
Ahirrao and Ingle Journal of Cloud Computing: Advances, Systems

and Applications (2015) 4:21

DOI 10.1186/s13677-015-0047-3

RESEARCH Open Access

Scalable transactions in cloud data stores
Swati Ahirrao1* and Rajesh Ingle2

Abstract

Cloud Computing is a successful paradigm for deploying scalable and highly available web applications at low cost.

In real life scenarios, the applications are expected to be scalable and consistent. Data partitioning is a commonly

used technique for improving scalability. Traditional horizontal partitioning techniques are not capable of tracking the

data access patterns of web applications. The development of novel, scalable workload-driven data partitioning is a

requirement for improving scalability. This paper proposes a novel workload-aware approach, with scalable

workload-driven data partitioning based on data access patterns of web applications for transaction processing. It is

specially designed to scale out using NoSQL data stores. In contrast to the existing static approaches, this approach

offers high throughput, lower response time, and a less number of distributed transactions. Further, implementation

and validation of scalable workload-driven partitioning scheme is carried out through experimentation over cloud

data stores such as Hadoop HBase and Amazon SimpleDB. An experimental results of the concerned partitioning

scheme is conducted using the industry standard TPC-C benchmark. Analytical and experimental results are observed

and it shows that scalable workload-driven data partitioning outperforms the schema level and graph partitioning in

terms of throughput, response time and distributed transactions.

Keywords: Data partitioning, Cloud computing, Workload-driven, Scalability, Partitioning scheme

Introduction
Building scalable and consistent data management have

been the vision of database researchers for the last few

years. With the emerging popularity of the internet,

many applications are deployed on the internet and have

faced the challenge of serving thousands of customers.

Therefore scalability of e-commerce web applications has

become an important issue. These modern web applica-

tions generate huge amount of data. The database man-

agement system plays an important role in managing

large amount of data. In order to maintain consistent

and reasonable performance, the DBMS must scale out

to low cost commodity hardware. Traditional, relational

databases could not be scaled out to low cost commodity

servers. This gives birth to the No SQL data stores [1–5].

The key-value stores [6] includes properties such as scal-

ability, availability, and elasticity. Scalability is achieved

using data partitioning [6]. Data partitioning is a com-

monly used technique for performing scale out operation.

In an e-commerce application, when the customer places

any order, the order is fulfilled by a warehouse. If the

*Correspondence: swatia@sitpune.edu.in
1Symbiosis International University, Pune, India

Full list of author information is available at the end of the article

warehouses on one partition is running out of stock, it

is fulfilled by a warehouse on another partition. So, there

is always a pattern, which warehouse is more probable to

supply to a particular warehouse. This behavior is tracked

and the pattern is identified. This pattern is referred as

the Data Access Pattern [7]. Static partitioning systems

[8–11] are the systems in which the related data items

are put together on one partition. Once the partitions

are formed, those partitions do not change. Therefore,

these partitioning systems are called as static. In scal-

able workload-driven partitioning scheme, the transaction

logs, are analyzed and the data access patterns are mon-

itored, that is the movement of data periodically. Based

on this movement of data, partitions are formed and do

not remain same forever. Classical partitioning techniques

such as hash, range partitioning are simple to use, but

they result in distributed transactions when accessing data

from different servers. However, the existing partition-

ing algorithms [10, 11] (static) do not work well when

the data access pattern changes and also do not model

real world e-commerce application scenario. Thus, there

© 2015 Ahirrao and Ingle. Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made.

http://crossmark.crossref.org/dialog/?doi=10.1186/s13677-015-0047-3-x&domain=pdf
mailto: swatia@sitpune.edu.in
http://creativecommons.org/licenses/by/4.0/

Ahirrao and Ingle Journal of Cloud Computing: Advances, Systems and Applications (2015) 4:21 Page 2 of 14

is a need to develop a partitioning scheme based on

the access patterns of data to improve scalability. Scal-

able workload-driven partitioning is specially designed for

OLTP web applications. An efficient partitioning scheme

should access a minimum number of partitions when the

transaction (query) is executed. In this work a new metric

of data access patterns is presented, which are constantly

monitored and the partitions are formed accordingly. The

main contributions of this paper are structured as follows:

• The design of the workload-driven partitioning,

which forms the partitions based on data access

patterns of web application is introduced. It

uniformly balances the load among all partitions,

which in turn increases the throughput of the overall

system. Demonstration of how this workload-driven

partitioning can be used to limit the transaction to

single partition is explained.
• AMathematical Formulation of the workload-driven

partitioning scheme is also presented. Data

partitioning strategy, which describes how the

partitions are formed to foster the scalability is also

explained.
• The workload-driven partitioning algorithm, which

restructures the application data (warehouses) based

on Data Access Pattern is developed. Demonstration

of detailed experiments that show the effectiveness of

workload-driven partitioning scheme in forming

partitions, that balance the workload among the

partitions is described.
• The practical implementation of the workload-driven

partitioning scheme over a cloud data stores such as

Hadoop HBase and Amazon SimpleDB is presented.

The TPC-C benchmark is also used for performance

evaluation.

The remainder of the paper is organized as follows.

Section ‘Related work’, presents the existing work. It analy-

ses the powerful models of Online Transaction Processing

(OLTP). It also explains the different partitioning tech-

niques such as schema level, and graph partitioning.

Section ‘Design of scalable workload-driven partition-

ing’, presents the design of the scalable workload-

driven partitioning and partitioning strategy. Section

‘Mathematical formulation of scalable workload-driven

partitioning scheme’, explains how scalable workload-

driven partitioning is formulated mathematically.

Section ‘Scalable workload-driven partitioning algorithm’,

presents the algorithm which generates partitions with

optimized load and association. Section ‘Comparison of

static, dynamic and scalable workload-driven partitioning’

discusses comparison of static, dynamic and scalable

workload-driven partitioning. Section ‘System imple-

mentation’, shows an experimental evaluation. Finally,

Section ‘Conclusion’ concludes the paper.

Related work
Researchers have proposed a variety of systems and par-

titioning techniques to provide scalable transaction sup-

port for web applications. Some of them have been listed

here. Grolinger K., et al. presented [6] different par-

titioning techniques used by NoSQL data stores and

NewSQL data stores to achieve scalability. Sandholm T.

et al. presented [12] notes on Cloud Computing princi-

ples which describes horizontal scalability for achieving

scalable transactions in cloud data stores. Sudipto Das

et al., proposed ElasTras [13], which uses schema level

partitioning to improve scalability. It also uses a range

partitioning. Scalability is accomplished by restricting the

execution of a transaction to a single partition. P. A.

Bernstein et al., suggested the Cloud SQL Server [9] where

transactions are forced to execute on one partition. In the

Cloud SQL Server, the partition is called a table group,

which is normally keyless or keyed. If it is keyed, then all

the tables in the table group must have a common key

(primary key). The row group is a set of all tuples that

have a common partitioning key. Curino et al., suggested

the Relational Cloud [14] in, which scalability is achieved

with the workload-aware approach termed as graph parti-

tioning [10]. In graph partitioning, the data items, which

are accessed by the transactions are kept on a single par-

tition. J. Baker et al., presented Megastore [8] in which

data is partitioned into a collection of entity groups. An

entity group is a collection of related data items, and is

put on a single node so that the data items required for

execution are accessed from a single node. It is developed

to offer transactional consistency for web applications.

Megastore provides synchronous replication, but comes

at the cost of increased transaction latencies. As discussed

above, four systems use the static partitioning algorithm

and it is designed with the common objective, where the

related rows are kept on a single partition. But there are

some applications such as online games, where groups are

formed dynamically with time and therefore, Sudipto Das

et al., proposed G-Store [15], where the keys from a group

on a different node are put together and form a new group

on a single partition. There is another approach, which

works without the partitioning technique. Aguilera et al.,

presented Sinfonia [16], in, which the transactions are par-

titioned into sub transactions called as mini transactions.

The mini transactions guarantee transactional semantics

on only a small set of operations such as atomic and com-

pare, and swap. Wei et al., introduced Cloud TPS [17],

which splits the Transaction Manager into any number of

Local Transaction Managers (LTMs). Cloud TPS has cer-

tain assumptions that the transactions are short, access

a small amount of data, and are well identified in an

advance. Scalability is achieved by distributing the data

among the Local Transaction Managers. D. Lomet et al.,

proposed design Deuteronomy [18] in which scalability is

Ahirrao and Ingle Journal of Cloud Computing: Advances, Systems and Applications (2015) 4:21 Page 3 of 14

achieved by separating transaction and data management.

The key feature of Deuteronomy is that, data items can

be found anywhere in the Cloud. The single Transaction

Component is responsible for handling all the requests.

Therefore, it is not suitable for large cloud deployments.

Ahirrao and Ingle presented [19] scalable transactions in

cloud data stores which explains the concept of partition-

ing based on data access patterns of web applications.

Data partitioningmethods

Schema level partitioning

The Schema Level partitioning scheme [11] is a static par-

titioning scheme designed to improve the scalability of

ElasTras [13]. It is derived from the TPC-C [20] schema,

so it is called as Schema Level partitioning. The TPC-C

schema has a hierarchical tree structure. In the schema

level, data partitioning is based on the partitioning key.

In the schema level, related rows of tables are collocated

on a single partition and the distributed transactions are

minimized.

Graph partitioning

Graph partitioning [10] is a workload-based static par-

titioning algorithm. Transaction logs are analyzed and

the workload is monitored to partition the database and

therefore, it is called as workload-based partitioning. In

graph partitioning, the rows, which are accessed in a

transaction are kept on one partition to avoid the dis-

tributed transactions.

Researchers have proposed various partitioning tech-

niques such as range, hash, list, schema level, and graph

partitioning to improve scalability. But there is no par-

titioning technique present, which forms the partitions

based on data access patterns of web applications. Parti-

tioning plays a very important role to optimize the per-

formance and scalability of Online Transaction Processing

(OLTP). ElasTras [13] provides a great way to statically

partition the data by providing a very high degree of

load balancing and generates less number of distributed

transactions. But as in OLTP millions of transactions are

expected, so there may be a scope for improvement. The

design of the systems [8–11] described above is based on

the assumption that, an application accesses the partition

statically. The applications for which there are dynamic

changes in the data access pattern, making use of a

static partitioning approach would result in distributed

transactions.

Design of scalable workload-driven partitioning
Formal definitions

Definition 1. Data Access Pattern:

In an e-commerce application, when the customer places

any order, the order is fulfilled by a warehouse. If the

warehouses on one partition are running out of stock, it

is fulfilled by a warehouse on another partition. So, there

is always a pattern, which warehouse is more probable to

supply to a particular warehouse. This behavior is tracked

and the pattern is identified. This pattern is referred as the

Data Access Pattern. Figure 1 illustrates the data access

patterns of web applications.

Definition 2. Static Partitioning:

Static partitioning systems [8–11] are the systems where

the related data items are put together on one partition.

Once the partitions are formed, those partitions do not

change. Therefore, these partitioning systems are called as

static.

Definition 3. Scalable Workload-Driven Partitioning:

In this partitioning, we analyze the transaction logs, and

monitor the data access pattern, that is the movement of

data periodically. The partitions are formed, based on this

movement of data.

Data partitioning strategy

In this partitioning strategy, an exhaustive survey is per-

formed to find the best load distribution. All possible

combinations of partitions are found out. The total load

and association is calculated for all possible combinations

of partition. A Heuristic Search technique was used to

find optimized solutions. These combinations are gener-

ated using mutation in the genetics algorithm. Mutation

is a technique, which have been used in genetic algo-

rithms for introducing diversity. Mutation helps in gener-

ating optimized combinations. In mutation, the solution

may change entirely from the previous solution. Hence,

the genetic algorithm can come to a better solution by

Fig. 1 Data access patterns of web applications

Ahirrao and Ingle Journal of Cloud Computing: Advances, Systems and Applications (2015) 4:21 Page 4 of 14

using mutation. The partition with optimized load and

association are selected and give a higher throughput.

The following steps explain, how a genetic algorithm

can be used to find an optimized solution. The evolution

begins with a population of randomly generated possi-

ble solutions. Genetic algorithm introduces a sequence of

new population. In each generation, it uses all possible

combinations of solution in current generation to create

the next population.

• Population is created by finding all possible

combinations of solutions.
• These randomly generated possible combinations are

evaluated.
• Evaluation function is a criterion for ranking these

possible combinations of solutions.
• These possible combinations are selected based on

their fitness. Then these combinations are ranked

based on their fitness. The fitness of a solution is

measured as the result given by that combination.

Higher fitness increases the chance of being selected.
• Sort this combination, based on their fitness. Lower

the rank, higher the chance of being selected.
• These selected combinations again regenerate all

possible combinations of solution. We call it as a new

population.
• This continues until the optimized solution has been

found.

In this section, the design of the scalable workload-

driven partitioning system, is discussed. The proposed

partitioning scheme improves the scalability and reduce

the distributed transactions than the existing partitioning

algorithm. Scalable workload-driven partitioning allows

to design scalable and real-life web applications. The

TPC-C schema [20] presents an e-commerce applica-

tion. The TPC-C schema consists of nine tables such

as warehouse, district, customer, order, order-line, new-

order, item, stock and history. In the TPC-C schema, the

warehouse table has wid as a primary key, but act as a for-

eign key in all the other tables except an item table. The

database is partitioned using the partitioning key as wid

and all the related rows of wid in the other tables should

be kept on one partition. TPC-C assumes that in 10% of

the cases, the current warehouse may not have the stocks

to fulfill the order. Though, the TPC-C randomly chooses

the supplier warehouse when the order is not satisfied by

the current warehouse. In reality, it is hardly random, and

usually, the supplier warehouse is the one, which is the

most proximate to thewarehouse, which is processing that

order. In this way there is always a pattern that, which

warehouse is more probable to supply to a particularware-

house. In this work, the idea is to track this behavior by

analyzing the transaction log processed by the OLTP sys-

tem and re-organize these static partitions so that the

warehouse with more coherency are put in a single par-

tition and reduce the number of distributed transactions

required. For example, let us consider four warehouses as

wid − 0 Delhi, wid − 1 Mumbai, wid − 2 Kolkata, wid − 3

Chennai. Initially, wid − 0 and wid − 1 will be on one

partition and wid − 2 and wid − 3 will be on another par-

tition. It is observed that when there is no stock available

with wid − 2 the orders are fulfilled by supplier wid − 0,

which is more proximate to wid − 2. Wid − 2 is a ware-

house, which is processing that order and wid − 0 is a

supplierwarehouse, which is supplying stock for the order.

In this way the transaction log is monitored and the par-

titions are formed based on data access patterns of web

applications. It should be noted that the item table is read

only table, and each warehouse tries to maintain stock

for the 100,000 items. Figure 2 shows that the partitions

are formed based on data access patterns of web appli-

cations. Figure 3 illustrates the scalable workload-driven

partitioning.

Mathematical formulation of scalable
workload-driven partitioning scheme
In this section, the problem of scalable workload-driven

partitioning is modeled using load and association. The

goal of the scalable workload-driven partitioning scheme

is to find the partitions with optimal association and

load. The scalable workload-driven partitioning scheme is

designed with different optimization objectives.

• First, the scalable workload-driven partitioning

scheme aims to minimize the distributed transactions

than the existing static partitioning scheme.
• The second objective of the scalable workload-driven

partitioning scheme is to form partitions in such a

way that the load is distributed evenly across all the

partitions.

This is done with an aim to improve the efficiency and

throughput of the scalable workload-driven partitioning

scheme. Table 1 shows notations used in this paper. In

this section, the problem of workload-driven partitioning

is defined. Scalable workload-driven partitioning is done

over a set of warehouses (wid as the partitioning key), and

for a given workload.
Let D =

{

d1, d2, · · · , dq
}

be the set of data items. The

workload consists of a set of queries W =
{

q1, q2, · · · , qr
}

and P =
{

p1, p2, · · · , ps
}

be the set of partitions.
Scalable workload-driven partitioning is defined as

follows:

Definition 4. Scalable workload-driven partitioning of

a data set D consists of dividing the data of D into a set of

fragments which are mutually exclusive sets of fragments,

where the union of all fragments is equal to F and count of

the element in set F are equal to the count of elements in

set P.

Ahirrao and Ingle Journal of Cloud Computing: Advances, Systems and Applications (2015) 4:21 Page 5 of 14

Fig. 2 Scalable Workload-Driven Partitioning

F =
{

f1, f2, · · · , fp
}

(1)

where f1 is d1, d2 and f2 is d3, d4 and so on.

In this paper, we define the efficiency of the partitioning

scheme as transaction (query) should access a minimum

number of partitions when it gets executed.

Definition 5. Given a transaction, the efficiency for a

partitioning scheme for a given workload is computed as

follows and is denoted as:

Efficiency(W) = 1 − dt/T (2)

dt is distributed transactions and T is total number of

transactions.

Definition 6. In scalable workload-driven partitioning,

the partitions are formed by calculating the load on ware-

houses and the association between them. Let us first define

Fig. 3 Design of scalable workload-driven partitioning based on data

access patterns

the load on the partition. The load of a partition pk ,

denoted as Lpk is defined as the total of the number of

transactions executed on the warehouses in that partition.

Let Lpk represent the number of transactions executed on

the partition k. n is number of warehouses in one partition.

Lpk =

n
∑

i=1

Lwi (3)

Definition 7. The average load of a partition is denoted

as LDmean is the total number of transactions executed on

all the partitions divided by the total number of partitions.

Standard deviation is defined as the deviation of load on

the partitions from the average load of the partition. s is

the number of partitions.

LDmean =

∑s
k=1 Lpk

s
(4)

Table 1 Notations

Symbol Description

F It is a set of fragments.

f It is a fragment.

Lwi It is the number of transactions executed on the
warehouse ‘i’.

Lpk It is the number of transactions executed on the
partition ‘k’.

LDmean It is the average of transactions executed on the all the
partitions.

�(LD) It is the standard deviation of load.

Association
(

f
)

Number of local transactions executed on the
fragment.

dt Total number of distributed transactions.

r Total number of records.

T Total number of transactions.

s Total number of partitions.

n Total number of warehouses.

Ahirrao and Ingle Journal of Cloud Computing: Advances, Systems and Applications (2015) 4:21 Page 6 of 14

� (LD) =

√

√

√

√

s
∑

k=1

(

(Lpk − LDmean)
2

s

)

(5)

Definition 8. The association of fragment f, denoted

Association(f) is defined as the number of local transac-

tions (queries) executed on a particular combination of

warehouses in fragment.

Association(f) = r (6)

The objective of workload-driven partitioning is to form

partitions in such a way that efficiency of the partitioning

scheme is maximized.

Scalable workload-driven partitioning algorithm
Scalable workload-driven partitioning algorithm takes a

set of warehouses, set of domains and complete transac-

tion data as an input and gives the optimized partition

as a result. The algorithm starts with the static distribu-

tion of warehouses. For example, warehouses w0 and w1

are kept on one partition and w2 and w3 are kept on

another partition. Then, the partitions are mutated, that

is finding out all possible combinations of warehouses to

form the partition. It then calculates the load distribution

by using standard deviation of all the loads on each of

the warehouses for that partition from the average load.

The combinations are ranked, based on the load distri-

bution values with the lowest value to the combination

with the smallest standard deviation; and higher values

to the one with the highest deviation. The association of

a combination is calculated by finding out the number

of transactions executed, and distributed transactions for

the combination. The combinations are ranked, based on

association such as a lower rank value to the combina-

tion with the highest association and a higher rank to the

combinations with a lower association. A summation of

both the ranks is computed and the ranks are specified

in ascending order considering both load distribution and

association.

Once this algorithm is run, fragment set F with the

optimized load balancing and optimized association is

generated. Then the final combination is used to popu-

late data for workload-driven partitioning. This algorithm,

reads the transaction log and builds all the different com-

binations of the possible partitions and calculates the total

load and total association of that partition (total number

of local transactions; if the database is partitioned in this

way.) Then, the ranks are assigned to each of the com-

binations according to their load in increasing order as

well as an association in decreasing order. Then, ranks

are summed up and this sum is used to generate the final

ranks of each of the partitions. Then top five combina-

tions are selected based on the final rank and repeat steps

2 to 9 for 5 times to generate more combinations. After

generation of these combinations, again select top five

combinations and repeat steps 2 to 9 of them for 5 times.

The reason for doing so is for generating more number

of partitions and also to check that the same combination

of partition is generated. The reason for performing this

step 5 times is that it has been observed that no new com-

binations are generated after repeating for 5 times. The

partition with the smallest rank (faring best in load as well

as an association) will be used to repartition the data.

Algorithm 1: Scalable Workload-Driven Partitioning

Algorithm

Input: 1. Number of Partitions, 2. Set of Warehouse, 3.

Transaction Data

Output: Partition with the optimized load balancing and

optimized association.

1. Start with static distribution.

repeat

repeat
2. Mutate_partition(partition, warehouse);

3. foreach partition do

foreach warehouse do
calculate Lwi ();

Lpk =
∑n

i=1 Lwi ;

end

LDmean =

∑s
k=1 Lpk
s ;

� (LD) =

√

∑s
k=1(

(Lpk−LDmean)
2

s);

end

4. Sort_partition_load_ascending_order(� (LD), s);

5. foreach transaction do
requester_warehouse; supplier_warehouse;

array[requester_warehouse],

[supplier_warehouse]=cnt++;
end

6. Sort_partition_association_descending_order();

7. Read_partition_load_rank();

Read_association_rank();

repeat
Rank Value =
∑

(partition_load_rank, association_rule_rank);
until end;

8. Sort_rank_value_ascending_order();

9. Select top 5 combinations
until end of partitions;

until end of partitions;

10. Select the top combination as the best combination

with effective load balancing and association.

Comparison of static, dynamic and scalable
workload-driven partitioning
1. Static Partitioning

Static partitioning systems [8–11] are the systems

where related data items are collocated at one

partition. Once the partitions are formed, those

partitions do not change. Therefore, these

Ahirrao and Ingle Journal of Cloud Computing: Advances, Systems and Applications (2015) 4:21 Page 7 of 14

partitioning systems are termed as static. The

advantage of using static partitioning is the partitions

are fixed, so that the data need not be migrated very

frequently. The disadvantage of static partitioning is

more number of distributed transactions occur. In an

e-commerce application when an order is placed by

customers and if the current warehouse does not

have stock to fulfill the orders, it goes to warehouse
on another partition. Therefore, distributed

transactions occur.

2. Dynamic Partitioning

Dynamic partitioning systems [15] are the systems

where partitions are formed dynamically and change

very frequently. The advantage of using dynamic

partitioning is an occurrence of less number of

distributed transactions. The cost of migrating data is

an overhead. The restructuring of application data in

a partition introduces additional cost due to data

migration.

3. Scalable Workload-Driven Partitioning (Partitioning

based on Data Access Patterns) Scalable

workload-driven partitioning is not static or dynamic

partitioning scheme. It lays between static and

dynamic partitioning scheme. In this partitioning,

the transaction logs and the data access patterns are

analyzed (that is, which warehouse is more probable

to supply to particular warehouse). This analysis is
performed periodically and the partitions are formed

based on data access patterns. Once the partitions

are formed, they may change in future, based on data

access patterns. Therefore, this scheme cannot be

classified as static or dynamic partitioning. The

advantage of using this partitioning scheme is

partitions are formed after performing an analysis.

Therefore the least number of distributed

transactions occur. This analysis is performed

periodically and therefore the reorganization of

application data is not frequent. Thus the cost is also

minimized.

System implementation
This section discusses implementation details of scalable

workload-driven partitioning on two inherently scalable

database layers. NoSQL data stores [1–5] support differ-

ent data models. An adaption of scalable workload-driven

partitioning to these NoSQL data stores is actually a

challenge and require minor changes for implementation.

Scalable workload-driven partitioning is being imple-

mented using two prominent and widely used NoSQL

data stores: Amazon SimpleDB [2] and HadoopHBase [1].

Performance analysis of algorithm

The performance of the above stated algorithm depends

majorly on ‘r’ and ‘T’. Step 3 stated in the above algorithm

has O(n.s). First, for loop run ‘s’ times and the inner for

loop executes ‘n’ times. Step 4 sort partition on the basis of

load distributions using an efficient sorting algorithm like

merge sort. It will takeO(slog(s)) time. Step 5 executes for

O(r.T). Again, ranking using merge sort in step 6 will take

timeO(slog(s)). Thus, total time complexity can be stated

as below:

T = O(n.s) + O(r.T) + O(slog(s)) (7)

Since n, s < r, T

T = O(r.T) (8)

Analysis of the above algorithm for best, average and

worst case is also performed. As per the analysis the

complexity in all the three cases is given in Eq. 9 and

dependent on ‘r’ and ‘T’.

T = O(r.T) (9)

Performance evaluation in Amazon SimpleDB

An extensive experimental evaluation is performed in a

cluster of 5 machines in Amazon Web Services Elastic

Compute Cloud [21] (EC2) infrastructure. The scalabil-

ity of scalable workload-driven partitioning is validated

by showing the performance evaluation of a prototype

implementation on Amazon SimpleDB [2] running in the

Amazon Cloud.

Experimental setup

The experiments were performed on a cluster of 5

machines in Amazon EC2 [21]. All virtual machines used

in the cluster were M3 General Purpose Extra Large with

15GB of memory, 20 EC2 Compute Units (4 virtual cores

with 3.25 units each), (2*40GB) of local storage. All the

5 machines in the cluster are interconnected by Giga-

bit LAN. M3 General Purpose Extra Large cost $0.50

per instance-hour. One EC2 Compute Unit provides the

CPU capacity of a 1.0–1.2 GHz 2007 Opteron or 2007

Xeon processor. The transaction load and the number of

users are simulated usingmulti-threaded requests. Table 2

shows the experimental setup.

Table 2 Experimental setting for Amazon SimpleDB

No. of machines Environment Description

5 CPU M3 general purpose extra large,

(4 core * 3.25 unit)

Memory 15GB

Storage (2 × 40GB)SSD

All OS Windows 8

.NET Framework 4.0

NO SQL Database Amazon SimpleDB

Ahirrao and Ingle Journal of Cloud Computing: Advances, Systems and Applications (2015) 4:21 Page 8 of 14

Fig. 4 TPC-C schema

Partitioning algorithm

The quality of the scalable workload-driven partitioning

algorithm is assessed using TPC-C workload [20]. The

quality of the scalable workload-driven partitioning algo-

rithm is compared with the schema level partitioning [11]

and graph partitioning [10] in terms of the distributed

transactions. The scalability of the concerned partitioning

scheme is evaluated by the throughput and response time

of the transaction.

TPC-C benchmark

Workload-driven partitioning scheme was applied to the

standard web application such as TPC-C [20] to illus-

trate its effectiveness. TPC-C is an industry standard

benchmark, used for simulating the workload of an e-

commerce application. It represents the standard OLTP

workload. It contains read as well as update transac-

tions. The benchmark describes a wholesale supplier

with a geographically disseminated district and ware-

houses. The benchmark has five types of transactions

and nine tables. Workload-driven partitioning scheme is

validated by using the TPC-C industry standard bench-

mark. The schematic diagram of the TPC-C benchmark,

which is selected for performance evaluation is shown in

Fig. 4.

The benchmark consists of five different transac-

tions by identifying the business needs of e-commerce

applications:

Fig. 5Mapping of TPC-C schema to Amazon SimpleDB

Ahirrao and Ingle Journal of Cloud Computing: Advances, Systems and Applications (2015) 4:21 Page 9 of 14

Fig. 6Workload-driven partitioning in Amazon SimpleDB

• NEWORDER transaction, which accepts and creates

a new order for the customer. It is a mixture of read

as well as write transactions.
• PAYMENT transaction, which updates the balance of

the customer by reflecting the payment of the order

by the customer. It is also a read and write transaction.
• ORDER STATUS, which keeps track of the status of

customers and most recent orders. It is a read only

transaction.
• DELIVERY transaction finds a batch of most recent

10 orders, which are not yet delivered to the

customer.

Fig. 7 Throughput for varying number of concurrent users

• STOCK level transaction, which finds the recently

sold items, which have got a stock below threshold. It

is a read only transaction.

In a real life scenario, typically 45% transactions are

NEW ORDER, 43% transactions are PAYMENT and

4% transactions are ORDER STATUS, DELIVERY, and

STOCK.

Conversion of TPC-C schema to Amazon SimpleDB domain

TPC-C was originally designed for web application with

relational databases as backend. Therefore, it is needed

Fig. 8 Response time for varying number of concurrent users

Ahirrao and Ingle Journal of Cloud Computing: Advances, Systems and Applications (2015) 4:21 Page 10 of 14

Fig. 9 Distributed transactions

to adapt the relational data model of TPC-C to Ama-

zon SimpleDB data model [2]. In this section, the design

of Amazon SimpleDB has been modeled from TPC-C

schema. Merging of these nine tables (warehouse, dis-

trict, customer, neworder, order, orderline, item, stock)

into one domain of Amazon SimpleDB is performed

to extend this Amazon SimpleDB data model. Figure 5

shows the conversion of TPC-C schema to the Ama-

zon SimpleDB domain. Figure 6 demonstrates horizontal

workload-driven partitioning in Amazon SimpleDB.

Scalability evaluation

In this section, the performance of the workload-driven

partitioning is extensively evaluated and compared it with

a schema level and Graph partitioning. In schema level

partitioning [22], partitions are formed by collocating the

related data items. In graph partitioning [10], the database

is partitioned with frequently used attributes, that is com-

mon partitioning key (wid). All related rows are put

together on the same partition. The goal of this experi-

ment is to validate the scalability of system with varying

number of concurrent clients. The scalability in terms of

throughput and response time and efficiency is evaluated.

For conducting the experiments, the database size is set

to 15 warehouses. Users are available starting from 250 to

5000 in steps of 250. Figure 7 shows the throughput of

scalable workload-driven partitioning, schema level and

graph partitioning. Along x-axis, there are varying num-

ber of concurrent users and along the y-axis, there is a

throughput (transactions per second).

Figure 8 shows the response time with varying num-

ber of users of scalable workload-driven, schema level

and graph partitioning. Along the x-axis, the number of

concurrent users is plotted and along the y-axis, time

is plotted in seconds. As observed from Fig. 8, scalable

workload-driven partitioning has lesser response time

than schema level and graph partitioning.

Figure 9 shows distributed transactions for scalable

workload-driven, schema level and graph partitioning.

From Fig. 9, it is observed that in most of the cases

scalable workload-driven partitioning has lesser number

of distributed transactions than schema level and graph

partitioning. After analyzing the performance of scalable

workload-driven partitioning in Amazon SimpleDB, it is

comprehended that scalable workload-driven partition-

ing has got higher throughput and low response time in

Amazon SimpleDB.

Scalable workload-driven partitioning technique works

better than schema level and graph partitioning by

demonstrating it on Amazon SimpleDB cloud data store.

Although the implementation in Amazon SimpleDB cloud

data store increases the response time for a concurrent

number of users, this restricts the practical utility of this

technique in Amazon SimpleDB cloud data store. As a

result implementation of this technique in a commercial

Fig. 10 Experimental setup

Ahirrao and Ingle Journal of Cloud Computing: Advances, Systems and Applications (2015) 4:21 Page 11 of 14

Table 3 Experimental setting for the Hadoop HBase cluster

No. of Machines Environment Description

1 (Master) CPU Core2Duo processor 3.1 GHz

Memory 4 GB DDR2

Hard Disk 320 GB SATA

5 (Slaves) CPU Core2Duo processor 3.1 GHz

Memory 4 GB DDR2

Hard Disk 320 GB SATA

All OS Ubuntu 13.04

Java 1.7

NO SQL Database Hadoop HBase 0.92.1

cloud data store is needed. Therefore, scalable workload-

driven partitioning is presented using NoSQL database

such as Hadoop HBase.

Experimental evaluation in Hadoop HBase

The scalability of the scalable workload-driven partition-

ing algorithm is shown by presenting the performance

evaluation of a prototype implementation on scalable

database layer as Hadoop HBase [1] running in the exist-

ing local cluster. The effect of the Heuristics in the parti-

tioning algorithm is observed, on partitioning efficiency.

Hadoop HBase [1] also provides efficient storage and fast

retrieval of data to support high performance web

applications.

Experimental setup

In this section, an experimental validation of the scalable

workload-driven partitioning algorithm is presented. The

schematic diagram of the experiment’s setup is shown in

Fig. 10. The performance of the concerned partitioning

scheme is experimentally evaluated on contemporary

cloud data store such as Hadoop HBase. Table 3 shows

the experimental setting for Hadoop HBase cluster. In the

existing experimental setup one node acts as a master

(Name Node) for HDFS and HBase. Hadoop HBase clus-

ter was composed of 5 region servers, with 5 data nodes

and one workload generator. The master node has a con-

figuration of the Intel Core2Duo processor 3.1 GHz, with

4GB of memory, and a hard disk of 320GB. All the data

nodes used in conducting experiments have a Core2Duo

processor at 3.1 GHZ, with 4GB of memory. The TPC-

C database with 15 warehouses has been populated. In

the experiment, there are 3 warehouses per region server.

These machines are connected using Gigabit LAN. Emu-

lated browsers are used for simulating the requests of real

users. The client workload is generated by varying the

number of emulated browsers.

Migration of TPC-C to Cloud

In this section, the mapping of TPC-C schema to the

data model of Hadoop HBase is performed. There are

total nine tables as a district, customer, warehouse, orders,

new-order, order-line, stock, item, and history in the TPC-

C schema. These nine tables are mapped to a single table

in Hadoop HBase. Figure 11 shows the mapping of TPC-

C schema to Hadoop HBase. The history table has not

been considered while creating the HBase table. Each

table in TPC-C schema is created as a column family in

Hadoop HBase. In the Hadoop HBase, table district, cus-

tomer, warehouse, order, new-order, item, order-line and

stock are all column families, which are a group of related

columns. To convert this data model of TPC-C schema

to Hadoop HBase, nine tables of TPC-C schema (district,

customer, warehouse, order, new-order, item, order-line

and stock) are combined into a single table of Hadoop

HBase. The reason for creating a separate column fam-

ily for each table is to minimize the response time for

retrieving the results.

Fig. 11Mapping of TPC-C schema to Hadoop HBase

Ahirrao and Ingle Journal of Cloud Computing: Advances, Systems and Applications (2015) 4:21 Page 12 of 14

Fig. 12 Throughput with 15 warehouses

Scalability evaluation

In this experiment, the number of concurrent users is

varied in a cluster of 6 machines. In the cluster of 6

machines, the database is populated with 15 warehouses,

30 warehouses, 60 warehouses and the number of users

varied from 20 to 100 in steps of 20. The purpose of this

experiment was to validate the scalability of workload-

driven partitioning scheme with the increasing number of

concurrent users and transactions. This experiment was

conducted to check the sensitivity of scalable workload-

driven partitioning algorithm with the increasing size

of the database. The database size was set to 15 ware-

houses, 30 warehouses, 60 warehouses. Figure 12 shows

the throughput of the scalable workload-driven parti-

tioning scheme with database size set to 15 warehouses.

Along the x-axis, there are number of concurrent users,

and along the y-axis, there is the throughput (in tps).

Figures 13 and 14 demonstrate the throughput of the scal-

able workload-driven partitioning scheme with database

Fig. 13 Throughput with 30 warehouses

Fig. 14 Throughput with 60 warehouses

size set to 30 and 60 warehouses. Throughput of scal-

able workload-driven partitioning scheme scales linearly

with database size set to 15, 30, 60 warehouses is observed

in Figs. 12, 13 and 14. There is no change in the per-

formance of the system even if the database size is seen

growing with 15, 30, 60 warehouses. Figures 15, 16 and 17

shows the response time of system with database size 15,

30, 60 warehouses. Along the x-axis, there are number of

concurrent users, and along the y-axis, there is response

time. From Figs. 15, 16 and 17 it is observed that the

response time is almost same with database size 15, 30, 60

warehouses. It is observed from the Fig. 18, that scalable

workload-driven partitioning has least number of dis-

tributed transactions as compared to the schema level and

graph partitioning. In schema level and graph partition-

ing, once the partitions are formed, they do not change.

So when the request comes to a particular warehouse

of not having stock, it is fulfilled by another warehouse

on another partition. Thus, the distributed transactions

Fig. 15 Response time with 15 warehouses

Ahirrao and Ingle Journal of Cloud Computing: Advances, Systems and Applications (2015) 4:21 Page 13 of 14

Fig. 16 Response time with 30 warehouses

occur. On the other hand, in scalable workload-driven

partitioning, partitions are formed by analyzing the trans-

action logs. Therefore, a less number of distributed trans-

actions occur, which in turns increases the throughput

of the system. Scalable workload-driven partitioning per-

forms better than schema level and graph partitioning and

improve throughput by 10%. In OLTP applications, mil-

lions of users are active concurrently across the web and

placing an order for their item. So this 10% change is also

critical for OLTP applications.

Forecasting the scalability with the universal scalability law

In this section, the scalability of scalable workload-driven

partitioning is predicted using the universal scalability law

[23] and comparing it with the scalability demonstrated by

the experiments in HadoopHBase [1]. Themodel predicts

that the system under test will reach its peak throughput

of 591 queries per second at a concurrency of 5. As shown

Fig. 17 Response time with 60 warehouses

Fig. 18 Distributed transactions

in Fig. 12 it can be observed that the system reaches to

a throughput of 655 queries per second at a concurrency

of 20. Figure 19 shows the predicted and experimental

throughput of workload-driven partitioning.

Conclusion
In this paper, scalable workload-driven partitioning is pre-

sented to fulfill the requirements of modern cloud based

applications. The mathematical formulation of scalable

workload-driven partitioning is described. The solutions

through experimentation over contemporary data store

such as Hadoop HBase and Amazon SimpleDB were val-

idated. The TPC-C benchmark is used for the evaluation

of the concerned partitioning scheme. Furthermore, it is

demonstrated that a prototype implementation deployed

on a cluster of commodity servers can efficiently serve

thousands of users while maintaining throughput. By

demonstrating the concerned scheme using the TPC-C

Fig. 19 Forecasting scalability of workload-driven partitioning using

USL

Ahirrao and Ingle Journal of Cloud Computing: Advances, Systems and Applications (2015) 4:21 Page 14 of 14

benchmark, it has been observed that scalable workload-

driven partitioning reduces the number of distributed

transactions better than the existing partitioning schemes

such as graph and schema level partitioning, and gives

higher throughput, efficiency and lower response time.

Abbreviations

OLTP: online transaction processing; NoSQL: not only SQL; EC2: elastic

compute cloud; HDFS: hadoop distributed file system; LAN: local area network;

USL: universal scalability law; TPC-C: transaction processing council.

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

SA has been involved in the design scalable workload-driven partitioning and

mathematical formulation of it. SA carried out implementation of scalable

workload-driven partitioning scheme. RI have been involved in drafting the

manuscript and revising it critically. Both authors read and approved the final

manuscript.

Authors’ information

Swati Ahirrao received her M.E (Computer Engineering) from Pune University

and pursuing Ph.D. from Symbiosis International University. Her reasearch

interests include cloud computing, database systems, distributed systems. She

works as Asst. Professor in Symbiosis Institute of Technology under Symbiosis

International University and is a research student at the same university.

Rajesh Ingle is a Dean and Professor (CSE), at Pune Institute of Computer

Technology, and Head, EDC and Business Incubation Centre. He has received

Ph.D. Computer Science and Engineering from Department of Computer

Science and Engineering, Indian Institute of Technology Bombay, Powai,

Mumbai. He has received the B.E. Computer Engineering from Pune Institute

of Computer Technology, University of Pune, and M.E. Computer Engineering

from Government College of Engineering, University of Pune. He has also

received M.S. Software Systems from BITS, Pilani, India. His research interests

include distributed system security, grid middleware, cloud computing,

multimedia networks and spontaneously networked environments. He has

more than 20 research publications in conferences and Journals. He has

authored four books. He is a senior member of the IEEE, IEEE Communications

Society, and IEEE Computer Society. He is working as Chairman, IEEE R10 SAC.

Acknowledgements

We sincerely thank Dr. Arundhati Warke and Prof Vijaykumar Jatti for their

valuable suggestions.

Author details
1Symbiosis International University, Pune, India. 2Pune Institute of Computer

Technology, Pune, India.

Received: 8 July 2015 Accepted: 29 October 2015

References

1. HBase:Bigtable-like structured storage for Hadoop HDFS. (2009) http://

hbase.apache.org, [Accessed 23-Sep-2013]

2. Amazon.com AmazonSimpleDB (2012). http://aws.amazon.com/

simpledb [Accessed 23-Aug-2013]

3. Chang F, Dean J, Ghemawat S, Hsieh WC, Wallach DA, Burrows M, Gruber

RE (2008) Bigtable: A distributed storage system for structured data. In:

Proceedings of the 7th Symposium on Operating Systems Design and

Implementation. USENIX Association, Berkeley, CA. pp 205–218

4. DeCandia G, Hastorun D, Jampani M, Kakulapati G, Lakshman A, Pilchin A,

Vogels W (2007) Dynamo: amazon’s highly available key-value store. In:

Proceedings of the 21st ACM Symposium on Operating System

Principles. ACM, New York. pp 205–220

5. Cooper BF, Ramakrishnan R, Srivastava U, Silberstein A, Bohannon P,

Jacobsen HA, Yerneni R (2008) PNUTS: Yahoo!’s hosted data serving

platform. Proc VLDB Endowment 1(2):1277–1288

6. Grolinger K, Higashino WA, Tiwari A, Capretz MAM (2013) Data

management in cloud environments: Nosql and newsql data stores.

J Cloud Comput: Adv Syst Appl 2(1):22

7. Vogels W (2007) Data access patterns in the amazon. com technology

platform. In: Proceedings of the 33rd international conference on Very

large data bases. VLDB Endowment. pp 1–1

8. Baker J, Bond C, Corbett J, Furman JJ, Khorlin A, Larson J, Léon J-M, Li Y,

Lloyd A, Yushprakh V (2011) Megastore: Providing scalable, highly

available storage for interactive services. In: CIDR, vol 11. pp 223–234

9. Bernstein PA, Cseri I, Dani N, Ellis N, Kalhan A, Kakivaya G, Talius T (2011)

Adapting microsoft sql server for cloud computing. In: Proceedings of the

27th International Conference on Data Engineering. pp 1255–1263

10. Curino C, Jones E, Zhang Y, Madden S (2010) Schism: a workload-driven

approach to database replication and partitioning. Proc VLDB

Endowment 3(1–2):48–57

11. Das S, Agrawal D, El Abbadi A (2013) ElasTraS: An elastic, scalable, and

self-managing transactional database for the cloud. ACM Trans Database

Syst (TODS) 38(Article 5):1–45

12. Sandholm T, Lee D (2014) Notes on cloud computing principles. J Cloud

Comput 3(1):1–10

13. Das S, Agrawal D, El Abbadi A (2009) Elastras: An elastic transactional data

store in the cloud. In: Proceedings of the 1st USENIX Workshop on Hot

topics on Cloud Computing. USENIX Association, Berkeley, CA. pp 1–5

14. Curino C, Jones EPC, Popa RA, Malviya N, Wu E, Madden S, Zeldovich N

(2011) Relational cloud: A database-as-a-service for the cloud. In:

Proceedings of the 5th Biennial Conference on Innovative Data Systems

Research. pp 235–240

15. Das S, Agrawal D, El Abbadi A (2010) G-store: a scalable data store for

transactional multi key access in the cloud. In: Proceedings of the 1st

ACM Symposium on Cloud Computing. ACM, New York. pp 163–174

16. Aguilera MK, Merchant A, Shah M, Veitch A, Karamanolis C (2007) Sinfonia:

a new paradigm for building scalable distributed systems. In: Proceedings

of the 21st ACM Symposium on Operating System Principles. ACM, New

York. pp 159–174

17. Zhou W, Guillaume P, Chi-Hung C (2011) Cloud TPS: Scalable transactions

for web applications in the cloud. IEEE transactions on service computing

5(4):525–539

18. Levandoski JJ, Lomet DB, Mokbel MF, Zhao K (2011) Deuteronomy:

Transaction support for cloud data. In: CIDR Vol. 11. pp 123–133

19. Ahirrao S, Ingle R (2013) Scalable transactions in cloud data stores. In:

Advance Computing Conference (IACC): IEEE 3rd International

conference. pp 116–119

20. Transaction Processing Council. TPC benchmark C standard specification,

revision 5.11. http://www.tpc.org/tpcc/, [Accessed 23-Aug-2013]

21. Amazon.com AmazonEC2 (2010). http://aws.amazon.com/ec2, [Accessed

23-Aug-2013]

22. Das S, Agarwal S, Agrawal D, El Abbadi A (2010) Elastras: An elastic,

scalable, and self managing transactional database for the cloud.

Technical report, Technical Report 2010-04, CS, UCSB

23. Schwartz B, Fortune E (2010) Forecasting MySQL Scalability with the

Universal Scalability Law. https://www.percona.com/files/white-papers/

forecasting-mysql-scalability.pdf [Accessed 23-June-2013]

http://hbase.apache.org
http://hbase.apache.org
http://aws.amazon.com/simpledb
http://aws.amazon.com/simpledb
http://www.tpc.org/tpcc/
http://aws.amazon.com/ec2
https://www.percona.com/files/white-papers/forecasting-mysql-scalabilit y.pdf
https://www.percona.com/files/white-papers/forecasting-mysql-scalabilit y.pdf

	Abstract
	Keywords

	Introduction
	Related work
	Data partitioning methods
	Schema level partitioning
	Graph partitioning

	Design of scalable workload-driven partitioning
	Formal definitions
	Data partitioning strategy

	Mathematical formulation of scalable workload-driven partitioning scheme
	Scalable workload-driven partitioning algorithm
	Comparison of static, dynamic and scalable workload-driven partitioning
	System implementation
	Performance analysis of algorithm
	Performance evaluation in Amazon SimpleDB
	Experimental setup
	Partitioning algorithm
	TPC-C benchmark
	Conversion of TPC-C schema to Amazon SimpleDB domain
	Scalability evaluation

	Experimental evaluation in Hadoop HBase
	Experimental setup
	Migration of TPC-C to Cloud
	Scalability evaluation
	Forecasting the scalability with the universal scalability law

	Conclusion
	Abbreviations
	Competing interests
	Authors' contributions
	Authors' information
	Acknowledgements
	Author details
	References

