
ARTICLE

Scalable training of artificial neural networks with
adaptive sparse connectivity inspired by network
science
Decebal Constantin Mocanu 1,2, Elena Mocanu 2,3, Peter Stone4, Phuong H. Nguyen2, Madeleine Gibescu2 &

Antonio Liotta 5

Through the success of deep learning in various domains, artificial neural networks are

currently among the most used artificial intelligence methods. Taking inspiration from the

network properties of biological neural networks (e.g. sparsity, scale-freeness), we argue that

(contrary to general practice) artificial neural networks, too, should not have fully-connected

layers. Here we propose sparse evolutionary training of artificial neural networks, an algo-

rithm which evolves an initial sparse topology (Erdős–Rényi random graph) of two con-

secutive layers of neurons into a scale-free topology, during learning. Our method replaces

artificial neural networks fully-connected layers with sparse ones before training, reducing

quadratically the number of parameters, with no decrease in accuracy. We demonstrate our

claims on restricted Boltzmann machines, multi-layer perceptrons, and convolutional neural

networks for unsupervised and supervised learning on 15 datasets. Our approach has the

potential to enable artificial neural networks to scale up beyond what is currently possible.

DOI: 10.1038/s41467-018-04316-3 OPEN

1Department of Mathematics and Computer Science, Eindhoven University of Technology, De Rondom 70, 5612 AP Eindhoven, The Netherlands.
2Department of Electrical Engineering, Eindhoven University of Technology, De Rondom 70, 5612 AP Eindhoven, The Netherlands. 3Department of

Mechanical Engineering, Eindhoven University of Technology, De Rondom 70, 5612 AP Eindhoven, The Netherlands. 4Department of Computer Science, The

University of Texas at Austin, 2317 Speedway, Stop D9500, Austin, TX 78712-1757, USA. 5Data Science Centre, University of Derby, Lonsdale House,

Quaker Way, Derby DE1 3HD, UK. Correspondence and requests for materials should be addressed to D.C.M. (email: d.c.mocanu@tue.nl)

NATURE COMMUNICATIONS | (2018) 9:2383 |DOI: 10.1038/s41467-018-04316-3 |www.nature.com/naturecommunications 1

12
3
4
5
6
7
8
9
0
()
:,;

http://orcid.org/0000-0002-5636-7683
http://orcid.org/0000-0002-5636-7683
http://orcid.org/0000-0002-5636-7683
http://orcid.org/0000-0002-5636-7683
http://orcid.org/0000-0002-5636-7683
http://orcid.org/0000-0002-0856-579X
http://orcid.org/0000-0002-0856-579X
http://orcid.org/0000-0002-0856-579X
http://orcid.org/0000-0002-0856-579X
http://orcid.org/0000-0002-0856-579X
http://orcid.org/0000-0002-2773-4421
http://orcid.org/0000-0002-2773-4421
http://orcid.org/0000-0002-2773-4421
http://orcid.org/0000-0002-2773-4421
http://orcid.org/0000-0002-2773-4421
mailto:d.c.mocanu@tue.nl
www.nature.com/naturecommunications
www.nature.com/naturecommunications

A
rtificial neural networks (ANNs) are among the most
successful artificial intelligence methods nowadays. ANNs
have led to major breakthroughs in various domains, such

as particle physics1, deep reinforcement learning2, speech recog-
nition, computer vision, and so on3. Typically, ANNs have layers
of fully-connected neurons3, which contain most of the network
parameters (i.e. the weighted connections), leading to a quadratic
number of connections with respect to their number of neurons.
In turn, the network size is severely limited, due to computational
limitations.

By contrast to ANNs, biological neural networks have been
demonstrated to have a sparse (rather than dense) topology4,5,
and also hold other important properties that are instrumental to
learning efficiency. These have been extensively studied in ref. 6

and include scale-freeness7 (detailed in Methods section) and
small-worldness8. Nevertheless, ANNs have not evolved to mimic
these topological features9,10, which is why in practice they lead to
extremely large models. Previous studies have demonstrated that,
following the training phase, ANN models end up with weights
histograms that peak around zero11–13. Moreover, in our previous
work14, we observed a similar fact. Yet, in the machine learning
state-of-the-art, sparse topological connectivity is pursued only as
an aftermath of the training phase13, which bears benefits only
during the inference phase.

In a recent paper, we introduced compleX Boltzmann
machines (XBMs), a sparse variant of restricted Boltzmann
machines (RBMs), conceived with a sparse scale-free topology10.
XBMs outperform their fully-connected RBM counterparts and
are much faster, both in the training and the inference phases.
Yet, being based on a fixed sparsity pattern, XBMs may fail to
properly model the data distribution. To overcome this limita-
tion, in this paper, we introduce a sparse evolutionary training
(SET) procedure, which takes into consideration data distribu-
tions and creates sparse bipartite layers suitable to replace the
fully-connected bipartite layers in any type of ANNs.

SET is broadly inspired by the natural simplicity of the evo-
lutionary approaches, which were explored successfully in our
previous work on evolutionary function approximation15. The
same evolutionary approaches have been explored for network

connectivity in ref. 16, and for the layers architecture of deep
neural networks17. Usually, in the biological brain, the evolution
processes are split in four levels: phylogenic at generations time
scale, ontogenetic at a daily (or yearly) time scale, epigenetic at a
seconds to days scale, and inferential at a milliseconds to seconds
scale18. A classical example which addresses all these levels is
NeuroEvolution of Augmenting Topologies (NEAT)19. In short,
NEAT is an evolutionary algorithm which seeks to optimize both
the parameters (weights) and the topology of an ANN for a given
task. It starts with small ANNs with few nodes and links, and
gradually considers adding new nodes and links to generate more
complex structures to the extent that they improve performance.
While NEAT has shown some impressive empirical results20, in
practice, NEAT and, most of its direct variants have difficulty
scaling due to their very large search space. To the best of our
knowledge, they are only capable of solving problems, which are
much smaller than the ones currently solved by the state-of-the-
art deep learning techniques, e.g. object recognition from raw
pixel data of large images. In ref. 21, Miconi has tried to use
NEAT like principles (e.g. addition, deletion) in combination with
stochastic gradient descent (SGD) to train recurrent neural net-
works for small problems, due to a still large search space. Very
recently in refs. 22,23, it has been shown that evolution strategies
and genetic algorithms, respectively, can train successfully ANNs
with up to four million parameters as a viable alternative to
DQN2 for reinforcement learning tasks, but they need over 700
CPUs to do so. To avoid being trapped in the same type of
scalability issues, in SET, we focus on using the best from both
worlds (i.e. traditional neuroevolution and deep learning). E.g.,
evolution just at the epigenetic scale for connections to yield a
sparse adaptive connectivity, structured multi-layer architecture
with fixed amounts of layers and neurons to obtain ANN models
easily trained by standard training algorithms, e.g. SGD, and so
on.

Here, we claim that topological sparsity must be pursued
starting with the ANN design phase, which leads to a substantial
reduction in connections and, in turn, to memory and compu-
tational efficiency. We show how ANNs perform perfectly well
with sparsely connected layers. We found that sparsely connected

Box 1 | Sparse evolutionary training (SET) pseudocode is detailed in Algorithm 1

Algorithm 1: SET pseudocode

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/s41467-018-04316-3

2 NATURE COMMUNICATIONS | (2018) 9:2383 |DOI: 10.1038/s41467-018-04316-3 |www.nature.com/naturecommunications

www.nature.com/naturecommunications

layers, trained with SET, can replace any fully-connected layers in
ANNs, at no decrease in accuracy, while having quadratically
fewer parameters even in the ANN design phase (before training).
This leads to reduced memory requirements and may lead to
quadratically faster computational times in both phases (i.e.
training and inference). We demonstrate our claims on three
popular ANN types (RBMs, multi-layer perceptrons (MLPs), and
convolutional neural networks (CNNs)), on two types of tasks
(supervised and unsupervised learning), and on 15 benchmark
datasets. We hope that our approach will enable ANNs having
billions of neurons and evolved topologies to be capable of
handling complex real-world tasks that are intractable using
state-of-the-art methods.

Results
SET method. With SET, the bipartite ANN layers start from a
random sparse topology (i.e. Erdös–Rényi random graph24),
evolving through a random process during the training phase
towards a scale-free topology. Remarkably, this process does not
have to incorporate any constraints to force the scale-free
topology. But our evolutionary algorithm is not arbitrary: it fol-
lows a phenomenon that takes place in real-world complex net-
works (such as biological neural networks and protein interaction
networks). Starting from an Erdős–Rényi random graph topology
and throughout millenia of natural evolution, networks end up

with a more structured connectivity, i.e. scale-free7 or small-
world8 topologies.

The SET algorithm is detailed in Box 1 and exemplified in Fig. 1.
Formally, let us define a sparse connected (SCk) layer in an ANN.
This layer has nk neurons, collected in a vector hk=
hk1; h

k
2; ¼ ; hk

nk

� �

. Any neuron from hk is connected to an arbitrary
number of neurons belonging to the layer below, hk−1. The
connections between the two layers are collected in a sparse weight
matrix Wk 2 Rnk�1

´ nk . Initially, Wk is a Erdös–Rényi random
graph, in which the probability of a connection between the
neurons hki and hk�1

j is given by

p Wk
ij

� �

¼
ε nk þ nk�1
� �

nknk�1
ð1Þ

whereby ε∈ R+ is a parameter of SET controlling the sparsity
level. If ε � nk and ε � nkþ1 then there is a linear number of
connections (i.e. non-zero elements), nW ¼ Wk

�

�

�

�= ε nk þ nk�1
� �

,
with respect to the number of neurons in the sparse layers. In the
case of fully-connected layers the number of connections is
quadratic, i.e. nknk−1.

However, it may be that this random generated topology is not
suited to the particularities of the data that the ANN model tries
to learn. To overcome this situation, during the training process,
after each training epoch, a fraction ζ of the smallest positive
weights and of the largest negative weights of SCk is removed.
These removed weights are the ones closest to zero, thus we do

SCk

hk-1

hk

a

c

b d

Fig. 1 An illustration of the SET procedure. For each sparse connected layer, SCk (a), of an ANN at the end of a training epoch a fraction of the weights, the

ones closest to zero, are removed (b). Then, new weighs are added randomly in the same amount as the ones previously removed (c). Further on, a new

training epoch is performed (d), and the procedure to remove and add weights is repeated. The process continues for a finite number of training epochs, as

usual in the ANNs training

Table 1 Datasets characteristics

Experiments type Dataset Dataset properties

Domain Data type Features [#] Train samples

[#]

Test samples

[#]

RBMs variants UCI evaluation suite65 ADULT Households Binary 123 5000 26,147

Connect4 Games Binary 126 16,000 47,557

DNA Genetics Binary 180 1400 1186

Mushrooms Biology Binary 112 2000 5624

NIPS-0-12 Documents Binary 500 400 1240

OCR-letters Letters Binary 128 32,152 10,000

RCV1 Documents Binary 150 40,000 150,000

Web Internet Binary 300 14,000 32,561

CalTech 101 Silhouettes66 16 × 16 Images Binary 256 4082 2302

28 × 28 Images Binary 784 4100 2307

MNIST67 Digits Binary 784 60,000 10,000

MLPs variants MNIST67 Digits Grayscale 784 60,000 10,000

CIFAR1068 Images RGB colors 3072 50,000 10,000

HIGGS1 Particle physics Real values 28 10,500,000 500,000

Fashion-MNIST69 Fashion products Grayscale 784 60,000 10,000

CNNs variants CIFAR1068 Images RGB colors 3072 50,000 10,000

The data used in this paper have been chosen to cover a wide range of fields where ANNs have the potential to advance state-of-the-art, including biology, physics, computer vision, data mining, and

economics

NATURE COMMUNICATIONS | DOI: 10.1038/s41467-018-04316-3 ARTICLE

NATURE COMMUNICATIONS | (2018) 9:2383 |DOI: 10.1038/s41467-018-04316-3 |www.nature.com/naturecommunications 3

www.nature.com/naturecommunications
www.nature.com/naturecommunications

not expect that their removal will notably change the model
performance. This has been shown, for instance, in refs. 13,25

using more complex approaches to remove unimportant weights.
Next, to let the topology of SCk to evolve so as to fit the data, an
amount of new random connections, equal to the amount of
weights removed previously, is added to SCk. In this way, the
number of connections in SCk remains constant during the
training process. After the training ends, we keep the topology of
SCk as the one obtained after the last weight removal step,
without adding new random connections. To illustrate better
these processes, we make the following analogy. If we assume a
connection as the entity which evolves over time, the removal of
the least important connections corresponds, roughly, to the
selection phase of natural evolution, while the random addition of
new connections corresponds, roughly, to the mutation phase of
natural evolution.

It is worth highlighting that in the initial phase of conceiving
the SET procedure, the weight-removal and weight-addition steps
after each training epoch were introduced based on our own
intuition. However, in the last phases of preparing this paper, we
have found that there is a similarity between SET and a
phenomenon which takes place in biological brains, named
synaptic shrinking during sleep. This phenomenon has been
demonstrated in two recent papers26,27. In short, it was found
that during sleep the weakest synapses in the brain shrink, while
the strongest synapses remain unaltered, supporting the hypoth-
esis that one of the core functions of sleeping is to renormalize the
overall synaptic strength increased while awake27. By keeping the

analogy, this is—in a way—what happens also with the ANNs
during the SET procedure.

We evaluate SET in three types of ANNs, RBMs28, MLPs, and
CNNs3 (all three are detailed in the Methods section), to
experiment with both unsupervised and supervised learning. In
total, we evaluate SET on 15 benchmark datasets, as detailed in
Table 1, covering a wide range of fields in which ANNs are
employed, such as biology, physics, computer vision, data mining,
and economics. We also assess SET in combination with two
different training methods, i.e. contrastive divergence29 and
SGD3.

Performance on RBMs. First, we have analyzed the performance
of SET on a bipartite undirected stochastic ANN model, i.e.
RBM28, which is popular for its unsupervised learning cap-
ability30 and high performance as a feature extractor and density
estimator31. The new model derived from the SET procedure was
dubbed SET-RBM. In all experiments, we set ε= 11, and ζ= 0.3,
performing a small random search just on the MNIST dataset, to
be able to assess if these two meta-parameters are dataset specific
or if their values are general enough to perform well also on
different datasets.

There are few studies on RBM connectivity sparsity10. Still, to
get a good estimation of SET-RBM capabilities we compared it
against RBMFixProb

10 (a sparse RBM model with a fixed
Erdős–Rényi topology), fully-connected RBMs, and with the
state-of-the-art results of XBMs from ref. 10. We chose

–80

nCD=1

nh=100

nCD=1

nh=250

nCD=1

nh=500

RBM RBMFixProb SET-RBM

nCD=3

nh=100

nCD=3

nh=250

nCD=3

nh=500

nCD=10

nh=100

nCD=10

nh=250

nCD=10

nh=500

–100

–120

D
N

A

lo
g
-p

ro
b
.
(n

a
ts

)

–140

–160

1

2
5
0
0

Epochs (#) Epochs (#) Epochs (#) Epochs (#) Epochs (#) Epochs (#) Epochs (#) Epochs (#) Epochs (#)

5
0
0
0 1

2
5
0
0

5
0
0
0 1

2
5
0
0

5
0
0
0 1

2
5
0
0

5
0
0
0 1

2
5
0
0

5
0
0
0 1

2
5
0
0

5
0
0
0 1

2
5
0
0

5
0
0
0 1

2
5
0
0

5
0
0
0 1

2
5
0
0

5
0
0
0

1.00

0.75

0.50

0.25

0.00

W
e
ig

h
ts

d
is

tr
ib

u
ti
o
n

a b c d e f g h i

Fig. 2 Experiments with RBM variants on the DNA dataset. For each model studied we have considered three cases for the number of contrastive

divergence steps, nCD= 1 (a–c), nCD= 3 (d–f), and nCD= 10 (g–i). Also, we considered three cases for the number of hidden neurons, nh= 100 (a, d, g),

nh= 250 (b, e, h), and nh= 500 (c, f, i). In each panel, the x axes show the training epochs; the left y axes show the average log-probabilities computed on

the test data with AIS33; and the right y axes (the stacked bar on the right side of the panels) reflect the fraction given by the nW of each model over the

sum of the nW of all three models. Overall, SET-RBM outperforms the other two models in most of the cases. Also, it is interesting to see that SET-RBM and

RBMFixProb are much more stable and do not present the over-fitting problems of RBM

Table 2 Summarization of the experiments with RBM variants

Dataset RBM RBMFixProb SET-RBM XBM

Log-prob. n
h

n
W

n
CD Log-prob. n

h
n
W

n
CD Log-prob. n

h
n
W

n
CD Log-prob. n

h
n
W

n
CD

UCI evaluation suite ADULT −14.91 100 12,300 10 −14.79 500 4984 10 −13.85 500 4797 3 −15.89 1200 12,911 1
Connect4 −5.01 500 63,000 10 −15.01 500 5008 10 −13.12 500 4820 10 −17.37 1200 12,481 1
DNA −85.97 500 90,000 10 −86.90 500 5440 10 −82.51 250 3311 3 −83.17 1600 17,801 1
Mushrooms −11.35 100 11,200 10 −11.36 500 4896 10 −10.63 250 2787 10 −14.71 1000 10,830 1
NIPS-0-12 −274.60 250 125,000 3 −282.67 500 8000 10 −276.62 500 7700 3 −287.43 100 5144 1
OCR-letters −29.33 500 64,000 10 −38.58 500 5024 10 −28.69 500 4835 10 −33.08 1200 13,053 1
RCV1 −47.24 500 75,000 3 −50.34 500 5200 10 −47.60 500 5005 10 −49.68 1400 14,797 1
Web −31.74 500 150,000 1 −31.32 500 6400 10 −28.74 500 6160 10 −30.62 2600 29,893 1

CalTech 101 Silhouettes 16 × 16 −28.41 2500 640,000 10 −53.25 5000 42,048 10 −46.08 5000 40,741 10 −69.29 500 6721 1
28 × 28 −159.51 5000 3,920,000 3 −126.69 5000 46,272 10 −104.89 2500 25,286 10 −142.96 1500 19,201 1

MNIST −91.70 2500 1,960,000 10 −117.55 5000 46,272 10 −86.41 5000 44,536 10 −85.21 27,000 387,955 1:25

On each dataset, we report the best average log-probabilities obtained with AIS on the test data for each model. nh represents the number of hidden neurons, nCD the number of CD steps, and nW the

number of weights in the model

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/s41467-018-04316-3

4 NATURE COMMUNICATIONS | (2018) 9:2383 |DOI: 10.1038/s41467-018-04316-3 |www.nature.com/naturecommunications

www.nature.com/naturecommunications

RBMFixProb as a sparse baseline model to be able to understand
better the effect of SET-RBM adaptive connectivity on its learning
capabilities, as both models, i.e. SET-RBM and RBMFixProb, are
initialized with an Erdös–Rényi topology. We performed
experiments on 11 benchmark datasets coming from various
domains, as depicted in Table 1, using the same splitting for
training and testing data as in ref. 10. All models were
trained for 5000 epochs using contrastive divergence29 (CD)
with 1, 3, and 10 CD steps, a learning rate of 0.01, a momentum
of 0.9, and a weight decay of 0.0002, as discussed in ref. 32. We
evaluated the generative performance of the scrutinized models
by computing the log-probabilities on the test data using
annealed importance sampling (AIS)33, setting all parameters as
in refs. 10,33. We have used MATLAB for this set of experiments.
We implemented SET-RBM and RBMFixProb ourselves; while for
RBM and AIS we have adapted the code provided by
Salakhutdinov and Murray33.

Figure 2 depicts the model’s performance on the DNA dataset;
while Supplementary Fig. 1 presents results on all datasets, using
varying numbers of hidden neurons (i.e. 100, 250, and 500 hidden
neurons for the UCI evaluation suite datasets; and 500, 2500, and
5000 hidden neurons for the CalTech 101 Silhouettes and MNIST
datasets). Table 2 summarizes the results, presenting the best
performer for each type of model for each dataset. In 7 out of 11
datasets, SET-RBM outperforms the fully-connected RBM, while
reducing the parameters by a few orders of magnitude. For
instance, on the MNIST dataset, SET-RBM reaches −86.41 nats
(natural units of information), with a 5.29-fold improvement over
the fully-connected RBM, and a parameters reduction down to
2%. In 10 out of 11 datasets, SET-RBM outperforms XBM, which
represents the state-of-the-art results on these datasets for sparse
variants of RBM10. It is interesting to see in Table 2 that
RBMFixProb reaches its best performance on each dataset in the
case when the maximum number of hidden neurons is
considered. Even if SET-RBM has the same amount of weights
with RBMFixProb, it reaches its maximum performance on 3 out of
the 11 datasets studied just when a medium number of hidden
neurons is considered (i.e. DNA, Mushrooms, and CalTech 101
Silhouettes 28 × 28).

Figure 2 and Supplementary Fig. 1 present striking results on
stability. Fully-connected RBMs show instability and over-fitting
issues. For instance, using one CD step on the DNA dataset the
RBMs have a fast learning curve, reaching a maximum after
several epochs. After that, the performance start to decrease
giving a sign that the models start to be over-fitted. Moreover, as
expected, the RBM models with more hidden neurons (Fig. 2b, c,
e, f, h, i) over-fit even faster than the one with less hidden neurons
(Fig. 2a, d, g). A similar behavior can be seen in most of the cases

considered, culminating with a very spiky learning behavior in
some of them (Supplementary Fig. 1). Contrary to fully-
connected RBMs, the SET procedure stabilizes SET-RBMs and
avoids over-fitting. This situation can be observed more often
when a high number of hidden neurons is chosen. For instance, if
we look at the DNA dataset, independently on the values of nh

and nCD (Fig. 2), we may observe that SET-RBMs are very stable
after they reach around −85 nats, having almost a flat learning
behavior after that point. Contrary, on the same dataset, the
fully-connected RBMs have a very short initial good learning
behavior (for few epochs) and, after that, they go up and down
during the 5000 epochs analyzed, reaching the minimum
performance of −160 nats (Fig. 2i). Note that these good stability
and over-fitting avoidance capacities are induced not just by the
SET procedure, but also by the sparsity itself, as RBMFixProb, too,
has a stable behavior in almost all the cases. This happens due to
the very small number of optimized parameters of the sparse
models in comparison with the high number of parameters of the
fully-connected models (as reflected by the stacked bar from the
right y-axis of each panel of Fig. 2 and Supplementary Fig. 1)
which does not allow the learning procedure to over-fit the sparse
models on the training data.

Furthermore, we verified our initial hypothesis about sparse
connectivity in SET-RBM. Figure 3 and Supplementary Fig. 2
show how the hidden neurons’ connectivity naturally evolves
towards a scale-free topology. To assess this fact, we have used the
null hypothesis from statistics34, which assumes that there is no
relation between two measured phenomena. To see if the null
hypothesis between the degree distribution of the hidden neurons
and a power-law distribution can be rejected, we have computed
the p-value35,36 between them using a one-tailed test. To reject
the null hypothesis the p-value has to be lower than a statistically
significant threshold of 0.05. In all cases (all panels of Fig. 3),
looking at the p-values (y axes to the right of the panels), we can
see that at the beginning of the learning phase the null hypothesis
is not rejected. This was to be expected, as the initial degree
distribution of the hidden neurons is binomial due to the
randomness of the Erdös–Rényi random graphs37 used to
initialize the SET-RBMs topology. Subsequently, during the
learning phase, we can see that, in many cases, the p-values
decrease considerably under the 0.05 threshold. When these
situations occur, it means that the degree distribution of the
hidden neurons in SET-RBM starts to approximate a power-law
distribution. As to be expected, the cases with fewer neurons
(Fig. 3a, b, d, e, g) fail to evolve to scale-free topologies, while the
cases with more neurons always evolve towards a scale-free
topology (Fig. 3c, f, h, i). To summarize, in 70 out of 99 cases
studied (all panels of Supplementary Fig. 2), the SET-RBMs

–80

–100

–120

–140

–160

1

2
5

0
0

Epochs (#)

nCD=1

nh=100

nCD=1

nh=250

nCD=1

nh=500

nCD=3

nh=100

nCD=3

nh=250

nCD=3

nh=500

nCD=10

nh=100

nCD=10

nh=250

nCD=10

nh=500

Epochs (#) Epochs (#) Epochs (#) Epochs (#) Epochs (#) Epochs (#) Epochs (#) Epochs (#)

5
0

0
0 1

2
5

0
0

5
0

0
0 1

2
5

0
0

5
0

0
0 1

2
5

0
0

5
0

0
0 1

2
5

0
0

5
0

0
0 1

2
5

0
0

5
0

0
0 1

2
5

0
0

5
0

0
0 1

2
5

0
0

5
0

0
0 1

2
5

0
0

5
0

0
0

1.0

0.5

0.0

p
-v

a
lu

e
 (

#
)

D
N

A

lo
g

-p
ro

b
.
(n

a
ts

)

a b c d e f g h i

Fig. 3 SET-RBM evolution towards a scale-free topology on the DNA dataset. We have considered three cases for the number of contrastive divergence

steps, nCD= 1 (a–c), nCD= 3 (d–f), and nCD= 10 (g–i). Also, we considered three cases for the number of hidden neurons, nh= 100 (a, d, g), nh= 250 (b,

e, h), and nh= 500 (c, f, i). In each panel, the x axes show the training epochs; the left y axes (red color) show the average log-probabilities computed for

SET-RBMs on the test data with AIS33; and the right y axes (cyan color) show the p-values computed between the degree distribution of the hidden

neurons in SET-RBM and a power-law distribution. We may observe that for models with a high enough number of hidden neurons, the SET-RBM topology

always tends to become scale-free

NATURE COMMUNICATIONS | DOI: 10.1038/s41467-018-04316-3 ARTICLE

NATURE COMMUNICATIONS | (2018) 9:2383 |DOI: 10.1038/s41467-018-04316-3 |www.nature.com/naturecommunications 5

www.nature.com/naturecommunications
www.nature.com/naturecommunications

hidden neurons’ connectivity evolves clearly during the
learning phase from an Erdös–Rényi topology towards a scale-
free one.

Moreover, in the case of the visible neurons, we have observed
that their connectivity tends to evolve into a pattern that is
dependent on the domain data. To illustrate this behavior, Fig. 4
shows what happens with the amount of connections for each
visible neuron during the SET-RBM training process on the
MNIST and CalTech 101 datasets. It can be observed that initially
the connectivity patterns are completely random, as given by the
binomial distribution of the Erdös–Rényi topology. After the

models are trained for several epochs, some visible neurons start
to have more connections and others fewer and fewer. Eventually,
at the end of the training process, some clusters of the visible
neurons with clearly different connectivities emerge. Looking at
the MNIST dataset, we can observe clearly that in both cases
analyzed (i.e. 500 and 2500 hidden neurons) a cluster with many
connections appeared in the center. At the same time, on the
edges, another cluster appeared in which each visible neuron has
zero or very few connections. The cluster with many connections
corresponds exactly to the region where the digits appear in the
images. On the Caltech 101 dataset, a similar behavior can be

Examples of images from MNIST dataset

1

80

70

60

C
o

n
n

e
c
ti
o

n
s
 t
o

 h
id

d
e

n
 n

e
u

ro
n

s
 (

#
)

50

40

30

20

10

0

100

120

80

60
C

o
n
n
e
c
ti
o
n
s
 t

o
 h

id
d
e
n
 n

e
u
ro

n
s
 (

#
)

40

20

0

Random initialization After 150 epochs

Connectivity patterns of the visible neurons of a SET-RBM

After 5000 epochs

Random initialization After 150 epochs

Connectivity patterns of the visible neurons of a SET-RBM

After 5000 epochs

8

15
n
h
=

5
0

0

h
e

ig
h

t
(p

ix
e

l)

n
h
=

2
5

0
0

h
e

ig
h

t
(p

ix
e

l)

22

28

1

8

15

22

28

n
h
=

5
0
0

h
e
ig

h
t

(p
ix

e
l)

1

6

11

16

n
h
=

2
5
0
0

h
e
ig

h
t

(p
ix

e
l)

1

1

6

6

11

11

Width (pixel)

16

16 1 6 11

Width (pixel)

16 1 6 11

Width (pixel)

16

1 8

Width (pixel)

15 22 28 1 8

Examples of images from the Caltech 16×16 dataset

Width (pixel)

15 22 28 1 8

Width (pixel)

15 22 28

a

b

Fig. 4 SET-RBMs connectivity patterns for the visible neurons. a On the MNIST dataset. b On the Caltech 101 16 × 16 dataset. For each dataset, we have

analyzed two SET-RBM architectures, i.e. 500 and 2500 hidden neurons. The heat-map matrices are obtained by reshaping the visible neurons vector to

match the size of the original input images. In all cases, it can be observed that the connectivity starts from an initial Erdös–Rényi distribution. Then, during

the training process, it evolves towards organized patterns which depend on the input images

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/s41467-018-04316-3

6 NATURE COMMUNICATIONS | (2018) 9:2383 |DOI: 10.1038/s41467-018-04316-3 |www.nature.com/naturecommunications

www.nature.com/naturecommunications

observed, except the fact that due to the high variability of shapes
on this dataset the less connected cluster still has a considerable
amount of connections. This behavior of the visible neurons’
connectivity may be used, for instance, to perform dimensionality
reduction by detecting the most important features on high-
dimensional datasets, or to make faster the SET-RBM training
process.

Performance on MLPs. To better explore the capabilities of SET,
we have also assessed its performance on classification tasks based
on supervised learning. We developed a variant of MLP3, dubbed

SET-MLP, in which the fully-connected layers have been replaced
with sparse layers obtained through the SET procedure, with ε=
20, and ζ= 0.3. We kept the ζ parameter as in the previous case of
SET-RBM, while for the ε parameter we performed a small ran-
dom search just on the MNIST dataset. We compared SET-MLP
to a standard fully-connected MLP, and to a sparse variant of
MLP having a fixed Erdős–Rényi topology, dubbed MLPFixProb.
For the assessment, we have used three benchmark datasets
(Table 1), two coming from the computer vision domain (MNIST
and CIFAR10), and one from particle physics (the HIGGS
dataset1). In all cases, we have used the same data processing

Table 3 Summarization of the experiments with MLP variants

Dataset Data augmentation Architecture Activation MLP MLPFixProb SET-MLP

Accuracy [%] n
W Accuracy [%] n

W Accuracy [%] n
W

MNIST No 784-1000-1000-1000-10 SReLU 98.55 2,794,000 97.68 89,797 98.74 89,797
CIFAR10 Yes 3072-4000-1000-4000-10 SReLU 68.70 20,328,000 62.19 278,630 74.84 278,630
HIGGS No 28-1000-1000-1000-2 SReLU 78.44 2,038,000 76.69 80,614 78.47 80,614

On each dataset, we report the best classification accuracy obtained by each model on the test data. nW represents the number of weights in the model. The only difference between the three models is

the network topology, i.e. MLP has fully connected layers, MLPFixProb has sparse layers with Erdös–Rényi fixed topology, and SET-MLP has sparse evolutionary layers trained with SET

100

25

20

15

N
u
m

b
e
r

o
f
w

e
ig

h
ts

 (
×

1
0

5
)

10

5

0

MLP MLPFixProb SET-MLP

20

15

N
u
m

b
e
r

o
f
w

e
ig

h
ts

 (
×

1
0

5
)

10

5

0
MLP MLPFixProb SET-MLP

200

150
N

u
m

b
e
r

o
f
w

e
ig

h
ts

 (
×

1
0

5
)

100

50

0

MLP MLPFixProb SET-MLP

1.0

0.8

0.6

0.4

0.2

0.0

p
-v

a
lu

e
 (

#
)

1.0

0.8

0.6

0.4

0.2

0.0

p
-v

a
lu

e
 (

#
)

1.0

0.8

0.6

0.4

0.2

0.0

p
-v

a
lu

e
 (

#
)

80

60

M
N

IS
T

a
c
c
u
ra

c
y
 (

%
)

40

20

0

80

60

C
IF

A
R

1
0

a
c
c
u
ra

c
y
 (

%
)

40

20

0

80

60

H
IG

G
S

a
c
c
u
ra

c
y
 (

%
)

40

20

0

0 250 500

MLP

MLPFixProb

SET-MLP

MLP

MLPFixProb

SET-MLP

MLP

MLPFixProb

SET-MLP

750 1000

Epochs (#)

0 250 500 750 1000

Epochs (#)

0 250 500 750 1000

Epochs (#)

a b

c d

e f

Fig. 5 Experiments with MLP variants using three benchmark datasets. a, c, e reflect models performance in terms of classification accuracy (left y axes)

over training epochs (x axes); the right y axes of a, c, e give the p-values computed between the degree distribution of the hidden neurons of the SET-MLP

models and a power-law distribution, showing how the SET-MLP topology becomes scale-free over training epochs. b, d, f depict the number of weights of

the three models on each dataset. The most striking situation happens for the CIFAR10 dataset (c, d) where the SET-MLP model outperforms drastically

the MLP model, while having ~100 times fewer parameters

NATURE COMMUNICATIONS | DOI: 10.1038/s41467-018-04316-3 ARTICLE

NATURE COMMUNICATIONS | (2018) 9:2383 |DOI: 10.1038/s41467-018-04316-3 |www.nature.com/naturecommunications 7

www.nature.com/naturecommunications
www.nature.com/naturecommunications

techniques, network architecture, training method (i.e. SGD3 with
fixed learning rate of 0.01, momentum of 0.9, and weight decay of
0.0002), and a dropout rate of 0.3 (Table 3). The only difference
between MLP, MLPFixProb, and SET-MLP, consisted in their
topological connectivity. We have used Python and the Keras
library (https://github.com/fchollet/keras) with Theano back-
end38 for this set of experiments. For MLP we have used the
standard Keras implementation, while we implemented ourselves
SET-MLP and MLPFixProb on top of the standard Keras libraries.

The results depicted in Fig. 5 show how SET-MLP outperforms
MLPFixProb. Moreover, SET-MLP always outperforms MLP, while
having two orders of magnitude fewer parameters. Looking at the
CIFAR10 dataset, we can see that with only just 1% of the weights
of MLP, SET-MLP leads to significant gains. At the same time,
SET-MLP has comparable results with state-of-the-art MLP
models after these have been carefully fine tuned. To quantify, the
second best MLP model in the literature on CIFAR10 reaches
about 74.1% classification accuracy39 and has 31 million
parameters: while SET-MLP reaches a better accuracy (74.84%)
having just about 0.3 million parameters. Moreover, the best MLP
model in the literature on CIFAR10 has 78.62% accuracy40, with
about 12 million parameters, while also benefiting from a pre-
training phase41,42. Although we have not pre-trained the MLP

models studied here, we should mention that SET-RBM can be
easily used to pre-train a SET-MLP model to further improve
performance.

With respect to the stability and over-fitting issues, Fig. 5
shows that SET-MLP is also very stable, similarly to SET-RBM.
Note that due to the use of the dropout technique, the fully-
connected MLP is also quite stable. Regarding the topological
features, we can see from Fig. 5 that, similarly to what was found
in the SET-RBM experiments (Fig. 3), the hidden neuron
connections in SET-MLP rapidly evolve towards a power-law
distribution.

To understand better the effect of various regularization
techniques, and activation functions, we performed a small
controlled experiment on the Fashion-MNIST dataset. We chose
this dataset because it has a similar size with the MNIST dataset,
being at the same time a harder classification problem. We used
MLP, MLPFixProb, and SET-MLP with three hidden layers of 1000
hidden neurons each. Then, we varied for each model the
following: (1) the weights regularization method (i.e. L1
regularization with a rate of 0.0000001, L2 regularization with a
rate of 0.0002, and no regularization), (2) the use (or not use) of
Nesterov momentum, and (3) two activation functions (i.e.
SReLU43 and ReLU44). The regularization rates were found by

92

SET-MLP

L1 regularization L2 regularization No regularization

MLPFixProb MLP

R
e

L
U

w
ith

 N
e

st
e

ro
v

a
cc

u
ra

cy
 (

%
)

R
e

L
U

w
it
h

o
u

t
N

e
s
te

ro
v

a
c
c
u

ra
c
y
 (

%
)

S
R

e
L
U

w
it
h
 N

e
s
te

ro
v

a
c
c
u
ra

c
y
 (

%
)

S
R

e
L
U

w
it
h
o
u
t

N
e
s
te

ro
v

a
c
c
u
ra

c
y
 (

%
)

91

90

89

88

92

91

90

89

88

92

91

90

89

88

92

91

90

89

88

0 100 200 300 400 500

Epochs (#)

0 100 200 300 400 500

Epochs (#)

0 100 200 300 400 500

Epochs (#)

a b c

d e f

g h i

j k l

Fig. 6Models accuracy using three weights regularization techniques on the Fashion-MNIST dataset. All models have been trained with stochastic gradient

descent, having the same hyper-parameters, number of hidden layers (i.e. three), and number of hidden neurons per layer (i.e. 1000). a–c use ReLU

activation function for the hidden neurons and Nesterov momentum; d–f use ReLU activation function without Nesterov momentum; g–i use SReLU

activation function and Nesterov momentum; and j–l use SReLU activation function without Nesterov momentum. a, d, g, j present experiments with SET-

MLP; b, e, h, k with MLPFixProb; and c, f, i, l with MLP

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/s41467-018-04316-3

8 NATURE COMMUNICATIONS | (2018) 9:2383 |DOI: 10.1038/s41467-018-04316-3 |www.nature.com/naturecommunications

https://github.com/fchollet/keras
www.nature.com/naturecommunications

performing a small random search procedure with L1 and L2
levels between 0.01 and 0.0000001 to try maximizing the
performance of all the three models. In all cases, we used SGD
with 0.01 learning rate to train the models. The results depicted in
Fig. 6 show that, in this specific scenario, SET-MLP achieves the
best performance if no regularization or L2 regularization is used
for the weights, while L1 regularization does not offer the same
level of performance. To summarize, SET-MLP achieves the best
results on the Fashion-MNIST dataset with the following settings:
SReLU activation function, without Nesterov momentum, and
without (or with L2) weights regularization. These being, in fact,
the settings that we used in the MLP experiments discussed
above. It is worth highlighting that independently on the specific
setting, the general conclusion drawn up to now still holds. SET-
MLP achieves a similar (or better) performance to that of MLP,
while having a much smaller number of connections. Also, SET-
MLP always clearly outperforms MLPFixProb.

Performance on CNNs. As one of the most used ANN models
nowadays are CNNs3, we have briefly studied how SET can be
used in the CNN architectures to replace their fully connected
layers with sparse evolutionary counterparts. We considered a
standard small CNN architecture, i.e. conv(32,(3,3))-dropout
(0.3)-conv(32,(3,3))-pooling-conv(64,(3,3))-dropout(0.3)-conv
(64,(3,3))-pooling-conv(128,(3,3))-dropout(0.3)-conv(128,(3,3))-
pooling), where the numbers in brackets for the convolutional
layers mean (number of filters, (kernel size)), and for the dropout
layers represent the dropout rate. Then, on top of the convolu-
tional layers, we have used: (1) two fully connected layers to
create a standard CNN, (2) two sparse layers with a fixed
Erdős–Rényi topology to create a CNNFixProb, and (3) two evo-
lutionary sparse layers to create a SET-CNN. For each model,
each of the two layers on top was followed by a dropout (0.3)
layer. On top of these, the CNN, CNNFixProb, and SET-CNN
contained also a softmax layer. Even if SReLU seems to offer a
slightly better performance, we used ReLU as activation function
for the hidden neurons due to its wide utilization. We used SGD
to train the models. The experiments were performed on the
CIFAR10 dataset. The results are depicted in Fig. 7. They show,
same as in the previous experiments with restricted Boltzmann
machine and multi-layer perceptron, that SET-CNN can achieve
a better accuracy than CNN, even if it has just about 4% of the
CNN connections. To quantify this, we mention that in our
experiments SET-CNN reaches a maximum of 90.02% accuracy,
CNNFixProb achieves a maximum of 88.26% accuracy, while CNN
achieves a maximum of 87.48% accuracy. Similar with the RBM
experiments, we can observe that CNN is subject to a small over-

fitting behavior, while CNNFixProb and SET-CNN are very stable.
Even if our goal was just to show that SET can be combined also
with the widely used CNNs and not to optimize the CNN variants
architectures to increase the performance, we highlight that, in
fact, SET-CNN achieves a performance comparable with state-of-
the-art results. The benefit of using SET in CNNs is two-fold: to
reduce the total number of parameters in CNNs and to permit the
use of larger CNN models.

Last but not least, during all the experiments performed, we
observed that SET is quite stable with respect to the choice of
meta-parameters ε and ζ. There is no way to say that our
choices offered the best possible performance, even if we fine-
tuned them just on one dataset, i.e. MNIST, and we evaluated
their performance on all 15 datasets. Still, we can say
that a ζ= 0.3 for both, SET-RBM and SET-MLP, and an ε
specific for each model type, SET-RBM (ε= 11), SET-MLP
(ε= 20), and SET-CNN (ε= 20) were good enough to outper-
form state-of-the-art.

Considering the different datasets under scrutiny, we stress that
we have assessed both image-intensive and non-image sets. On
image datasets, CNNs3 typically outperform MLPs. However,
CNNs are not viable on other types of high-dimensional data,
such as biological data (e.g.45), or theoretical physics data (e.g.1).
In those cases, MLPs will be a better choice. This is in fact the case
of the HIGGS dataset (Fig. 5e, f), where SET-MLP achieves
78.47% classification accuracy and has about 90,000 parameters.
Whereas, one of the best MLP models in the literature achieved a
78.54% accuracy, while having three times more parameters40.

Discussion
In this paper, we have introduced SET, a simple and efficient
procedure to replace ANNs’ fully-connected bipartite layers with
sparse layers. We have validated our approach on 15 datasets
(from different domains) and on three widely used ANN models,
i.e. RBMs, MLPs, and CNNs. We have evaluated SET in combi-
nation with two different training methods, i.e. contrastive
divergence and SGD, for unsupervised and supervised learning.
We showed that SET is capable of quadratically reducing the
number of parameters of bipartite neural networks layers from
the ANN design phase, at no decrease in accuracy. In most of the
cases, SET-RBMs, SET-MLPs, and SET-CNNs outperform their
fully-connected counterparts. Moreover, they always outperform
their non-evolutionary counterparts, i.e. RBMFixProb, MLPFixProb,
and CNNFixProb.

We can conclude that the SET procedure is coherent with real-
world complex networks, whereby nodes’ connections tend to
evolve into scale-free topologies46. This feature has important

100

80

60

C
IF

A
R

1
0

a
c
c
u
ra

c
y
 (

%
)

40

20

0

0 250 500 750 1000

CNN

CNN
FixProb

SET-CNN

CNN

80

60

N
u
m

b
e
r

o
f
w

e
ig

h
ts

 (
×

1
0

5
)

40

20

0

CNNFixProb SET-CNN

Epochs (#)

a b

Fig. 7 Experiments with CNN variants on the CIFAR10 dataset. a Models performance in terms of classification accuracy (left y axes) over training epochs

(x axes). b The number of weights of the three models on each dataset. The convolutional layers of each model have in total 287,008 weights, while the

fully connected (or the sparse) layers on top have 8,413,194, 184.842, and 184,842 weights for CNN, CNNFixProb, and SET-CNN, respectively

NATURE COMMUNICATIONS | DOI: 10.1038/s41467-018-04316-3 ARTICLE

NATURE COMMUNICATIONS | (2018) 9:2383 |DOI: 10.1038/s41467-018-04316-3 |www.nature.com/naturecommunications 9

www.nature.com/naturecommunications
www.nature.com/naturecommunications

implications in ANNs: we could envision a computational time
reduction by reducing the number of training epochs, if we would
use for instance preferential attachment algorithms47 to evolve
faster the topology of the bipartite ANN layers towards a scale-
free one. Of course, this possible improvement has to be treated
carefully, as forcing the model topology to evolve unnaturally
faster into a scale-free topology may be prone to errors—for
instance, the data distribution may not be perfectly matched.
Another possible improvement would be to analyze how to
remove the unimportant weights. In this article, we showed that it
is efficient for SET to directly remove the connections with
weights closest to zero. Note that we have tried also to remove
connections randomly, and, as expected, this led to dramatic
reductions in accuracy. Likewise, when we tried to remove the
connections with the largest weights, the SET-MLP model was
not able to learn at all, performing similarly to a random classi-
fier. However, we do not exclude the possibility that there may be
better, more sophisticated approaches to removing connections,
e.g. using gradient methods25, or centrality metrics from network
science48.

SET can be widely adopted to reduce the fully-connected layers
into sparse topologies in other types of ANNs, e.g., recurrent
neural networks3, deep reinforcement learning networks2,49, and
so on. For a large scale utilization of SET, from the academic
environment to industry, one more step has to be achieved.
Currently, all state-of-the-art deep learning implementations are
based on very well-optimized dense matrix multiplications on
graphics processing units (GPUs), while sparse matrix multi-
plications are extremely limited in performance50,51. Thus, until
optimized hardware for SET-like operations will appear (e.g.,
sparse matrix multiplications), one would have to find some
alternative solutions. E.g., low-level parallel computations of
neurons activations based just on their incoming connections and
data batches to still perform dense matrix multiplications and to
have a low-memory footprint. If these software engineering
challenges are solved, SET may prove to be the basis for much
larger ANNs, perhaps on a billion-node scale, to run in super-
computers. Also, it may lead to the building of small but powerful
ANNs, which could be directly trained on low-resource devices
(e.g. wireless sensor nodes, mobile phones), without the need of
first training them on supercomputers and then to move the
trained models to low-resource devices, as is currently done by
state-of-the-art approaches13. These powerful capabilities will be
enabled by the linear relation between the number of neurons and
the amount of connections between them yielded by SET. ANNs
built with SET will have much more representational power, and
better adaptive capabilities than the current state-of-the-art
ANNs, and we hope that they will create a new research direc-
tion in artificial intelligence.

Methods
Artificial neural networks. ANNs52 are mathematical models, inspired by bio-
logical neural networks, which can be used in all three machine learning paradigms
(i.e. supervised learning53, unsupervised learning53, and reinforcement learning54).
These make them very versatile and powerful, as quantifiable by the remarkable
success registered recently by the last generation of ANNs (also known as deep
ANNs or deep learning3) in many fields from computer vision3 to gaming2,49. Just
like their biological counterparts, ANNs are composed by neurons and weighted
connections between these neurons. Based on their purposes and architectures,
there are many models of ANNs, such as RBMs28, MLPs55, CNNs56, recurrent
neural networks57, and so on. Many of these ANN models contain fully-connected
layers. A fully-connected layer of neurons means that all its neurons are connected
to all the neurons belonging to its adjacent layer in the ANN architecture. For the
purpose of this paper, in this section we briefly describe three models that contain
fully-connected layers, i.e. RBMs28, MLPs55, and CNNs3.

A restricted Boltzmann machine is a two-layer, generative, stochastic neural
network that is capable to learn a probability distribution over a set of inputs28 in
an unsupervised manner. From a topological perspective, it allows only interlayer
connections. Its two layers are: the visible layer, in which the neurons represent the

input data; and the hidden layer, in which the neurons represent the features
automatically extracted by the RBM model from the input data. Each visible
neuron is connected to all hidden neurons through a weighted undirected
connection, leading to a fully-connected topology between the two layers. Thus, the
flow of information is bidirectional in RBMs, from the visible layer to the hidden
layer, and from the hidden layer to the visible layer, respectively. RBMs, beside
being very successful in providing very good initialization weights to the supervised
training of deep artificial neural network architectures42, are also very successful as
stand alone models in a variety of tasks, such as density estimation to model
human choice31, collaborative filtering58, information retrieval59, multi-class
classification60, and so on.

Multi-Layer Perceptron55 is a classical feed-forward ANN model that maps a set
of input data to the corresponding set of output data. Thus, it is used for supervised
learning. It is composed by an input layer in which the neurons represent the input
data, an output layer in which the neurons represent the output data, and an
arbitrary number of hidden layers in between, with neurons representing the
hidden features of the input data (to be automatically discovered). The flow of
information in MLPs is unidirectional, starting from the input layer towards the
output layer. Thus, the connections are unidirectional and exist just between
consecutive layers. Any two consecutive layers in MLPs are fully-connected. There
are no connections between the neurons belonging to the same layer, or between
the neurons belonging to layers which are not consecutive. In ref. 61, it has been
demonstrated that MLPs are universal function approximators, so they can be used
to model any type of regression or classification problems.

CNNs3 are a class of feed-forward neural networks specialized for image
recognition, representing the state-of-the-art on these type of problems. They
typically contain an input layer, an output layers, and a number of hidden layers in
between. From bottom to top, the first hidden layers are the convolutional layers,
inspired by the biological visual cortex, in which each neuron receives information
just from the previous layer neurons belonging to its receptive field. Then, the last
hidden layers are fully connected ones.

In general, working with ANN models involves two phases: (1) training (or
learning), in which the weighted connections between neurons are optimized using
various algorithms (e.g. backpropagation procedure combined with SGD62,63 used
in MLPs or CNNs, contrastive divergence29 used in RBMs) to minimize a loss
function defined by their purpose; and (2) inference, in which the optimized ANN
model is used to fulfill its purpose.

Scale-free complex networks. Complex networks (e.g. biological neural networks,
actors and movies, power grids, transportation networks) are everywhere, in dif-
ferent forms, and different fields (from neurobiology to statistical physics4). For-
mally, a complex network is a graph with non-trivial topological features, human-
made or nature-made. One of the most well-known and deeply studied type of
topological features in complex networks is scale-freeness, due to the fact that a
wide range of real-world complex networks have this topology. A network with a
scale-free topology7 is a sparse graph64 that approximately has a power-law degree
distribution P(d) ~ d−γ, where the fraction P(d) from the total nodes of the network
has d connections to other nodes, and the parameter γ usually stays in the range
γ∈ (2, 3).

Data availability. The data used in this paper are public datasets, freely available
online, as reflected by their corresponding citations from Table 1. Prototype
software implementations of the models used in this study are freely available
online at https://github.com/dcmocanu/sparse-evolutionary-artificial-neural-
networks

Received: 26 July 2017 Accepted: 20 April 2018

References
1. Baldi, P., Sadowski, P. & Whiteson, D. Searching for exotic particles in high-

energy physics with deep learning. Nat. Commun. 5, 4308 (2014).
2. Mnih, V. et al. Human-level control through deep reinforcement learning.

Nature 518, 529–533 (2015).
3. LeCun, Y., Bengio, Y. & Hinton, G. Deep learning. Nature 521, 436–444

(2015).
4. Strogatz, S. H. Exploring complex networks. Nature 410, 268–276 (2001).
5. Pessoa, L. Understanding brain networks and brain organization. Phys. Life

Rev. 11, 400–435 (2014).
6. Bullmore, E. & Sporns, O. Complex brain networks: graph theoretical

analysis of structural and functional systems. Nat. Rev. Neurosci. 10, 186–198
(2009).

7. Barabási, A.-L. & Albert, R. Emergence of scaling in random networks. Science
286, 509–512 (1999).

8. Watts, D. J. & Strogatz, S. H. Collective dynamics of ‘small-world’ networks.
Nature 393, 440–442 (1998).

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/s41467-018-04316-3

10 NATURE COMMUNICATIONS | (2018) 9:2383 |DOI: 10.1038/s41467-018-04316-3 |www.nature.com/naturecommunications

https://github.com/dcmocanu/sparse-evolutionary-artificial-neural-networks
https://github.com/dcmocanu/sparse-evolutionary-artificial-neural-networks
www.nature.com/naturecommunications

9. Mocanu, D. C. On the synergy of network science and artificial intelligence. In
Proc. 25th International Joint Conference on Artificial Intelligence
(ed. Kambhampati, S.) 4020–4021 (AAAI Press, New York, 2016).

10. Mocanu, D. C., Mocanu, E., Nguyen, P. H., Gibescu, M. & Liotta, A. A
topological insight into restricted boltzmann machines. Mach. Learn. 104,
243–270 (2016).

11. Dieleman, S. & Schrauwen, B. Accelerating sparse restricted boltzmann
machine training using non-gaussianity measures. In Proc. Deep Learning and
Unsupervised Feature Learning, Vol. 9 (eds Bengio Y., Bergstra J. & Le Q.)
http://hdl.handle.net/1854/LU-3118568 (Lake Tahoe, 2012).

12. Yosinski, J. & Lipson, H. Visually debugging restricted boltzmann machine
training with a 3d example. In Representation Learning Workshop, 29th
International Conference on Machine Learning (Edinburgh, 2012).

13. Han, S., Pool, J., Tran, J. & Dally, W. Learning both weights and connections
for efficient neural network. In Proc. Advances in Neural Information
Processing Systems (eds Cortes, C., Lawrence, N. D., Lee, D. D., Sugiyama, M.
& Garnett, R.) Vol. 28, 1135–1143 (MIT Press Cambridge, Montreal, 2015).

14. Mocanu, D. C. et al. No-reference video quality measurement: added value of
machine learning. J. Electron. Imaging 24, 061208 (2015).

15. Whiteson, S. & Stone, P. Evolutionary function approximation for
reinforcement learning. J. Mach. Learn. Res. 7, 877–917 (2006).

16. McDonnell, J. R. & Waagen, D. Evolving neural network connectivity. In Proc.
IEEE International Conference on Neural Networks, Vol. 2, 863–868 (IEEE,
San Francisco, 1993).

17. Miikkulainen, R. et al. Evolving deep neural networks. Preprint at https://
arxiv.org/abs/1703.00548 (2017).

18. Kowaliw, T., Bredeche, N., Chevallier, S., & Doursat, R. Artificial neurogenesis:
an introduction and selective review. In Growing Adaptive Machines:
Combining Development and Learning in Artificial Neural Networks (Kowaliw,
T., Bredeche, N. & Doursat, R.) 1–60 (Springer, Berlin, Heidelberg, 2014).

19. Stanley, K. O. & Miikkulainen, R. Evolving neural networks through
augmenting topologies. Evol. Comput. 10, 99–127 (2002).

20. Hausknecht, M., Lehman, J., Miikkulainen, R. & Stone, P. A neuroevolution
approach to general atari game playing. IEEE Trans. Comput. Intell. AI 6,
355–366 (2014).

21. Miconi, T. Neural networks with differentiable structure. Preprint at https://
arxiv.org/abs/1606.06216 (2016).

22. Salimans, T., Ho, J., Chen, X., Sidor, S. & Openai, I. S. Evolution strategies as a
scalable alternative to reinforcement learning. Preprint at https://arxiv.org/
abs/1703.03864 (2017).

23. Such, F. P. et al. Deep neuroevolution: genetic algorithms are a competitive
alternative for training deep neural networks for reinforcement learning.
Preprint at https://arxiv.org/abs/1712.06567 (2018).

24. Erdös, P. & Rényi, A. On random graphs i. Publ. Math.-Debr. 6, 290–297
(1959).

25. Weigend, A. S., Rumelhart, D. E. & Huberman, B. A. Generalization by
weight-elimination with application to forecasting. In Proc. Advances in
Neural Information Processing Systems, Vol. 3, 875–882 (Morgan-Kaufmann,
Colorado, 1991).

26. Diering, G. H. et al. Homer1a drives homeostatic scaling-down of excitatory
synapses during sleep. Science 355, 511–515 (2017).

27. de Vivo, L. et al. Ultrastructural evidence for synaptic scaling across the wake/
sleep cycle. Science 355, 507–510 (2017).

28. Smolensky, P. Information processing in dynamical systems: foundations of
harmony theory. In Parallel Distributed Processing: Explorations in the
Microstructure of Cognition (eds Rumelhart, D. E., McClelland, J. L. &
CORPORATE PDP Research Group) 194–281 (MIT Press, Cambridge, 1986).

29. Hinton, G. E. Training products of experts by minimizing contrastive
divergence. Neural Comput. 14, 1771–1800 (2002).

30. Bengio, Y. Learning deep architectures for ai. Found. Trends Mach. Learn. 2,
1–127 (2009).

31. Osogami, T. & Otsuka, M. Restricted boltzmann machines modeling human
choice. Proc. Adv. Neural Inf. Process. Syst. 27, 73–81 (2014).

32. Hinton, G. A practical guide to training restricted boltzmann machines. In
Neural Networks: Tricks of the Trade, Vol. 7700 of Lecture Notes in Computer
Science (eds Montavon, G., Orr, G. B. & Müller, K.-R.) 599–619
(Springer, Berlin Heidelberg, 2012).

33. Salakhutdinov, R. & Murray, I. On the quantitative analysis of deep belief
networks. In Proc. 25th International Conference on Machine Learning,
872–879 (ACM, Helsinki, 2008).

34. Everitt, B. The Cambridge Dictionary of Statistics (Cambridge University
Press, Cambridge, UK; New York, 2002).

35. Nuzzo, R. Scientific method: statistical errors. Nature 506, 150–152 (2014).
36. Clauset, A., Shalizi, C. R. & Newman, M. E. J. Power-law distributions in

empirical data. SIAM Rev. 51, 661–703 (2009).
37. Newman, M. E., Strogatz, S. H. & Watts, D. J. Random graphs with arbitrary

degree distributions and their applications. Phys. Rev. E 64, 026118 (2001).

38. Al-Rfou, R., et al. Theano: a Python framework for fast computation of
mathematical expressions. Preprint at https://arxiv.org/abs/1605.02688 (2016).

39. Urban, G. et al. Do deep convolutional nets really need to be deep and
convolutional? In Proc. 5th International Conference on Learning
Representations (OpenReview.net, Toulon, 2016).

40. Lin, Z., Memisevic, R. & Konda, K. How far can we go without convolution:
improving fully-connected networks. Preprint at https://arxiv.org/abs/
1511.02580 (2015).

41. Hinton, G. E. & Salakhutdinov, R. R. Reducing the dimensionality of data with
neural networks. Science 313, 504–507 (2006).

42. Hinton, G. E., Osindero, S. & Teh, Y.-W. A fast learning algorithm for deep
belief nets. Neural Comput. 18, 1527–1554 (2006).

43. Jin, X. et al. Deep learning with s-shaped rectified linear activation units. In
Proc. 30th AAAI Conference on Artificial Intelligence (eds Schuurmans, D. &
Wellman, M.) 1737–1743 (AAAI Press, Phoenix, 2016).

44. Nair, V. & Hinton, G. E. Rectified linear units improve restricted boltzmann
machines. In Proc. 27th International Conference on Machine Learning
(eds Fürnkranz, J. & Joachims, T.) 807–814 (Omnipress, Haifa, 2010).

45. Danziger, S. A. et al. Functional census of mutation sequence spaces: the
example of p53 cancer rescue mutants. IEEE ACM Trans. Comput. Biol. 3,
114–125 (2006).

46. Barabási, A.-L. Network Science (Cambridge University Press, Glasgow, 2016).
47. Albert, R. & Barabási, A.-L. Statistical mechanics of complex networks. Rev.

Mod. Phys. 74, 47–97 (2002).
48. Mocanu, D. C., Exarchakos, G. & Liotta, A. Decentralized dynamic

understanding of hidden relations in complex networks. Sci. Rep. 8, 1571
(2018).

49. Silver, D. et al. Mastering the game of go with deep neural networks and tree
search. Nature 529, 484–489 (2016).

50. Lebedev, V. & Lempitsky, V. Fast ConvNets using group-wise brain damage.
In Proc. 2016 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 2554–2564 (IEEE, Las Vegas, 2016).

51. Changpinyo, S., Sandler, M. & Zhmoginov, A. The power of sparsity in
convolutional neural networks. Preprint at https://arxiv.org/abs/1702.06257
(2017).

52. Bishop, C. M. Pattern Recognition and Machine Learning (Information Science
and Statistics) (Springer-Verlag New York, Inc., Secaucus, 2006).

53. Hastie, T., Tibshirani, R. & Friedman, J. The Elements of Statistical Learning.
(Springer New York Inc., New York, NY, USA, 2001).

54. Sutton, R. S. & Barto, A. G. Introduction to Reinforcement Learning. (MIT
Press, Cambridge, MA, USA, 1998).

55. Rosenblatt, F. Principles of Neurodynamics: Perceptrons and the Theory of
Brain Mechanisms (Spartan, Washington, 1962).

56. LeCun, Y., Bottou, L., Bengio, Y. & Haffner, P. Gradient-based learning
applied to document recognition. Proc. IEEE 86, 2278–2324 (1998).

57. Graves, A. et al. A novel connectionist system for unconstrained handwriting
recognition. IEEE Trans. Pattern Anal. Mach. Intell. 31, 855–868 (2009).

58. Salakhutdinov, R., Mnih, A. & Hinton, G. Restricted boltzmann machines for
collaborative filtering. In Proc. 24th International Conference on Machine
Learning (ed. Ghahramani, Z.) 791–798 (ACM, Corvallis, 2007).

59. Gehler, P. V., Holub, A. D. & Welling, M. The rate adapting poisson model for
information retrieval and object recognition. In Proc. 23rd International
Conference on Machine Learning (eds Cohen, W. & Moore, A.) 337–344
(ACM, Pittsburgh, 2006).

60. Larochelle, H. & Bengio, Y. Classification using discriminative restricted
boltzmann machines. In Proc. 25th International Conference on Machine
Learning (eds McCallum, A. & Roweis, S.) 536–543 (ACM, Helsinki, 2008).

61. Cybenko, G. Approximation by superpositions of a sigmoidal function. Math.
Control Signal 2, 303–314 (1989).

62. Rumelhart, D., Hintont, G. & Williams, R. Learning representations by back-
propagating errors. Nature 323, 533–536 (1986).

63. Bottou, L. & Bousquet, O. The tradeoffs of large scale learning. In Proc.
Advances in Neural Information Processing Systems Vol. 20 (eds Platt, J. C.,
Koller, D., Singer, Y. & Roweis, S. T.) 161–168 (NIPS Foundation, Vancouver,
2008).

64. Del Genio, C. I., Gross, T. & Bassler, K. E. All scale-free networks are sparse.
Phys. Rev. Lett. 107, 178701 (2011).

65. Larochelle, H. & Murray, I. The neural autoregressive distribution estimator.
In Proc. 14th International Conference on Artificial Intelligence and Statistics
(eds Gordon, G., Dunson, D. & Dudík, M.) 29–37 (JMLR, Fort Lauderdale,
2011).

66. Marlin, B. M., Swersky, K., Chen, B. & de Freitas, N. Inductive principles for
restricted boltzmann machine learning. In Proc. 13th International Conference
on Artificial Intelligence and Statistics (eds Teh, Y. W. & Titterington,
M.) 509–516 (JMLR, Sardinia, 2010).

67. LeCun, Y., Bottou, L., Bengio, Y. & Haffner, P. Gradient-based learning
applied to document recognition. Proc. IEEE 86, 2278–2324 (1998).

NATURE COMMUNICATIONS | DOI: 10.1038/s41467-018-04316-3 ARTICLE

NATURE COMMUNICATIONS | (2018) 9:2383 |DOI: 10.1038/s41467-018-04316-3 |www.nature.com/naturecommunications 11

http://hdl.handle.net/1854/LU-3118568
https://arxiv.org/abs/1703.00548
https://arxiv.org/abs/1703.00548
https://arxiv.org/abs/1606.06216
https://arxiv.org/abs/1606.06216
https://arxiv.org/abs/1703.03864
https://arxiv.org/abs/1703.03864
https://arxiv.org/abs/1712.06567
https://arxiv.org/abs/1605.02688
https://arxiv.org/abs/1511.02580
https://arxiv.org/abs/1511.02580
https://arxiv.org/abs/1702.06257
www.nature.com/naturecommunications
www.nature.com/naturecommunications

68. Krizhevsky, A. Learning Multiple Layers of Features from Tiny Images.
Master’s thesis (2009).

69. Xiao, H., Rasul, K. & Vollgraf, R. Fashion-mnist: a novel image dataset for
benchmarking machine learning algorithms. Preprint at https://arxiv.org/abs/
1708.07747 (2017).

Author contributions
D.C.M. and E.M. conceived the initial idea. D.C.M., E.M., P.S., P.H.N., M.G., and A.L.

designed the experiments and analyzed the results. D.C.M. performed the experiments.

D.C.M., E.M., P.S., P.H.N., M.G., and A.L. wrote the manuscript.

Additional information
Supplementary Information accompanies this paper at https://doi.org/10.1038/s41467-

018-04316-3.

Competing interests: The authors declare no competing interests.

Reprints and permission information is available online at http://npg.nature.com/

reprintsandpermissions/

Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in

published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons

Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as long as you give

appropriate credit to the original author(s) and the source, provide a link to the Creative

Commons license, and indicate if changes were made. The images or other third party

material in this article are included in the article’s Creative Commons license, unless

indicated otherwise in a credit line to the material. If material is not included in the

article’s Creative Commons license and your intended use is not permitted by statutory

regulation or exceeds the permitted use, you will need to obtain permission directly from

the copyright holder. To view a copy of this license, visit http://creativecommons.org/

licenses/by/4.0/.

© The Author(s) 2018

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/s41467-018-04316-3

12 NATURE COMMUNICATIONS | (2018) 9:2383 |DOI: 10.1038/s41467-018-04316-3 |www.nature.com/naturecommunications

https://arxiv.org/abs/1708.07747
https://arxiv.org/abs/1708.07747
https://doi.org/10.1038/s41467-018-04316-3
https://doi.org/10.1038/s41467-018-04316-3
http://npg.nature.com/reprintsandpermissions/
http://npg.nature.com/reprintsandpermissions/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
www.nature.com/naturecommunications

	Scalable training of artificial neural networks with adaptive sparse connectivity inspired by network science
	Results
	SET method
	Performance on RBMs
	Performance on MLPs
	Performance on CNNs

	Discussion
	Methods
	Artificial neural networks
	Scale-free complex networks
	Data availability

	References
	Author contributions
	Competing interests
	ACKNOWLEDGEMENTS

