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Abstract Through the success of deep learning, Artificial Neural Networks (ANNs) are

among the most used artificial intelligence methods nowadays. ANNs have led to major

breakthroughs in various domains, such as particle physics, reinforcement learning, speech

recognition, computer vision, and so on. Taking inspiration from the network properties of

biological neural networks (e.g. sparsity, scale-freeness), we argue that (contrary to general

practice) Artificial Neural Networks (ANN), too, should not have fully-connected layers.

We show how ANNs perform perfectly well with sparsely-connected layers. Following a

Darwinian evolutionary approach, we propose a novel algorithm which evolves an initial

random sparse topology (i.e. an Erdős-Rényi random graph) of two consecutive layers of

neurons into a scale-free topology, during the ANN training process. The resulting sparse

layers can safely replace the corresponding fully-connected layers. Our method allows to

quadratically reduce the number of parameters in the fully conencted layers of ANNs, yielding

quadratically faster computational times in both phases (i.e. training and inference), at no

decrease in accuracy. We demonstrate our claims on two popular ANN types (restricted

Boltzmann machine and multi-layer perceptron), on two types of tasks (supervised and

unsupervised learning), and on 14 benchmark datasets. We anticipate that our approach will

enable ANNs having billions of neurons and evolved topologies to be capable of handling

complex real-world tasks that are intractable using state-of-the-art methods.
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1 Introduction

Through the success of deep learning (LeCun et al, 2015), Artificial Neural Networks (ANNs)

are among the most used artificial intelligence methods nowadays. ANNs have led to major

breakthroughs in various domains, such as particle physics (Baldi et al, 2014), reinforcement

learning (Mnih et al, 2015), speech recognition, and so on (LeCun et al, 2015). Typically,

ANNs have layers of fully-connected neurons (LeCun et al, 2015), which contain most of

the network parameters (i.e. the weighted connections), leading to a quadratic number of

connections with respect to their number of neurons. In turn, the network size is severely

limited, due to obvious computational limitations.

By contrast to ANNs, biological neural networks have been demonstrated to have a

sparse (rather than dense) topology (Strogatz, 2001; Pessoa, 2014), and also hold other

important properties that are instrumental to learning efficiency. These have been extensively

studied in (Bullmore and Sporns, 2009) and include scale-freeness (Barabási and Albert,

1999) and small-worldness (Watts and Strogatz, 1998). Nevertheless, ANNs have not evolved

to mimic these topological features (Mocanu, 2016; Mocanu et al, 2016), which is why

in practice they lead to extremely large models. Previous studies have demonstrated that,

following the training phase, ANN models end up with weights histograms that peak around

zero (Dieleman and Schrauwen, 2012; Yosinski and Lipson, 2012; Han et al, 2015). Moreover,

in our previous work (Mocanu et al, 2015), we have hinted a similar fact. Yet, in the machine

learning state-of-the-art, sparse topological connectivity is pursued only as an aftermath of

the training phase (Han et al, 2015), which bears benefits only during the inference phase.

We claim that topological sparsity must be pursued since the ANN design phase, which

leads to a substantial reduction in connections and, in turn, to memory and computational

efficiency. At the same time, to be able to make use of standard training algorithms, e.g.

Stochastic Gradient Descent (SGD), the structured multi-layer architecture of ANNs has to

be preserved. Otherwise we would not be able to train large ANNs with a complete random

sparse topology, due to the difficulty of finding suitable optimization algorithms.

In a recent paper, we introduced compleX Boltzmann Machines (XBMs), a sparse

variant of Restricted Boltzmann Machines (RBMs), conceived with a sparse scale-free

topology (Mocanu et al, 2016). XBMs outperform their fully-connected RBMs counterparts

and are much faster, both in the training and the inference phases. Yet, being based on a

fixed sparsity pattern, XBMs may fail to properly model the data distribution. To overcome

this limitation, in this paper we introduce a Sparse Evolutionary Training (SET) procedure,

which takes into consideration data distributions and creates sparse bipartite layers suitable

to replace the fully-connected bipartite layers in any type of ANNs.

SET follows the natural simplicity of the Darwinian evolutionary approach, which was

explored successfully in our previous work on evolutionary function approximation (Whiteson

and Stone, 2006). Also, it has been explored for network connectivity in McDonnell and

Waagen (1993), and for the layers architecture of deep neural networks (Miikkulainen et al,

2017). The bipartite ANN layers start from a random sparse topology (i.e. Erdős-Rényi

random graph (Erdős and Rényi, 1959)), evolving through a random process during the

training phase towards a scale-free topology. Remarkably, this process does not have to

incorporate any constraints to force the scale-free topology. But our evolutionary algorithm

is not arbitrary: it follows a phenomenon that takes place in real-world complex networks
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(such as biological neural networks, and protein interaction networks). Starting from an

Erdős-Rényi random graph topology and throughout millenia of natural evolution, networks

end up with a more structured connectivity, i.e. scale-free (Barabási and Albert, 1999) or

small-world (Watts and Strogatz, 1998) topologies.

The remainder of this paper is organized as follows. Section 2 presents background

knowledge mainly for the benefit of the less specialist reader. Section 3 introduces the

proposed method, SET. Section 4 describes the experiments performed and discusses the

results. Finally, Section 5 concludes the chapter and proposes future research directions.

2 Background

2.1 Artificial neural networks.

Artificial Neural Networks (Bishop, 2006) are mathematical models, inspired by biological

neural networks, which can be used in all three machine learning paradigms (i.e. supervised

learning (Hastie et al, 2001), unsupervised learning (Hastie et al, 2001), and reinforcement

learning (Sutton and Barto, 1998)). These make them very versatile and powerful, as quan-

tifiable by the remarkable success registered recently by the last generation of ANNs (also

known as deep artificial neural networks or deep learning (LeCun et al, 2015)) in many

fields from computer vision (LeCun et al, 2015) to gaming (Mnih et al, 2015; Silver et al,

2016). Just like their biological counterparts, ANNs are composed by neurons and weighted

connections between these neurons. Based on their purposes and architectures, there are

many models of ANNs, such as restricted Boltzmann machines (Smolensky, 1987), multi

layer perceptron (Rosenblatt, 1962), convolutional neural networks (LeCun et al, 1998),

recurrent neural networks (Graves et al, 2009), and so on. Many of these ANN models

contain fully-connected layers. A fully-connected layer of neurons means that all its neurons

are connected to all the neurons belonging to its adjacent layer in the ANN architecture.

For the purpose of this paper, in this section we briefly describe two models that contain

fully-connected layers, i.e. Restricted Boltzmann Machines (Smolensky, 1987) and multi

layer perceptron (Rosenblatt, 1962).

A restricted Boltzmann machine is a two-layer, generative, stochastic neural network that

is capable to learn a probability distribution over a set of inputs (Smolensky, 1987) in an

unsupervised manner. From a topological perspective, it allows only interlayer connections.

Its two layers are: the visible layer, in which the neurons represent the input data; and the

hidden layer, in which the neurons represent the features automatically extracted by the

RBM model from the input data. Each visible neuron is connected to all hidden neurons

through a weighted undirected connection, leading to a fully-connected topology between

the two layers. Thus, the flow of information is bidirectional in RBMs, from the visible

layer to the hidden layer, and from the hidden layer to the visible layer, respectively. RBMs,

beside being very successful in providing very good initialization weights to the supervised

training of deep artificial neural network architectures (Hinton et al, 2006), are also very

successful as stand alone models in a variety of tasks, such as density estimation to model

human choice (Osogami and Otsuka, 2014), collaborative filtering (Salakhutdinov et al,

2007), information retrieval (Gehler et al, 2006), multi-class classification (Larochelle and

Bengio, 2008), and so on.

Multi Layer Perceptron (Rosenblatt, 1962) (MLP) is a classical feed-forward ANN model

that maps a set of input data to the corresponding set of output data. Thus, it is used for

supervised learning. It is composed by an input layer in which the neurons represent the input
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Fig. 1: An illustration of the SET procedure. For each Sparse Connected layer, SCk (left

plot), of an ANN at the end of a training epoch a fraction of the weights, the ones closest

to zero, are removed (top middle plot). Then, new weighs are added randomly in the same

amount as the ones previously removed (bottom middle plot). Further on, a new training

epoch is performed (right plot), and the procedure to remove and add weights is repeated.

The process continues for a finite number of training epochs, as usual in the ANNs training.

data, an output layer in which the neurons represent the output data, and an arbitrary number

of hidden layers in between, with neurons representing the hidden features of the input

data (to be automatically discovered). The flow of information in MLPs is unidirectional,

starting from the input layer towards the output layer. Thus, the connections are unidirectional

and exist just between consecutive layers. Any two consecutive layers in MLPs are fully-

connected. There are no connections between the neurons belonging to the same layer, or

between the neurons belonging to layers which are not consecutive. In (Cybenko, 1989), it

has been demonstrated that MLPs are universal function approximators, so they can be used

to model any type of regression or classification problems.

In general, working with ANN models involves two phases: 1) training (or learning), in

which the weighted connections between neurons are optimized using various algorithms

(e.g. backpropagation procedure combined with stochastic gradient descent (Rumelhart et al,

1986; Bottou and Bousquet, 2008) used in MLPs, contrastive divergence (Hinton, 2002) used

in RBMs) to minimize a loss function defined by their purpose; and 2) inference, in which

the optimized ANN model is used to fulfill its purpose.

2.2 Scale-free complex networks.

Complex networks (e.g. biological neural networks, actors and movies, power grids, trans-

portation networks) are everywhere, in different forms, and different fields (from neurobiology

to statistical physics (Strogatz, 2001)). Formally, a complex network is a graph with non-

trivial topological features, human- or nature-made. One of the most well-known and deeply

studied type of topological features in complex networks is scale-freeness, due to the fact

that a wide range of real-world complex networks have this topology. A network with a

scale-free topology (Barabási and Albert, 1999) is a sparse graph (Del Genio et al, 2011) that

approximately has a power-law degree distribution P (d) ∼ d−γ , where the fraction P (d)
from the total nodes of the network has d connections to other nodes, and the parameter γ

usually stays in the range γ ∈ (2, 3)
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3 Sparse Evolutionary Training (SET)

SET is detailed in Algorithm 1, and exemplified in Figure 1. Formally, let us defined a

Sparse Connected (SCk) layer in an ANN. This layer has nk neurons, collected in a vector

h
k = [hk

1 , h
k
2 , ..., h

k
nk ]. Any neuron from h

k is connected to an arbitrary number of neurons

belonging to layer below h
k−1. The connections between the two layers are collected in a

sparse weight matrix W
k ∈ R

nk−1
×nk

. Initially, Wk is a Erdős-Rényi random graph, in

which the probability of the connection between the neuron hk
i and hk−1

j to exist is given by:

p(W k
ij) =

ǫ(nk + nk−1)

nknk−1
(1)

whereby ǫ ∈ R
+ is a parameter of SET controlling the sparsity level. If ǫ ≪ nk and

ǫ ≪ nk+1 then there is a linear number of connections (i.e. non-zero elements), nW =
|Wk| = ǫ(nk + nk−1), with respect to the number of neurons in the sparse layers. In the

case of fully-connected layers the number of connections is quadratic, i.e. nknk−1.

1 %Initialization;

2 initialize ANN model;

3 set ǫ and ζ;

4 for each bipartite fully-connected (FC) layer of the ANN do

5 replace FC with a Sparse Connected (SC) layer having a Erdős-Rényi topology given by ǫ and

Eq.1;

6 end

7 initialize training algorithm parameters;

8 %Training;

9 for each training epoch e do

10 perform standard training procedure;

11 perform weights update;

12 for each bipartite SC layer of the ANN do

13 remove a fraction ζ of the smallest positive weights;

14 remove a fraction ζ of the highest negative weights;

15 if e is not the last training epoch then

16 add randomly new weights (connections) in the same amount as the ones removed

previously;

17 end

18 end

19 end

Algorithm 1: SET pseudocode

However, it may be that this random generated topology is not suited to the particularities

of the data that the ANN model tries to learn. To overcome this situation, during the training

process, after each training epoch, a fraction ζ of the smallest positive weights and of

the highest negative weights of SCk is removed. These removed weights are the ones

closest to zero, thus we do not expect that their removal will notably change the model

performance (Han et al, 2015). Next, to let the topology of SCk to evolve so as to fit the data,

an amount of new random connections, equal to the amount of weights removed previously,

is added to SCk. In this way, the number of connections in SCk remains constant during the

training process. After the training ends, we keep the topology of SCk as the one obtained

after the last weight removal step, without adding new random connections. Please note that

the removal of the not important connections corresponds to the selection phase of natural
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Table 1: Datasets characteristics. The data used in this paper have been chosen to cover a

wide range of fields where ANNs have the potential to advance state-of-the-art, including

biology, physics, computer vision, data mining, and economics.

Experiments Dataset Dataset Properties

type Domain Data type Features [#] Train samples [#] Test samples[#]

ADULT households binary 123 5000 26147

Connect4 games binary 126 16000 47557

DNA genetics binary 180 1400 1186

Assessment UCI Mushrooms biology binary 112 2000 5624

of RBMs evaluation NIPS-0-12 documents binary 500 400 1240

variants suite OCR-letters letters binary 128 32152 10000

(Larochelle and Murray, 2011) RCV1 documents binary 150 40000 150000

Web Internet binary 300 14000 32561

CalTech 101 16x16 images binary 256 4082 2302

Silhouettes (Marlin et al, 2010) 28x28 images binary 784 4100 2307

MNIST digits binary 784 60000 10000

Assessment MNIST digits grayscale 784 60000 10000

of MLPs CIFAR10 images RGB colors 3072 50000 10000

variants HIGGS (Baldi et al, 2014) particle physics real values 28 10500000 500000

evolution (which typically is not a random process), while the the random addition of new

connections corresponds to the mutation phase of natural evolution (which typically is a

random process).

It is worth highlighting that in the initial phase of conceiving the SET procedure, the

weight-removal and weight-addition steps after each training epoch were introduced intu-

itively. Still, in the last phases of preparing this paper we have found that there is a similarity

between SET and a phenomenon which takes place in biological brains, named synaptic

shrinking during sleep. This phenomenon has been demonstrated recently in two papers

published in the Science journal in February 2017 (Diering et al, 2017; de Vivo et al, 2017).

In short, it was found that during sleep the weakest synapses in the brain shrink, while the

strongest synapses remain unaltered, supporting the hypothesis that one of the core functions

of sleeping is to renormalize the overall synaptic strength increased while awake (de Vivo

et al, 2017). By keeping the analogy, this is - in a way - what happens also with the ANNs

during the SET procedure.

4 Experiments and results

4.1 Evaluation method.

We evaluate SET in two types of ANNs, restricted Boltzmann machine (Smolensky, 1987),

and Multi Layer Perceptron (MLP) (LeCun et al, 2015), to experiment with both unsupervised

and supervised learning. In total, we evaluate SET on 14 benchmark datasets, as detailed

in Table 1, covering a wide range of fields in which ANNs are employed, such as biology,

physics, computer vision, data mining, and economics. We also assess SET in combination

with two different training methods, i.e. contrastive divergence (Hinton, 2002) and stochastic

gradient descent (LeCun et al, 2015).

4.2 SET performance on restricted Boltzmann machines.

First, we have analyzed the performance of SET on a bipartite undirected stochastic ANN

model, i.e. restricted Boltzmann machine (Smolensky, 1987), which is popular for its un-

supervised learning capability (Bengio, 2009) and high performance as a feature extractor

and density estimator (Osogami and Otsuka, 2014). The new model derived from the SET
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procedure was dubbed SET-RBM. In all experiments, we set ǫ = 11, and ζ = 0.3, per-

forming a small random search just on the MNIST dataset, to be able to assess if these two

meta-parameters are dataset specific or if their values are general enough to perform well

also on different datasets.

There are few studies on RBM connectivity sparsity (Mocanu et al, 2016). Still, to get a

good estimation of SET-RBM capabilities we compared it against RBMFixProb (Mocanu

et al, 2016) (a sparse RBM model with a fixed Erdős-Rényi topology), fully-connected RBMs,

and with the state-of-the-art results of XBMs from (Mocanu et al, 2016). We performed

experiments on 11 benchmark datasets coming from various domains, as depicted in Table 1,

using the same splitting for training and testing data as in (Mocanu et al, 2016). All models

were trained for 5000 epochs using Contrastive Divergence (Hinton, 2002) (CD) with 1, 3,

and 10 CD steps, a learning rate of 0.01, a momentum of 0.9, and a weight decay of 0.0002,

as discussed in (Hinton, 2012). We evaluated the generative performance of the scrutinized

models by computing the log-probabilities on the test data using Annealed Importance

Sampling (AIS) (Salakhutdinov and Murray, 2008), setting all parameters as in (Mocanu et al,

2016; Salakhutdinov and Murray, 2008). We have used MATLAB for this set of experiments.

We implemented SET-RBM and RBMFixProb ourselves; while for RBM and AIS we have

adapted the code provided by (Salakhutdinov and Murray, 2008).

Figure 2 depicts the model’s performance on all datasets, using varying numbers of

hidden neurons; while Table 2 summarizes the results, presenting the best performer for each

type of model for each dataset. In 7 out of 11 datasets, SET-RBM outperforms the fully-

connected RBMs, while reducing the parameters by a few orders of magnitude. For instance,

on the MNIST dataset, SET-RBM reaches -86.41 nats, with a 5.29-fold improvement over

the fully-connected RBM, and a parameters reduction down to 2%. In 10 out of 11 datasets,

SET-RBM outperforms XBM, which represents the state-of-the-art results on these datasets

for sparse variants of RBM (Mocanu et al, 2016).

Figure 2 shows striking results on stability. While fully-connected RBMs show instability

and over-fitting issues, the SET procedure stabilizes SET-RBMs and avoids over-fitting. This

situation can be observed more often when a high number of hidden neurons is chosen

(columns 2, 3, 5, 6, 8, and 9 of Figure 2). For instance, if we look at the DNA dataset,

independently on the values of nh and nCD (Figure 2, third row), we may observe that SET-

RBMs are very stable after they reach around -85 nats, having almost a flat learning behavior

after that point. Contrary, on the same dataset, the fully-connected RBMs have a very short

initial good learning behavior (for few epochs) and, after that, they go up and down during the

5000 epochs analyzed, reaching the minimum performance of -160 nats (Figure 2, third row,

last column). We have to mention that these good stability and over-fitting avoidance capacity,

are induced not just by the SET procedure, but also by the sparsity itself, as RBMFixProb,

too, has a stable behavior in almost all the cases.

We finally verified our initial hypothesis about sparse connectivity in SET-RBM. Figure 3

shows how the connectivity naturally evolves towards a scale-free topology. To assess this

fact, we have used the null hypothesis from statistics (Everitt, 2002), which assumes that

there is no relation between two measured phenomena. To see if the null hypothesis between

the degree distribution of the hidden neurons and a power-law distribution can be rejected,

we have computed the p-value (Nuzzo, 2014; Clauset et al, 2009) between them. To reject the

null hypothesis the p-value has to be lower than a statistically significant threshold of 0.05.

In all cases (all plots of Figure 3), looking at the p-values (y-axes to the right of the plots),

we can see that at the beginning of the learning phase the null hypothesis is not rejected. This

was to be expected, as the initial degree distribution of the hidden neurons is binomial due to

the randomness of the Erdős-Rényi random graphs (Newman et al, 2001) used to initialize the
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Fig. 2: Experiments with RBM variants using 11 benchmark datasets. For each model

studied we have considered three cases for the number of Contrastive Divergence steps

nCD = {1, 3, 10}, and three cases for the number of hidden neurons (nh). For the first 8

datasets (from top to bottom) we have used nh = {100, 250, 500}, and for the last three

datasets we have used nh = {500, 2500, 5000}. The x-axes show the training epochs; the left

y-axes show the average log-probabilities computed on the test data with AIS (Salakhutdinov

and Murray, 2008); and the right y-axes (the stacked bar on the right part of the plots)

reflect the fraction given by the nW of each model over the sum of the nW of all three

models. Overall, SET-RBM outperforms the other two models in most of the cases. Also,

it is interesting to see that SET-RBM and RBMFixProb are much more stable and do not

present the over-fitting problems of RBM.
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Fig. 3: SET-RBM evolution towards a scale-free topology. We have considered three cases

for the number of Contrastive Divergence steps nCD = {1, 3, 10}, and three cases for the

number of hidden neurons (nh). For the first 8 datasets (from top to bottom) we have used

nh = {100, 250, 500}, and for the last three datasets we have used nh = {500, 2500, 5000}.

The x-axes show the training epochs; the left y-axes (red color) show the average log-

probabilities computed for SET-RBMs on the test data with AIS (Salakhutdinov and Murray,

2008); and the right y-axes (cyan color) show the p-values computed between the degree

distribution of the hidden neurons in SET-RBM and a power-law distribution. We may observe

that for models with a high enough number of hidden neurons, the SET-RBM topology always

tends to become scale-free.
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Table 2: Summarization of the experiments with RBM variants. On each dataset, we report

the best average log-probabilities obtained with AIS on the test data for each model. nh

represents the number of hidden neurons, nCD the number of CD steps, and nW the number

of weights in the model.

Dataset RBM RBMFixProb SET-RBM XBM

log-prob. n
h

n
W

n
CD log-prob. n

h
n
W

n
CD log-prob. n

h
n
W

n
CD log-prob. n

h
n
W

n
CD

ADULT -14.91 100 12300 10 -14.79 500 4984 10 -13.85 500 4797 3 -15.89 1200 12911 1

Connect4 -5.01 500 63000 10 -15.01 500 5008 10 -13.12 500 4820 10 -17.37 1200 12481 1

DNA -85.97 500 90000 10 -86.90 500 5440 10 -82.51 250 3311 3 -83.17 1600 17801 1

UCI Mushrooms -11.35 100 11200 10 -11.36 500 4896 10 -10.63 250 2787 10 -14.71 1000 10830 1

evaluation NIPS-0-12 -274.60 250 125000 3 -282.67 500 8000 10 -276.62 500 7700 3 -287.43 100 5144 1

suite OCR-letters -29.33 500 64000 10 -38.58 500 5024 10 -28.69 500 4835 10 -33.08 1200 13053 1

RCV1 -47.24 500 75000 3 -50.34 500 5200 10 -47.60 500 5005 10 -49.68 1400 14797 1

Web -31.74 500 150000 1 -31.32 500 6400 10 -28.74 500 6160 10 -30.62 2600 29893 1

CalTech 101 16x16 -28.41 2500 640000 10 -53.25 5000 42048 10 -46.08 5000 40741 10 -69.29 500 6721 1

Silhouettes 28x28 -159.51 5000 3920000 3 -126.69 5000 46272 10 -104.89 2500 25286 10 -142.96 1500 19201 1

MNIST -91.70 2500 1960000 10 -117.55 5000 46272 10 -86.41 5000 44536 10 -85.21 27000 387955 1:25

SET-RBMs topology. Subsequently, during the learning phase, we can see that, in many cases,

the p-values decrease considerably at a statistical significant level under the 0.05 threshold.

When these situations occur, it means that the degree distribution of the hidden neurons in

SET-RBM starts to approximate a power-law distribution. As to be expected, the cases with

fewer neurons (e.g. Figure 3, fifth row, first column) fail to evolve to scale-free topologies,

while the cases with more neurons always evolve towards a scale-free topology (Figure 3,

columns 3, 6, and 9). To summarize, in 70 out of 99 cases studied, the SET-RBMs topology

evolves clearly during the learning phase from an Erdős-Rényi topology towards a scale-free

one.

4.3 SET performance on multi layer perceptron.

To better explore the capabilities of SET, we have also assessed its performance on classifica-

tions tasks based on supervised learning. We developed a variant of Multi Layer Perceptron

(MLP) (LeCun et al, 2015), dubbed SET-MLP, in which the fully-connected layers have been

replaced with sparse layers obtained through the SET procedure, with ǫ = 20, and ζ = 0.3.

We kept the ζ parameter as in the previous case of SET-RBMs, while for the ǫ parameter we

performed a small random search just on the MNIST dataset. We compared SET-MLP to a

standard fully-connected MLP, and to a sparse variant of MLP having a fixed Erdős-Rényi

topology, dubbed MLPFixProb. For the assessment, we have used three benchmark datasets

(Table 1), two coming from the computer vision domain (MNIST and CIFAR10), and one

from particle physics (the HIGGS dataset (Baldi et al, 2014)). In all cases, we have used

the same data processing techniques, network architecture, training method (i.e. Stochastic

Gradient Descent (LeCun et al, 2015) with fixed learning rate of 0.01, momentum of 0.9, and

weight decay of 0.0002), and a dropout rate of 0.3 (Table 3). The only difference between

MLP, MLPFixProb, and SET-MLP, consisted in their topological connectivity. We have used

Python and the Keras library (Chollet, 2015) with Theano back-end (Al-Rfou et al, 2016) for

this set of experiments. For MLP we have used the standard Keras implementation, while we

implemented ourselves SET-MLP and MLPFixProb on top of the standard Keras libraries.

The results depicted in Figure 4 show how SET-MLP outperforms MLPFixProb. More-

over, SET-MLP always outperforms MLP, while having two orders of magnitude fewer

parameters. Looking at the CIFAR10 dataset, we can see that with only just 1% of the

weights of MLP, SET-MLP leads to significant gains. At the same time, SET-MLP has com-

parable results with state-of-the-art MLP models after these have been carefully fine-tuned.
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Fig. 4: Experiments with MLP variants using 3 benchmark datasets. The plots on the left

side reflect models performance in terms of classification accuracy (left y-axes) over training

epochs (x-axes); the right y-axes of the left plots give the p-values computed between

the degree distribution of the hidden neurons of the SET-MLP models and a power-law

distribution, showing how the SET-MLP topology becomes scale-free over training epochs.

The bar plots on the right side depict the number of weights of the three models on each

dataset. The most striking situation happens for the CIFAR10 dataset (second row) where the

SET-MLP model outperforms drastically the MLP model, while having approximately 100

times fewer parameters.
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Table 3: Summarization of the experiments with MLP variants. On each dataset, we report

the best classification accuracy obtained by each model on the test data. nW represents the

number of weights in the model.

Dataset Data Architecture Activation MLP MLPFixProb SET-MLP

augmentation Accuracy [%] n
W Accuracy [%] n

W Accuracy [%] n
W

MNIST no 784-1000-1000-1000-10 SReLu 98.55 2794000 97.68 89797 98.74 89797

CIFAR10 yes 3072-4000-1000-4000-10 SReLu 68.70 20328000 62.19 278630 74.84 278630

HIGGS no 28-1000-1000-1000-2 SReLu 78.44 2038000 76.69 80614 78.47 80614

To quantify, the second best MLP model in the literature on CIFAR10 reaches about 74.1%
classification accuracy (Urban et al, 2016) and has 31 million parameters: while SET-MLP

reaches a better accuracy (74.84%) having just about 0.3 million parameters. Moreover, the

best MLP model in the literature on CIFAR10 has 78.62% accuracy (Lin et al, 2015), with

about 12 million parameters, while also benefiting from a pre-training phase (Hinton and

Salakhutdinov, 2006; Hinton et al, 2006). Although we have not pre-trained the MLP models

studied here, we should mention that SET-RBM can be easily used to pre-train a SET-MLP

model to further improve performance.

Regarding the topological features, we can see from Figure 4 that, similarly to what was

found in the SET-RBM experiments (Figure 3), the hidden neuron connections in SET-MLP

rapidly evolve towards a power-law distribution.

Considering the different datasets under scrutiny, we should stress that we have assessed

both image-intensive and non-image sets. On image datasets, Convolutional Neural Networks

(CNNs) (LeCun et al, 2015) typically outperform MLPs. These, in fact, matches perfectly with

the SET procedure. For instance, SET may be used to replace all CNNs fully connected layers

with sparse evolutionary counterparts. The benefit would be two-fold: to reduce the total

number of parameters in CNNs, and to permit the use of larger CNN models. However, CNNs

are not viable on other types of high-dimensional data, such as biological data (e.g. (Danziger

et al, 2006)), or theoretical physics data (e.g. (Baldi et al, 2014)). In those cases, MLPs

will be a better choice. This is in fact the case of the HIGGS dataset (Figure 4, last row),

where SET-MLP achieves 78.47% classification accuracy and has about 90000 parameters.

Whereas, one of the best MLP models in the literature achieved a 78.54% accuracy with

three many times as many parameters (Lin et al, 2015).

The last but not the least, during all the experiments performed we observed that SET

is quite stable with respect to the choice of meta-parameters ǫ and ζ. There is no way to

say that our choices offered the best possible performance, even if we fine-tuned them just

on one dataset, i.e. MNIST, and we evaluated their performance on all 14 datasets. Still,

we can say that a ζ = 0.3 for both, SET-RBM and SET-MLP, and an ǫ specific for each

model type, SET-RBM (ǫ = 11) and SET-MLP (ǫ = 20), were good enough to outperform

state-of-the-art.

5 Conclusion

In this paper we have introduced SET, a simple procedure to replace ANNs fully-connected

bipartite layers with sparse layers. We have validated our approach on 14 datasets (from

different domains) and on two widely used ANN models, i.e. RBMs and MLPs. We have

evaluated SET in combination with two different training methods, i.e. contrastive divergence

and stochastic gradient descent, for unsupervised and supervised learning. We showed that

SET is capable to quadratically reduce the number of parameters of bipartite neural networks
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layers, at no decrease in accuracy. In most of the cases, SET-RBMs and SET-MLPs outperform

their fully-connected counterparts. Moreover, they always outperform their non-evolutionary

counterparts, i.e. RBMFixProb, and MLPFixProb.

We can conclude that the SET procedure is coherent with real-world complex networks,

whereby nodes connections tend to evolve into scale-free topologies (Barabási, 2016). This

feature has important implications in ANNs: we could envision a computational time reduc-

tion by reducing the number of training epochs, if we would use for instance preferential

attachment algorithms (Albert and Barabási, 2002) to evolve faster the topology of the bi-

partite ANN layers towards a scale-free one. Of course, this possible improvement has to be

treated carefully, as forcing the model topology to evolve unnaturally faster into a scale-free

topology may be prone to errors - for instance, the data distribution may not be perfectly

matched.

SET can be widely adopted to reduce the fully-connected layers into sparse topologies

in other types of ANNs, e.g. convolutional neural networks (LeCun et al, 2015), recurrent

neural networks (LeCun et al, 2015), deep reinforcement learning networks (Mnih et al, 2015;

Silver et al, 2016), and so on. SET may prove to be the basis of much larger ANNs, possibly

on a billion-node scale to run in supercomputers. Also, it may lead to the building of small

but powerfull ANNs which could be directly trained on low-resource devices (e.g. wireless

sensor nodes, mobile phones), without the need of first training them on supercomputers

and then to move the trained models to low-resource devices, as it is currently performed

by the state-of-the-art Han et al (2015). These powerfull capabilities will be enabled by the

linear relation between the number of neurons and the amount of connections between them

yielded by SET. ANNs built with SET will have much more representational power, and

better adaptive capabilities than the current state-of-the-art ANNs, and will push artificial

intelligence well beyond its current boundaries.
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