heterochronous data – sample ages and character data – in order to calibrate68

and place taxa in the phylogeny. Tip dating was first employed for divergence time69

estimation at shorter time scales, in the context of viral phylodynamics (Rambaut, 2000;70
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4 ZHANG, DRUMMOND AND MENDES

Drummond et al., 2002), where sample times are usually known with good precision and71

molecular data can be abundant. When used at macroevolutionary time scales, tip dating72

has also been dubbed “total-evidence” dating (Ronquist et al., 2012), likely as a reference73

to the original total evidence paradigm proposed by Kluge (1989). As in molecular tip74

dating, total-evidence dating (Pyron, 2011; Ronquist et al., 2012) allows the data – fossil75

age estimates and morphological characters – to directly inform fossil affinities and76

calibrate phylogenies, precluding the somewhat arbitrary specialist input that characterizes77

node dating. For the purposes of the present study, we use the term “total evidence” to78

mean “probabilistic” total evidence, the analysis of combined data using integrative79

probabilistic models, as opposed to methods rooted in parsimony or other heuristics (e.g.,80

Giribet et al., 2001; Nylander et al., 2004; Grant et al., 2006; Manos et al., 2007; Arango81

and Wheeler, 2007).82

The success of total-evidence tip dating depends on the quality and size of83

morphological data sets (number of characters and phylogenetic coverage), and on how84

well evolutionary models capture the real processes generating the data, i.e., how good the85

model fit is. Because obtaining molecular data from extinct species is usually hard, one86

should strive to obtain as many morphological characters as possible from both extinct and87

extant species, across and along the phylogeny. Crucially, these species will “link” the88

phylogenetic signal coming from morphological data together with that coming from89

molecular sequences, allowing a single phylogeny to be informed by both. Furthermore,90

evolutionary models should meet a delicate balance between realism, utility, and91

practicality. By being very realistic, models run the risk of being overly complex, hindering92

the researcher’s ability to draw general, useful conclusions. Very complex models also tend93

to be computationally onerous and technically hard to implement.94

Continuous-time Markov models are routinely used in phylogenetics for the study of95

both discrete and continuous characters. In the case of discrete traits, the ‘Mk’ and ‘Mkv’96

models (Lewis, 2001) have received the most attention (e.g., Danforth et al., 2006;97
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SCALABLE TOTAL EVIDENCE WITH CONTINUOUS TRAITS 5

Bracken-Grissom et al., 2014) and criticism (e.g., O’Reilly et al., 2016, 2018; Goloboff98

et al., 2019). Key issues with these models – or with how they are implemented and99

normally used – include their assumption that discrete characters evolve in uncorrelated100

fashion and at the same rate, and the fact that autapomorphic characters are usually not101

represented in character matrices. Solutions for these problems exist, but can be102

computationally expensive. Continuous characters, on the other hand, are scored at a103

resolution that usually makes them variable within and across species. Popular continuous104

character phylogenetic models are based on Brownian motion (BM; Felsenstein, 1973;105

Hansen and Martins, 1996; but see Blomberg et al., 2020) and can incorporate correlated106

evolution among traits, which are assumed to evolve as a random walk whose diffusion rate107

is the evolutionary rate. Using continuous characters in total-evidence tip dating thus not108

only has the potential to improve phylogenetic inference by enhancing morphological data109

sets (Parins-Fukuchi, 2018b; Álvarez Carretero et al., 2019; c.f. Varón-González et al., 2020110

for some criticism), but also provides natural workarounds for the issues observed under111

discrete-character models.112

While many computational methods exist for the study of morphological character113

evolution (e.g., Revell, 2012; Pennell et al., 2014; Clavel et al., 2015; Caetano and Harmon,114

2017; Mitov et al., 2020), tools capable of jointly modeling molecular and morphological115

characters are still lacking, particularly those that simultaneously account for uncertainty116

in species tree topology and branch lengths. With few exceptions, comparative analysis of117

morphological characters requires a species tree point estimate (e.g., Adams et al., 2009;118

Lister, 2013; Gibson and Fuentes-G., 2015; or more rarely, a posterior distribution, e.g.,119

Silvestro et al., 2018; Fuentes-G. et al., 2020) to be available and assumed as the truth.120

Such species trees will have almost invariably been estimated in previous studies using121

different data sets, often molecular ones. In such cases, the morphological data is then122

analyzed on a phylogenetic “Procrustean bed”, a species tree that might not represent the123

morphological evolutionary history (Hahn and Nakhleh, 2016). One way forward should be124
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6 ZHANG, DRUMMOND AND MENDES

easily visible in the joint evolutionary modeling of all available data, whereby different125

sources of data inform on each other’s model parameters and on the phylogeny itself.126

Reasons why tools do not provide for this joint evolutionary modeling approach127

include: (i) the technical difficulty of implementing multiple models efficiently under the128

same statistical framework, (ii) prohibitively slow run times due to model scalability issues,129

and (iii) lack of available data sets compiling appropriate data from multiple sources. Over130

time we expect this last reason to become less of a hindrance and more of a motivation for131

method development in this area. Recent work suggests, however, there is an immediate132

demand for methods capable of integrating multidimensional data (e.g., Silvestro et al.,133

2018; Cascini et al., 2019; Koch and Thompson, 2020), as well as work in progress to meet134

those demands (e.g., Álvarez Carretero et al., 2019; May and Moore, 2020; Gaboriau et al.,135

2020; Ogilvie et al., 2021).136

Here, we implement and validate efficient, general and scalable methods for137

phylogenetic inference from continuous characters in a hierarchical Bayesian total-evidence138

framework as part of the BEAST2 platform (Bouckaert et al., 2019). We also implement a139

birth-death model that conditions on serially sampled occurrence times (such as fossil ages;140

Stadler and Yang, 2013) to be used as a species tree sampling distribution in our141

hierarchical model. By leveraging molecular and morphological data from living and142

extinct Carnivora species, we then illustrate the use of different integrative model143

configurations in the estimation of the Carnivora species tree topology and branch lengths,144

comparing different estimates among themselves and with previously published results.145

Materials and Methods146

Integrative model147

The integrative model for Bayesian total-evidence inference (Fig. 1) can be148

expressed as the product of the probability density and mass functions of its several149

component sampling distributions. Given continuous morphology and molecular data150
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SCALABLE TOTAL EVIDENCE WITH CONTINUOUS TRAITS 7

matrices M and S, respectively, the posterior distribution of the time-scaled phylogenetic151

tree (Φ), morphological and molecular relative branch rates (bm and bs) and all remaining152

parameters (θ) is given by:153

f(Φ, bm, bs,θ|M,S) ∝f(M|Φ, bm,θ) (morphological likelihood)

f(S|Φ, bs,θ) (molecular likelihood)

f(bs|θ)f(bm|θ) (molecular and morphological clock models)

f(Φ|θ) (prior on phylogenetic tree topology and node times)

f(θ) (prior on the remaining parameters)

(1.1)

For the purposes of the present study, the morphological likelihood corresponds to the154

probability of observing M under a phylogenetic BM model (Felsenstein, 1973), and the155

molecular likelihood to the probability of a observing S under a molecular substitution156

model (Felsenstein, 1981). Finally, the tree prior f(Φ|θ) gives the probability of a specific157

topology and node times in phylogenetic tree Φ, with f(θ) corresponding to the prior158

distribution on all remaining parameters θ = {r, cm,y0, λ, µ, ψ, ρ, tmrca, cs,κ,π, ζ} (see159

text below, Supplementary Table S11, and Fig. 1 for definitions; in Fig. 1,160

θΦ = {λ, µ, ψ, ρ, tmrca} are the tree prior parameters, and θs = {κ, ζ}, as π is set to161

empirical values).162

The posterior distribution f(Φ, bm, bs,θ|M,S) under our integrative model is163

approximated by Markov Chain Monte Carlo (MCMC) sampling in BEAST2 (Bouckaert164

et al., 2019).165
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8 ZHANG, DRUMMOND AND MENDES

Continuous character model166

Brownian motion is a convenient model for the comparative study of continuous167

characters because its density function is the same as that of the well known multivariate168

normal distribution (Felsenstein, 1973):169

f(M|Φ, bm, r, cm,y0) =
1

(2π)nk/2|V |1/2
exp

(
−1

2
(M− y0)

TV −1(M− y0)

)
, (1.2)

where M is an n× k matrix of observed continuous characters (n species, k traits), bm are170

the relative branch evolutionary rates, r are the relative character-specific evolutionary171

rates, cm is the global evolutionary rate, and y0 corresponds to the trait values from all172

species at the root of Φ. (Note that we unpack r, cm, and y0 from θ in equation 1.1.)173

The phylogenetic variance-covariance matrix V in equation 1.2 corresponds to the174

Kronecker product between matrices Σ and T , i.e., V = Σ⊗ T . The phylogenetic175

component of the BM model, T = (tuw), is a symmetric n× n matrix deterministically176

obtained from phylogenetic tree Φ, relative branch rates bm and global evolutionary rate177

cm :178

tuw =
∑

z∈Path(u,w)
cmb

z
mℓ(z), (1.3)

where u and w denote any two species in Φ, Path(u, w) returns the set of branches on the179

phylogenetic path shared by u and w (from the root to the most recent common ancestor180

of u and w), and bzm and ℓ(z) are the relative rate and length of branch z, respectively.181

Matrix Σ is the k × k Hadamard product between η and ρ, i.e., Σ = η ◦ ρ. The182

symmetric character correlation matrix, ρ, is defined as:183

ρ =




1 ρ12 · · · ρ1k
ρ21 1 · · · ρ2k
...

...
. . .

...
ρk1 ρk2 · · · 1


 , (1.4)
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SCALABLE TOTAL EVIDENCE WITH CONTINUOUS TRAITS 9

with off-diagonal elements representing the correlation between a pair of different184

characters. Finally, matrix η = (ηij) is given by:185

ηij =

{
ri, if i = j
√
rirj, otherwise,

(1.5)

with i, j ∈ {1, 2, ..., k}. Note that if the same relative evolutionary rate is assumed for all186

characters (i.e., r = 1; Fig. 1), then Σ = ρ.187

Considering the the Kronecker product between k × k matrix Σ and n× n matrix188

T , the phylogenetic variance-covariance matrix V becomes an nk × nk matrix, which189

consists of n2 k × k matrices, where vuw = tuwΣ.190

Scalability with number of traits and species191

It is clear from equation 1.2 and the definition of V that computing the probability192

density of M under the BM model for large n and k will be computationally demanding.193

Not only is a Kronecker product (V = Σ⊗ T ) required, causing the evaluation of 1.2 to194

slow down proportionally to k2 and n2, but also V must be inverted, an operation the195

lower bound of which is (nk)2 (Freckleton, 2012).196

Fortunately, in the same work proposing BM as an evolutionary model for197

continuous characters, Felsenstein (1973) also introduced the pruning algorithm as the198

basis for addressing both problems mentioned above. In a nutshell, the original pruning199

algorithm amounts to computing three quantities, for each of the (2n− 1) nodes in the200

tree: the variance, the variance-weighted expectation, and the probability density of a201

multivariate normal distribution given the first two quantities. This algorithm precludes202

the computation of Σ⊗ T and the inversion of V , although it is still necessary to invert203

and calculate the determinant of ρ (this operation can nevertheless be avoided by204

transforming the data, M; see Eq. 6 in Álvarez Carretero et al., 2019 and the205

supplementary material for more detail). For the sake of brevity, and because this206
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10 ZHANG, DRUMMOND AND MENDES

algorithm has been described and generalized in many subsequent studies (e.g., Felsenstein207

1973; Freckleton 2012; Caetano and Harmon 2017; Álvarez Carretero et al. 2019; Mitov208

et al. 2020), we point the interested reader to those references and to our supplementary209

material for more detailed descriptions of the algorithm and a worked example.210

More recently, Mitov et al. (2020) proposed a very general pruning-based solution211

for calculating 1.2, as well as the probability density function of more general models, such212

as BM with early bursts (Harmon et al., 2008) and accelerating or decelerating rates213

(Blomberg et al., 2003), BM with trends (Hansen and Martins, 1996) and the214

Ornstein-Uhlenbeck process (Hansen, 1997; Butler and King, 2004). Unlike the pruning215

algorithm by Felsenstein (1973), the algorithm in Mitov et al. (2020) does not compute the216

maximum-likelihood estimate of trait values at internal nodes of the tree, but instead217

calculates a series of intermediate values (which gives this algorithm its flexibility; see Eq.218

2 in Mitov et al. 2020). These intermediate values are then combined at the root node in219

the calculation of an integral, which then gives the final probability density (Eq. 6 in Mitov220

et al. 2020). Readers can find a detailed description of this algorithm in Mitov et al.221

(2020), with it being put to use in Mitov and Stadler (2019). We provide a worked example222

in the supplementary material.223

The second obstacle to carrying out inference for multiple characters under224

phylogenetic BM is posed by the curse of dimensionality. As k increases, the number of225

character correlation parameters (the off-diagonal elements of ρ) we must estimate226

increases quadratically; for Bayesian inference, this means long MCMC chains must be227

employed in order to achieve convergence. Furthermore, unless the number of taxa n also228

increases in a similar fashion, there will be more parameters to estimate than data points.229

If there are more parameters to estimate than data points (i.e., n < k), then230

non-identifiability will ensue. This is a problem for which no easy solution exists if one is231

indeed interested in learning about the evolution of morphological trait correlations232

(Goswami et al., 2014; Caetano and Harmon, 2017).233
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SCALABLE TOTAL EVIDENCE WITH CONTINUOUS TRAITS 11

Alternatively, although the non-independence among characters should always be234

accounted for in some manner, it might be of secondary interest relative to the estimation235

of a time-scaled phylogenetic tree. Different approaches have been explored or suggested236

for such cases (e.g., Adams, 2014; Goolsby, 2016; Adams and Collyer, 2018), but one237

simple solution is to employ the unbiased estimator of ρ, ρ̂, obtained from multiple238

character observations (e.g., multiple individuals) within a species in the phylogeny. (Note239

that here this estimator is unbiased with respect to the population of a single species, and240

by using ρ̂ we are assuming trait correlations are the same across species and over time.)241

Unfortunately, when one chooses to do the latter, a third non-obvious issue arises: as242

n << k, the determinant of ρ̂ will approach zero and ρ̂ will be singular and non-invertible.243

In such cases, it is impossible to evaluate equation 1.2.244

One strategy recently employed in a Bayesian context for divergence time estimation245

(Álvarez Carretero et al., 2019) involves using the linear shrinkage estimate of ρ̂, given by:246

ρ∗ = δI+ (1− δ)ρ̂, (1.6)

which consists of the average between the k × k identity matrix and ρ̂, weighted by the247

shrinkage parameter δ. This parameter can be optimized as described in Schäfer and248

Strimmer (2005).249

Tree models for total-evidence dating250

Modeling the evolution of molecular and morphological characters is crucial for251

statistically sound taxon placement across and along a phylogeny. An integrative model for252

total-evidence inference is nonetheless incomplete without accounting for the phylogenetic253

process itself: the birth and death of lineages. Total-evidence dating, in particular, further254

requires addressing the fossilization process underlying heterochronous data sets. The255

fossilized birth-death process (FBD; Stadler, 2010; Heath et al., 2014; Gavryushkina et al.,256

2014, 2017) is one tree model that has enjoyed success in the context of total-evidence257

dating, due to its capacity to account for fossilization simultaneously with speciation and258
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12 ZHANG, DRUMMOND AND MENDES

extinction. Its statistical cousin, the birth-death-sequential-sampling model (BDSS;259

Stadler, 2010; Stadler and Yang, 2013), is yet another option, differing from the FBD in260

that it conditions on fossil sampling times rather than using the sample times as data. We261

compare results obtained from using both models under different configurations (Table 1)262

in analyses of Carnivora data (see below).263

Software264

Our integrative model for total-evidence phylogenetic inference (Eq. 1.1) is265

implemented in the BEAST2 platform (Bouckaert et al., 2019). The molecular components266

of our integrative model, parametric distributions, MCMC machinery, and the FBD model267

have already been part of BEAST2 since its first release, or incorporated since then, prior268

to the present study.269

Here, we implement the general pruning-based method of Mitov et al. (2020) for270

computing the likelihood of phylogenetic Brownian models in BEAST2’s contraband271

package (https://github.com/fkmendes/contraband). This method can be readily272

integrated with a variety of BEAST2 clock and epoch models, which allow for273

among-branch and among-epoch variation of model parameters, such as Σ. Under our274

implementation, the among-trait covariance can either be sampled (as in Caetano and275

Harmon 2017) or its unbiased estimator can be used (as in Álvarez Carretero et al. 2019).276

For cases where the number of traits is near to or larger than the number of species,277

computing the linear shrinkage estimate of the trait variance-covariance matrix is also278

available as an option. Details on method benchmarking and validation can be found in279

the supplementary material.280

Finally, we implement and validate the BDSS model for its utility both as an281

alternative to the FBD tree prior in total-evidence dating, and as a necessary component282

for validating our morphological model implementation against previous work (Álvarez283

Carretero et al., 2019). Both BDSS and FBD tree models work alongside our284
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SCALABLE TOTAL EVIDENCE WITH CONTINUOUS TRAITS 13

implementation of Mitov et al. (2020)’s method. The BDSS model can be found in the285

bdtree repository (https://github.com/fkmendes/bdtree).286

Case study: Carnivora phylogeny287

We illustrate our total-evidence approach by carrying out several analyses of a288

published Carnivora data set (Álvarez Carretero et al., 2019) under different integrative289

model configurations.290

Molecular and morphological data The data set in Álvarez Carretero et al. (2019)291

is comprised of (i) a concatenated alignment of 12 mitochondrial genes from 10 extant292

species, (ii) 29 three-dimensional cranium landmarks (considered as 87 continuous293

characters) from the same 10 extant species and an additional nine fossil specimens, and294

(iii) the same 29 landmarks scored from 21 Vulpes vulpes individuals (for estimating ρ̂, see295

above).296

We follow the same protocol in Álvarez Carretero et al. (2019) to prepare the297

morphological data (cranium landmarks) for analysis, and start by “aligning” the298

landmarks. In addition to size and shape, raw landmarks carry nuisance information about299

position and orientation, which preclude their statistical analysis (Mitteroecker et al.,300

2013). Distilling shape and size from raw landmarks can be done with Procrustes301

superimposition, commonly used in biological shape analysis to “align” (superimpose)302

landmarks (Mitteroecker et al., 2013). Procrustes superimposition consists of rotating,303

translating and scaling landmark configurations relative to their centroid (i.e., their304

average position) and its size, so as to minimize the Procrustes distance – a measure of305

how different in shape two landmark configurations are (Gower, 1975; Rohlf and Slice,306

1990). The Procrustes distance is given by the summed squared distance over landmarks307

and their sample average position; if zero, then two landmarks have the same shape.308

We further prepare the morphological data so as to address intraspecific character309
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14 ZHANG, DRUMMOND AND MENDES

variation. Comparative methods still traditionally employ a single measurement expected310

to represent each species in a phylogeny, such as averages from a group of individuals of a311

species. Individuals within a species, however, will invariably exhibit different phenotypes312

for a myriad of reasons, such as genetic variability (Lynch and Walsh, 1998), direct effects313

of environmental factors that differ among populations, variation related to age and sex,314

seasonal fluctuations (Ives et al., 2007), to name a few. In addition, each data point can be315

further biased by measurement error due to nonrandom sampling of individuals and316

instrumental error (Garamszegi and Møller, 2010; Hansen and Bartoszek, 2012). Failing to317

address intraspecific phenotypic variance can mislead comparative analyses in multiple318

ways (Kostikova et al., 2016). For example, different modes of evolution can be inferred319

(e.g., rapid vs. gradual body size changes in vertebrates; Landis and Schraiber, 2017), and320

both evolutionary rates (Clavel and Morlon, 2017) and divergence times (Álvarez321

Carretero et al., 2019) can be overestimated.322

One way to account for phenotypic variation among conspecifics is to increment323

trait variances and among-trait covariances by some constant verr (Ives et al., 2007). This324

amounts to using phylogenetic variance-covariance matrix V ′ = (v′
uw

), which is updated325

by verr from V = (vuw) (in equation 1.2). We have:326

v′
uw =

{
vuw + verr, if u = w

vuw, otherwise,
(1.7)

where verr is a k × k matrix given by the Hadamard product between the trait correlation327

matrix ρ and ǫ, i.e., verr = ǫ ◦ ρ. Note that in practice ρ∗ (equation 1.6) can be used328

instead of ρ for the aforementioned reasons. The k × k matrix ǫ = (ǫij) is given by:329

ǫij =

{
σi

2, if i = j√
σi2σj2, otherwise,

(1.8)

where σi
2 represents the intraspecific variance of character i.330

If the unbiased estimator of σi
2, σ̂2

i , is not available or cannot be computed (in the331

absence of measurements from multiple individuals from a species), verr can be inferred at332
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the cost of longer MCMC chains. As in Álvarez Carretero et al. (2019), we nonetheless use333

σ̂2
i calculated for all 87 landmarks from 21 individuals of V. vulpes. We also normalize each334

i-th observed landmarks in M by their corresponding σ̂i, i.e., M
(s) = M× diag{1/

√
σ̂},335

where σ̂ holds the unbiased estimators of intraspecific standard deviations (of all k336

landmarks). Using M(s) is convenient because this normalization leads to unit337

(co-)variances, i.e., ǫ becomes a matrix of ones, and then verr = ρ∗.338

Integrative model configurations The general structure of our integrative model339

can be represented by a probabilistic graphical model (Fig. 1). With the exception of340

species tree priors in some of our analyses (see below), we matched the model in Álvarez341

Carretero et al. (2019), which includes molecular and morphological clock models, and all342

hyperprior distributions. We used the same partitioning scheme for the molecular data –343

two partitions comprised by 7,331 sites from first and second codon positions, and 3,660344

sites from third codon positions, respectively – as well as the same substitution model345

(HKY+Γ; Hasegawa et al., 1985; Yang, 1994). Equilibrium nucleotide frequencies were set346

to their empirical values.347

Continuous morphological evolution was modelled with a phylogenetic BM model,348

with all 87 superimposed, standardized characters (see above) sharing the same relative349

evolutionary rate (r =1; Fig. 1). We estimated the landmark root values (y0) using350

maximum-likelihood, obtaining ŷ0 as a byproduct of pruning as done in Álvarez Carretero351

et al., 2019. We did so first because this approach allows for direct comparison with results352

from that study, and second because it is not immediately obvious how to choose a prior353

for y0. Using ŷ0 is analogous to employing empirical nucleotide frequencies as the354

equilibrium distribution under molecular substitution models. We note that both assuming355

the same evolutionary rates across characters and calculating ŷ0 are not requirements of356

our implementation; r =1 can be relaxed, and y0 can be sampled during MCMC. Finally,357

uncorrelated log-normal relaxed clock models were used for both molecular and358
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[Sij]
p[Mij]

Φ

Tm

cmbmΣ

ρ∗

ρ∗ = δI + (1− δ)ρ̂

r = 1

HyperpriorHyperprior

ŷ0

k = 87

T p
s

bps cps

HyperpriorHyperprior

Qp

θp
s

Hyperprior

∀i ∈ {1, 2, . . . , n}
∀j ∈ {1, 2, . . . , k}

p ∈ {1, 2}

UCRC

PhyloCTMC
Cat(j, i), ∀i ∈ {1, 2, . . . , ℓ}

∀j ∈ {1, 2, . . . , L}

HKY+Γ

BDSS/FBD

θΦ

Hyperprior

n = 19

UCRC

PhyloBM

Figure 1. Probabilistic graphical model used in the analyses of the Carnivora data set, composed of 12
concatenated mitochondrial genes (L = 12) split into two partitions, and 87 continuous characters (k = 87) from 19
Carnivora species (n = 19). Filled squares denote sampling distributions, diamonds denote deterministic functions
(black) and their outputs (red), and circles denote random variables (yellow) or observed data (blue). Bold symbols
represent vectors or matrices, otherwise they are scalars. All symbols are defined in the main text. ‘PhyloBM’ and
‘PhyloCTMC’ stand for phylogenetic Brownian motion and phylogenetic continuous-time Markov chain models,
and ‘UCRC’ for uncorrelated relaxed clock models. The sampling distribution for the species tree (Φ) was either
the BDSS or FBD model (see Methods section and Table 1). For the sake of clarity, θ = {θΦ,θ

p

s} and ‘Hyperprior’
encompass all parameters and priors not explicitly shown in the graphical model.

morphological evolutionary rates.359

In order to explore the influence of species tree priors in total-evidence inference, we360

carried out three classes of analyses (Table 1). The first analysis constrains the topology of361

the Carnivora phylogeny to that in Álvarez Carretero et al. (2019) (Fig. 2a). We will362

henceforth refer to this tree as the “reference tree”. Under this first setup, species tree363

prior parameters were fixed, and only divergence times were estimated. In the second class364

of analyses, we estimated species tree prior parameters, and both the topology and365

divergence times of the Carnivora phylogeny, under the BDSS (analysis 3) and FBD366

(analysis 5) models. The third and final class of analyses (analyses 4 and 6) employed the367

same models as the second, but we constrained the species tree topology to include the368

Feliformia and Caniformia clades, both present in the reference tree.369
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Bayesian inference with Markov Chain Monte Carlo370

Bayesian inference was carried out with the BEAST2 platform, which uses MCMC371

to approximate the posterior distribution over all model parameters. For each of the six372

analyses detailed above, we ran two independent 50 million-state MCMC chains, sampling373

every 5,000 states, and discarded the first 10% of samples as burn-in. All chains converged374

(i.e., achieved effective sample sizes > 200), and we then combined each pair of chains from375

each model configuration before further analysis.376

Model comparison using nested sampling We compared the fit of the original377

model in Álvarez Carretero et al. (2019) (analysis 1; Table 1) with that of an almost378

identical model (analysis 2), the only difference being that the species tree topology was an379

estimated parameter in the latter. Model comparison was conducted by computing380

posterior odds between the two models (which we refer to below as M0 and M1):381

f(M0|D)

f(M1|D)︸ ︷︷ ︸
Posterior odds

=
f(D|M0)

f(D|M1)︸ ︷︷ ︸
Bayes factor

× f(M0)

f(M1)︸ ︷︷ ︸
Prior odds

. (1.9)

By assuming both models have the same prior probability (i.e., prior odds = 1), the382

posterior odds reduces to the ratio of the marginal likelihoods Z0 = f(D|M0) and383

Z1 = f(D|M1). The marginal likelihood of a model is the probability of observing the data384

under that model, and so it measures a model’s goodness-of-fit. The ratio of two model’s385

marginal likelihoods, known as the Bayes factor (BF), thus allows one to quantify which of386

the two has the best fit. A log-BF > 0, for example, indicates M0 fits the data better; when387

> 2, the log-BF suggests M0 is decisively supported over M1; Kass and Raftery, 1995.388

Many Bayesian methods exist for calculating marginal likelihoods, such as the389

harmonic mean approach (Newton and Raftery, 1994), thermodynamic integration390

(Lartillot and Philippe, 2006), steppingstone sampling (Xie et al., 2011), generalized391

steppingstone sampling (Fan et al., 2011), and nested sampling (NS; Russel et al., 2019).392
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18 ZHANG, DRUMMOND AND MENDES

We chose NS because it is readily available in BEAST2, the platform in which we393

implemented our integrative model, but also because this technique overcomes many394

shortcomings of other methods. Namely, NS is robust to phylogenetic tree spaces with tree395

“islands”, copes better with convex likelihood functions, requires simpler tuning, dispenses396

with the burn-in stage, and can have the uncertainty around its estimate calculated in a397

single run (Russel et al., 2019).398

In order to calculate posterior odds (Equation 1.9), we carried out two NS analyses399

(one for each model) with K = 5, 000 and N = 55. Sub-chain lengths of 7,500 produced400

statistically similar Z estimates as compared to 5,000-long sub-chains (within twice the401

sum of their standard deviations), so we deemed a length of 5,000 sufficient for covering402

the bulk of the marginal likelihood. Given that the (NS) standard deviation of Z estimates403

is inversely proportional to the square root of N (Skilling et al., 2006), we adjusted N such404

that the standard deviation was < 2 (see Supplementary Table 10).405

Table 1. Six different integrative model configurations used to estimate the Carnivora phylogeny. Φ indicates both
topology and divergence times were sampled, T indicates just divergence times were sampled. “NA” denotes not
applicable.

Analysis (i) Tree prior Sampled parameters Clade constraints

1 BDSS T NA
2 BDSS Φ NA
3 BDSS λ, µ, ψ, ρ, Φ NA
4 BDSS λ, µ, ψ, ρ, Φ Feliformia, Caniformia

5 FBD λ, µ, ψ, ρ, Φ NA
6 FBD λ, µ, ψ, ρ, Φ Feliformia, Caniformia

Further comparison of species tree distributions and cranium landmarks using406

multidimensional scaling In addition to estimating the Carnivora phylogeny using several407

different models (Table 1), we employed multidimensional scaling (MDS) in order to408

compare the resulting trees obtained under each model configuration, as well as to further409

explore the landmark data quantitatively.410

For readability purposes, we carried out MDS on a 2-D spatial map while choosing411

the metric-scaling transformation function that minimized the stress statistic. We used the412
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mds() subroutine from the smacof R package (Mair et al., 2019). When exploring413

phylogenetic space, we compared 100 uniformly sampled trees from each of the six model414

MCMC chains, and our chosen proximities were (i) Robinson-Foulds distances (Robinson415

and Foulds, 1981), and (ii) branch scores (Kuhner and Felsenstein, 1994) (see416

supplementary material for more details). Morphological MDS was conducted on the417

Euclidean distances among the 19 Carnivora species across all superimposed landmarks.418

Results419

Carnivora phylogeny420

Posterior estimates of Carnivora divergence times matched previous results (Álvarez421

Carretero et al., 2019) when using the same integrative model configuration (analysis 1;422

Fig. 2a and Supplementary Fig. 15). Treating the species tree topology as a random423

variable (analysis 2; Fig. 2b) considerably improved model fit, however, as indicated by a424

log-BF of 39.07. (A log-BF > 3 is conventionally interpreted as the best model fitting the425

data substantially better; Kass and Raftery, 1995). In what follows we focus on the426

summary maximum-clade-credibility (MCC) tree from analysis 2 (Fig. 2b; results from the427

remaining analyses can be found in the supplementary material).428

In terms of fossil placement, there were four notable differences (red asterisks, Fig.429

2b) between the reference tree topology and the MCC tree summarized from our posterior430

samples under the BDSS tree prior, when estimating both topology and divergence times.431

First, Smilodon fatalis, one of the extinct species commonly referred as “saber-toothed432

cat”, was inferred to be more closely related to modern dogs and other canines than to433

cat-like carnivoran species in Feliformia, the suborder S. fatalis is canonically assumed a434

member of. Similarly, Hyaenictitherium wongii, a middle-sized hyaenid from the Late435

Miocene (Werdelin and Solounias, 1991) was also estimated to be more closely related to436

canines than to other feliforms. Third, while still placed within caniforms, Enhydrocyon437
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(a) Analysis 1: Fixed topology, sampling divergence times, BDSS tree prior (fixed parameters)
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(b) Analysis 2: Sampling topology and divergence times, BDSS tree prior (fixed parameters)

Time (myr)

7 0 6 0 5 0 4 0 3 0 2 0 1 0 0

Aelurodon ferox† 
Speothos venaticus

Ailurus fulgens

Vulpes vulpes 

Tomarctus hippophaga†

Canis lupus

Epicyon haydeni†

Cerdocyon thous

Cuon alpinus

Otocyon megalotis

Hesperocyon gregarius†

Paraenhydrocyon josephi†

Enhydrocyon pahinsintewakpa†

Ursus americanus

Paradoxurus hermaphroditus

Nandinia binotata

Smilodon fatalis†

Hyaenictitherium wongii†

Time (myr)

7 0 6 0 5 0 4 0 3 0 2 0 1 0 0

Caniformia

Canidae

Feliformia

Hespercyoninae

Borophaginae

Caninae

Ursidae

Canis dirus†0.9778

0.6812

0.8095

0.6858

0.6808

0.9084

0.9883

0.7944

0.2897

0.4844

0.9976

0.33850.8277

1

0.5287

0.5539

0.9079

0.4777



= -51730.89



= -51691.82

Figure 2. Carnivora maximum-clade-credibility summary trees. The horizontal bars at internal nodes show the 95%
credible intervals for their times. Numbers by internal nodes indicate each clade’s posterior probability. Carnivora
suborders, families and subfamilies are labelled in green next to corresponding internal nodes. (a) Tree estimated
from analysis 1 (Table 1; fixed topology from Álvarez Carretero et al., 2019 and other references therein). (b) Tree
estimated from analysis 2. Red stars indicate large differences in placement of key taxa.
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pahinsintewakpa was inferred to be phylogenetically closer to modern raccoons and bears438

rather than with the other extinct members of Hesperocyoninae canids. Finally, we did not439

recover the other extinct canid subfamily, Borophaginae; while two of its members440

(Tomarctus hippophaga and Epicyon haydeni) grouped together, Aelurodon ferox was441

inferred as sister to modern bush dogs (Speothos venaticus).442

The fossil affinities mentioned above meant that none of the more inclusive clades of443

Carnivora in the reference tree were recovered with high posterior clade probabilities (e.g.,444

Caniformia and Feliformia suborders, Canidae and Ursidae families, Caninae and445

Borophaginae subfamilies). Another visible difference included the placement of the two446

ursids and E. pahinsintewakpa on the opposite side of the root (relative to the reference447

tree), closer to feliforms Nandinia binotata and Paradoxurus hermaphroditus than to other448

canids, at moderate posterior probability (PP=0.79). This difference was observed in both449

molecules-only and morphology-only trees (Supplementary Fig. 19).450

Topological similarities with the reference tree were nonetheless observed. The clade451

containing all canids (in addition to S. fatalis and H. wongii), had relatively high support452

(posterior probability, PP, of 0.8277). The clades corresponding to Ursidae and453

Hespercyoninae, the former being expanded by E. pahinsintewakpa and the latter missing454

this taxon, also showed high clade support (PP=0.9 for both). These two feliforms, N.455

binotata and P. hermaphroditus, grouped together with very high posterior probability456

(PP=0.99).457

Two extant canines for which both morphological and molecular data were available458

presented aberrant species relationships relative to the reference tree: the bush dog (S.459

venaticus) and the red fox (V. vulpes). The bush dog grouped with A. ferox, a fossil460

member of Borophaginae, at moderate posterior probability (PP=0.68). Both these species461

were inferred to be more closely related to Canis species and Cuon alpinus than to462

Cerdocyon thous. The phylogenetic affinity of the bush dog seems to be supported by both463

molecular and cranium landmark data (Supplementary Fig. 19). The placement of the red464
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fox was quite uncertain, with this species forming a clade with one of the four outlier fossils465

mentioned above, H. wongii (PP=0.5287). Curiously, this grouping was not observed in466

either the molecule-only or the morphology-only trees (Supplementary Fig. 19).467

Phylogenetic constraints and rogue fossils One way to incorporate prior knowledge468

about species relationships in phylogenetic inference is to constrain the monophyly of469

specific groups. Holding the entire topology constant as done by Álvarez Carretero et al.470

(2019), for example, takes this strategy to an extreme. The rationale behind monophyletic471

constraints is that sometimes experts agree the veracity of that clade is beyond doubt. In472

practice, using monophyletic priors might make sense when a researcher does not have easy473

access to (or cannot use) the data upon which the confident monophyly belief is predicated.474

Because three of the four “rogue” fossils (marked with a red star; Fig. 2b) were placed on475

the wrong side of the root, in the wrong suborder, we reasoned constraining the monophyly476

of Caniformia and Feliformia could help us further scrutinize the behavior of our model.477

The main non-trivial topological difference with respect to the unconstrained478

analysis was the placement of the red fox, V. vulpes, as an outgroup of the remaining479

canines (Supplementary Figs. 17a and 17c). Apart from the still intrusive A. ferox, this480

analysis recovered Caninae with considerable posterior probability (PP=0.85). Moreover, if481

one were to ignore E. pahinsintewakpa, the posterior probability of Ursidae and482

Hespercyoninae increased from 0.9 (in both cases) to 0.97 and 0.99, respectively.483

We also repeated the unconstrained analysis with the model used in analysis 2484

while removing either (i) three rogue fossils, S. fatalis, H. wongii, and E. pahinsintewakpa485

(Supplementary Fig. 18a), or (ii) all four rogue fossils (adding A. ferox to the three486

aforementioned specimens; Supplementary Fig. 18b). Our hope was to determine whether487

data from these “rogue” fossils were driving the topological differences between the488

reference and estimated topologies (Fig. 2).489

If we consider the reference tree to be the desired goal, removing both three or all of490

the four rogue fossils improved the placement of canine species relative to the analysis491
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including all fossils (Fig. 2b). S. venaticus was inferred to be more closely related to other492

canine species, and V. vulpes was inferred to be a canine instead of being placed outside of493

both Caninae and Borophaginae (Supplementary Fig. 18b).494

On the other hand, removing rogue fossils split the Canis genus and resulted in the495

dire wolf, Canis dirus, being grouped with either taxa from Ursidae (Supplementary Fig.496

18a) or from Feliformia (Supplementary Fig. 18b). In both cases, the placement of C. dirus497

attained high posterior probability: PP=0.9515 with A. fulgens when removing three rogue498

fossils, and PP=0.9867 with the remaining feliforms when dropping all rogue fossils.499

Removal of problematic fossils also affected members of subfamily Borophaginae:500

Tomarctus hippophaga was placed with high posterior probability among members of the501

Caninae subfamily, and Epicyon haydeni grouped with species outside of Canidae at502

moderate to high posterior probability (Supplementary Fig. 18a).503
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Figure 3. Comparison of Carnivora species tree posterior distributions using multidimensional scaling (MDS) of
tree distance measures: (a) Robinson-Foulds distance, and (b) Branch score distance. Each point consists of one of
100 equally spaced (in the MCMC chain) posterior tree samples after discarding the burn-in. Note that
Robinson-Foulds distances do not take branch lengths into account and that we fix the species tree topology in
analysis 1, so this analysis is represented by a single point in (a).
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Further comparison of species tree distributions and cranium landmarks504

Species tree posterior distributions were not markedly shifted in topological space505

(disregarding branch lengths) by choice of tree prior nor by the fixing of their506

hyperparameters, regardless of the monophyly constraints of the Caniformia and Feliformia507

suborders (Fig. 3a). Such constraints (analyses 4 and 6; Table 1) did, unsurprisingly, yield508

a separate topological cluster of tree distributions for both tree distance measures (Fig. 3),509

as did constraining the entire topology (analysis 1). Unconstrained tree posterior510

distributions (analyses 2, 3 and 5) were not distinguishable as MDS of Robinson-Foulds511

distances suggests (Fig. 3a), and still largely overlapped when branch lengths were512

accounted for (Fig. 3b).513

Results from MDS of Euclidean distances between species landmarks (Fig. 4)514

largely agreed with our reconstruction of the species tree topology (Fig. 2b). For example,515

cranium landmarks from feliforms S. fatalis and H. wongii proved to be very different from516

each other and from the other two feliforms who grouped together (Fig. 2b); S. fatalis, in517

particular, is an outlier relative to all other specimens. Cranium landmarks of E.518

pahinsintewakpa (Hespercyoninae) were more similar to those of ursids Ailurus fulgens and519

Ursus americanus, and of feliforms N. binotata and P. hermaphroditus, than to other520

caniforms’. MDS also placed A. ferox closer to canines than to other members of521

Borophaginae. All these observations are in line with the inferred MCC topology (Fig. 2b).522

Discussion523

While the principle behind the “total evidence” approach – simultaneously524

leveraging multiple sources of data in phylogenetic reconstruction – is over 30 years old525

(Kluge, 1989), it was only given a statistically principled treatment in the last decade526

(Pyron, 2011; Ronquist et al., 2012). Even the more recent total-evidence example studies,527

however, still limit themselves to discrete or discretized morphological traits (Lee and Palci,528
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Figure 4. Multidimensional scaling (MDS) of Euclidean distances between Carnivora species cranium landmarks.

2015), and do not always model trait evolution statistically (e.g., O’Leary, 1999; Farias529

et al., 2000; Seiffert, 2007; Schuh et al., 2009; Arrigo et al., 2013; Polotow et al., 2015).530

This is likely not being driven, first, by a perceived superiority of discrete or531

discretized morphological traits over their continuous counterparts, in terms of their532

usefulness to phylogenetic inference. Conventionally used discrete trait models are known533

to face challenges such as accounting for among-trait correlation, and making assumptions534

about the stationary distribution over character states (Parins-Fukuchi, 2018a; Álvarez535

Carretero et al., 2019). Discrete trait data sets also suffer from subjectivity in the inclusion536

and scoring of characters, and from loss of information caused by the discretization of537

continuous traits (Goloboff et al., 2006).538

Second, the common use of maximum-parsimony in total-evidence inference is also539

not due to a consensus on the superiority of this criterion; rather, tools for the joint540

modeling of continuous morphological and molecular evolution are still lacking (but see541
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Álvarez Carretero et al., 2019; May and Moore, 2020; Gaboriau et al., 2020). It was not542

until recently that careful simulation studies investigated the use of phylogenetic BM543

(Parins-Fukuchi, 2018b; Varón-González et al., 2020) and implemented statistical tools544

with the purpose of placing fossils and inferring phylogenies (Parins-Fukuchi, 2018a;545

Álvarez Carretero et al., 2019; May and Moore, 2020).546

We introduce a new total-evidence method that allows comparative biologists to547

add quantitative traits to molecular sequences in the joint inference of phylogenetic548

relationships and divergence times. Our BEAST2 implementation was extensively549

benchmarked and validated; it is correct, fast, scales linearly with the number of species,550

and supports both the inference of among-trait correlations with MCMC, as well as the551

use of the linear shrinkage method. Because it follows a general mathematical framework552

(Mitov and Stadler, 2019), our method can be readily extended to include models such as553

BM with trends (Hansen and Martins, 1996), Ornstein-Uhlenbeck (OU; Hansen and554

Martins, 1996; O’Meara et al., 2006), early burst (EB; Harmon et al., 2010), accelerated or555

decelerated-rate models (ACDC; Blomberg et al., 2003), to name a few. The BEAST2556

platform also provides a series of clock and other evolutionary models that can be used in557

conjunction with (or replace components of) the integrative model we use here. These558

extensions will be the subject of future studies.559

In order to showcase our method, we carried out Bayesian total-evidence estimation560

of a phylogeny of Carnivora from both extant and extinct species data. When constraining561

our integrative model to match that in a previous study (Álvarez Carretero et al., 2019) –562

where the species tree topology was held constant at a “reference” configuration (Finarelli563

and Goswami, 2009; Mart́ın-Serra et al., 2014; Álvarez Carretero et al., 2019) – our564

analysis yielded the same results. But an almost identical model in which the species tree565

topology was a random variable fit the data significantly better. This result bears out how566

treating the topology as data can be misguided, even if not necessarily so in Álvarez567

Carretero et al. (2019)’s (and our analogous) analysis. At best, the habit of assuming a568
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known topology will always mask the phylogenetic incongruence between data and tree,569

and can have unwanted consequences to evolutionary inference (Mendes et al., 2016).570

When all available data can be used in a single analysis and nothing else is known about a571

phylogeny, one should strive to estimate both divergence times and topology, steering clear572

from the alluring comfort of the phylogenetic Procrustean bed (Hahn and Nakhleh, 2016).573

When estimating the topology of the Carnivora species tree, the molecular574

phylogenetic signal alone supported most clades with high posterior probability575

(Supplementary Fig. 19a) as opposed to the much noisier morphological signal576

(Supplementary Fig. 19b). This is unsurprising because molecular alignments harbor a577

much larger number of topologically informative characters (Lee and Palci, 2015), and578

because the molecular tree space was also smaller (we did not have DNA from fossils).579

Neither data set decidedly supported the reference tree topology, however, with the580

phylogenetic signal coming from molecules and morphology both agreeing and disagreeing581

in different parts of the tree. For example, adding morphological data decreased the582

posterior probability of Canis by 0.1 posterior probability units relative to the583

molecules-only tree, while increasing the support of (N. binotata, P. hermaphroditus) by584

0.0436 units.585

Despite the noisy phylogenetic signal carried by the cranium landmarks, adding586

them to the molecular alignments had a considerable effect on the posterior distribution of587

species trees. Topologically, the effect was largely driven by four rogue fossils. Among588

those, S. fatalis had a particularly strong phylogenetic affinity to other canine species and589

A. ferox in the morphology-only tree (Supplementary Fig. 19b), which was less590

pronounced but still present in the full data analysis (Fig. 2b). The aberrant placement of591

rogue fossils relative to the reference tree was clearly echoed by further exploration of the592

cranium landmarks using multidimensional scaling (Fig. 4). These results are in agreement593

with principal component analyses of cranium landmarks carried out by Álvarez Carretero594

et al. (2019), which also revealed S. fatalis to be an outlier specimen.595

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 22, 2021. ; https://doi.org/10.1101/2021.04.21.440863doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.21.440863
http://creativecommons.org/licenses/by-nc-nd/4.0/


28 ZHANG, DRUMMOND AND MENDES

While adding cranium landmark data to the analysis decreased node support596

overall, the phylogenetic signal coming from this data partition was not merely diffuse, but597

strongly supported certain clades. The Canis genus comprised by the extant gray wolf (C.598

lupus) and the extinct dire wolf (C. dirus), for example, was well supported by the599

continuous trait data set. The morphological phylogenetic signal also trumped the signal600

contained in the molecular alignments; Cerdocyon thous, the South American crab-eating601

fox, was confidently inferred as sister to Otocyon megalotis, the African bat-eared fox. This602

result suggests that the number and size of molecular alignments used in this study were603

not large enough to overwhelm the signal from the morphological data.604

At this point, we should clarify that the goal of our Carnivora analyses was not to605

contribute to the understanding of this group’s systematics, but to illustrate the606

estimation of a species tree topology and divergence times from both molecular and many607

continuous morphological traits. While C. dirus being more closely related to C. lupus608

than to Cuon alpinus is plausible (Tedford et al., 2009; Slater, 2015; but see Perri et al.,609

2021), S. fatalis earned the soubriquet “saber-toothed cat” – instead of “saber-toothed610

canid” – for good reason (Werdelin, 1996; Turner and Antón, 1997; Anton et al., 2004;611

Werdelin et al., 2010; Flynn et al., 2010; Christiansen, 2013). This latter result motivated612

us to further explore the empirical consequences of excluding S. fatalis and other rogue613

taxa, as well as employing monophyletic constraint priors. Neither strategy proved a silver614

bullet in producing a match between our estimated species and the reference tree, but615

some improvements were observed, especially with monophyletic constraints.616

Many modeling approaches not explored in this study remain open, some of which617

might help remedy the issues we and others have observed. The placement of species with618

outlier morphology, for example, could be improved by binning continuous traits into619

different partitions, each with its own relative evolutionary rate(s). This strategy has been620

long recognized as an improvement to molecular substitution models (Sullivan and621

Swofford, 1997), and in our and similar cases might prevent the grouping of lineages that622
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have undergone large amounts of phenotypic change. Local morphological clock models623

applied to evolutionary rates and adaptive optima regimes (in the case of OU models)624

could further accommodate ecologically relevant traits evolving under selection (Eastman625

et al., 2011; Uyeda and Harmon, 2014; Gaboriau et al., 2020). Accounting for rampant626

gene tree discordance due to incomplete lineage sorting and introgression may also prove627

necessary if it is shown that population-level processes cannot be merely buffered out628

through an additional variance term, but by being carefully modeled instead (Mendes629

et al., 2018). Progress made on this front (Bastide et al., 2018) and on the phylogenetic630

modeling of intraspecific trait variance (Gaboriau et al., 2020) might hold the key to631

capturing additional dimensions of phenotypic evolution.632

The performance of our method as described here should not be seen as a set633

standard because it is likely to be highly dependent on the size, phylogenetic scope of, and634

phylogenetic signal within a data set. While it did not greatly matter to species tree635

estimation here, the choice and configuration of tree priors and hyperpriors can be a636

critical component in total-evidence analyses (Ronquist et al., 2016). Future analyses637

might additionally consider discrete morphological traits, or even attempt to analyze those638

traits under threshold models (Wright, 1934; Felsenstein, 2005) by adapting the639

implementation we introduced here. It is still unclear how the signal among different640

morphological and molecular data partitions should interact in data sets of different size.641

We are only beginning to understand the power and utility of leveraging discrete642

and continuous morphology in addition to molecules within a robust statistical framework.643

Recent studies suggest this approach holds promise (e.g., Ronquist et al., 2016;644

Gavryushkina et al., 2017; Ogilvie et al., 2021), and the future looks bright from many645

angles. Even if many clades are not prone to fossilization, the vast majority of species to646

ever roam the planet have gone extinct (Lee and Palci, 2015), and obtaining their DNA647

(but not measuring their morphology) is challenging at best (Cooper and Poinar, 2000;648

Hagelberg et al., 2015), and impossible in most cases (Austin et al., 1997). Ongoing efforts649
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to make different kinds of morphological data easily available (O’Leary and Kaufman,650

2011; Cunningham et al., 2015) have only started to scratch the surface of the tree of life’s651

canopy. We are confident that methods such as ours will motivate the curation, expansion652

and publication of rich morphological data sets, and fuel the probabilistic total evidence653

paradigm.654
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