

Scalable Unidirectional Routing with Zone Routing Protocol (ZRP) Extensions for

Mobile Ad-Hoc Networks

Prasun Sinha♣,
Co-Ordinated Sciences Laboratory,

University of Illinois, Urbana Champaign
prasun@vayu.crhc.uiuc.edu

Srikanth V. Krishnamurthy and Son Dao
Information Sciences Laboratory,

HRL Laboratories, LLC.
krish@hrl.com, skdao@hrl.com

♣ This work was done when the author was with HRL Laboratories, LLC.

Abstract- Ad-Hoc Networks consist of peer-to-peer
communicating nodes that are highly mobile. As such, an ad-hoc
network lacks infrastructure and the topology of the network
changes dynamically. The task of routing data from a source to
a destination in such a network is challenging. Several routing
protocols have been proposed for wireless ad-hoc networks.
Most of these protocols, however, pre-suppose the presence of
bi-directional links between the nodes in the network. In reality
the ad-hoc network may consist of heterogeneous nodes with
different power capabilities and hence, different transmission
ranges. When this is the case, a given node might be able to
receive the transmission of another given node but might not be
able to successfully transmit to the latter. Thus, unidirectional
links are formed. Most of the current routing protocols are
unsuitable for deployment when such unidirectional links are
present. We consider a routing protocol called the zone routing
protocol (ZRP) that has been proposed for wireless ad-hoc
networks with bi-directional links. The zone routing protocol
employs a hybrid proactive (table driven) and reactive (on-
demand) methodology to provide scalable routing in the ad-hoc
network. However, in the presence of unidirectional links some
routes remain undiscovered if ZRP is used. We propose
extensions to ZRP to support its deployment when
unidirectional links are present. In particular, we propose a
query enhancement mechanism that recursively builds partial
routes to a destination. Simulation results show that even at a
high mobility of 20m/s, the queries resulting due to the
enhancement mechanism result in the computation of valid
routes more than 80% of the time. These results are valid even
when a large number (40% of nodes have half the transmission
range as that of the remaining nodes) of unidirectional links are
present in the network.

1. Introduction

Mobile ad-hoc networks have received a lot of attention in the
recent years [1]. They usually find applications in military
deployment, rescue operations, law enforcement operations or in the
deployment of sensors. Ad-hoc networks consist of mobile nodes
that communicate with each other. The mobility of the nodes makes
the topology of the network time-variant. The rate of change of the
network topology depends upon the velocity of the nodes.
Furthermore, the wireless network is characterized by low
bandwidth links that are subject to harsh conditions of fading and
interference. Thus, routing in such a network is difficult and
challenging. A plethora of routing protocols have been proposed for
wireless ad-hoc networks [2]. These protocols may be mainly
classified as either proactive or reactive. When proactive routing
protocols are employed a node would possess routing information to
a destination before it would actually need to route data to that

destination. For this purpose routing tables are maintained. Route
updates are exchanged periodically to reflect the changes in
topological information. Popular proactive routing protocols for ad-
hoc networks include the Destination Sequenced Distance Vector
(DSDV) Protocol [3], the Wireless Routing Protocol [4], and the
Source Tree Adaptive Routing (STAR) Protocol [5]. If on the other
hand, reactive routing is used, a node would attempt to compute a
route to a given destination when it needs to route data to that
destination, i.e., on-demand. Numerous on-demand routing
protocols have been proposed. Some of the on-demand routing
protocols are the Adaptive On-Demand Distance Vector (AODV)
protocol [6], the Dynamic Source Routing (DSR) Protocol [7] and
the Temporally Ordered Routing Algorithm (TORA) [8].

The proactive routing protocols usually require the maintenance
of routing tables and thus, in the dynamically changing mobile ad-
hoc network, nodes would need to exchange routing updates
periodically. This exchange of route updates would consume
bandwidth and if the network is large, these control messages could
contribute to a significant amount of overhead. On the other hand if
on-demand routing protocols are used, when data is to be routed to a
destination, a source node might be required to initiate a search for
the destination. If the network is large, significant latency may be
incurred before the destination is found. Thus, the scalability of both
the table-driven and the on-demand routing protocols is limited.
The Zone Routing Protocol (ZRP) provides a hybrid
proactive/reactive routing framework in an attempt to achieve
scalability [10]. Each node would maintain routing tables which
would only offer routes to a destination if the destination were to be
within a certain maximum hop-count (which is called the zone
radius) from the source node. If the destination were to be outside
the zone radius, the source node would invoke an on-demand search
mechanism called bordercasting [11]. Bordercasting provides an
efficient means for searching for a destination by sequentially using
the routing tables of the intermediate relay nodes. Efficient
mechanisms by which one can control the query threads while
bordercasting have been described in [12]. Finally, a node can
compute an optimal zone radius adaptively as described in [13].

The routing protocols mentioned in the previous paragraph
assume that the links in the network are bi-directional in nature.
However, a wireless ad-hoc network could potentially consist of
heterogeneous nodes with differing power capabilities. The
transmission range of one node might be different from that of
another. Thus, a node (say node A) whose transmission range is
larger than that of another node (say node B) will be able to transmit
information to node B, but will be unable to receive the

transmissions of node B (Figure 1). This would result in the creation
of unidirectional links in the network.

Range of

Node A

Range of

Node B

Node B can hear Node A’s
transmissions but not vice versa!

A
B

Figure 1: Heterogeneous Nodes with Different Transmission Ranges

cause Unidirectional Links.

Routing protocols for ad-hoc networks with unidirectional links

have been studied to a limited extent [14], [15]. They identify the
fact that a reverse path is required from node B to node A (in Figure
1) in order for node A to realize that it has the link to node B.
However, these papers do not address scalability issues. In [14] the
authors specify a maximum hop count for the reverse path, and if
the reverse path is longer than this hop-count, then, information with
regards to the presence of the unidirectional link is not known to the
node at the head of the link (in our example node A). On the other
hand, an on-demand flooding would ultimately result in the data
being delivered to the destination if a path was to exist, but then,
such a scheme is very inefficient.

In this paper we provide extensions to the zone routing protocol in
order to provide a scalable framework for routing when
unidirectional links are present. When the reverse path from the
node at the tail of a unidirectional link to the node at the head of the
link is long, we resort to an on-demand search mechanism. The on-
demand search mechanism recursively attempts to build a path to
the destination by recognizing nodes that have a route to the
destination. We defer the discussion of the mechanism to a
subsequent section.

The paper is organized into six sections. The second section
provides an overview of our protocol and the components that have
been borrowed from the zone routing protocol [10]. In the third
section, we discuss the intra-zone routing component of the
protocol, which is proactive in nature. In the fourth section, we
discuss the inter-zone routing component, this component being
reactive in nature. The query control mechanisms of ZRP and their
applicability to our case are discussed in Section 5. The simulation
scenarios and the results are presented and discussed in Section 6.
The conclusions and a discussion on future work form Section 7.

2. Overview of the proposed extensions to the Zone
Routing Protocol

Our protocol consists of the Intra Zone Routing Protocol (IARP),
which is the proactive component and the Inter Zone Routing
Protocol (IERP), which is the reactive component1.

The IARP is responsible for maintaining information about some
nearby links and nodes. Every node transmits information about its
inbound neighbors2 (besides other information to be described later)
to nodes within a restricted neighborhood defined by the parameter
called the Zone Radius. This information is used by each node (say
node A) to compute its outbound tree, which is the shortest path tree
rooted at node A to nodes from which the previously mentioned
transmission restricted to Zone Radius hops has been heard. The
nodes reachable by the computed outbound tree, define the node’s
zone and hence, unlike the usual notion of clusters, zones overlap
heavily.

The IERP is the component that enables route computation when
the outbound tree maintained by the IARP of a node does not have a
path to the destination. Bordercasting, which refers to sending the
route query by using a tree (bordercast tree) to a set of nodes (the
border nodes), preferably towards the periphery of the zone, is an
important sub-component of IERP [10]. The border nodes are nodes
that are known to have links to other nodes that the current node
cannot reach by means of its outbound tree. The computation of the
bordercast tree (to be described later) is complicated by the possible
existence of unidirectional links. The border nodes upon receiving a
bordercast message, repeat the same algorithm (as executed at the
source), which involves checking if a path to the destination exists
within the node’s local routing table and bordercasting again if a
path to the destination is not known locally. The intermediate nodes
that initiate a bordercast, include their unique identifiers in the route
query packet before forwarding it. Once the query reaches a node
that knows a path to the destination, it includes its identifier in the
response packet, and sends the response to the originator of the
query. The list of nodes that stamped the packet while it traversed its
forward path is used for identifying the reverse path via which a
response is sent to the source of the query. Note that this list only
consists of the border nodes of some intermediate zones and the
computation of the bordercast tree would guarantee that each of
these border nodes has a path to the next as well as previous border
nodes3.

Bordercasting usually results in an increase the number of query
threads. Without implementing mechanisms for controlling these
query threads, deploying the protocol could result in flooding the
network with query messages. This is highly inefficient in terms of
the number of messages. Some query control mechanisms have
been adopted from the original ZRP proposal [12] and have been
modified to function in the presence of unidirectional links.

The query enhancement mechanism, which is a part of the IERP
algorithm, is useful for computing route that consists of
unidirectional links with inclusive cycles larger than the zone size. In
the event that a route to the destination is not discovered, this
mechanism computes a set of alternative destinations that are known
to have paths to the desired destination. The original sender then
queries for this set of “alternative destinations”, by initiating a fresh
query. Repeating the same mechanism can further enhance this
enhanced query. But for practical implementations, the maximum

1 This is identical to the concept proposed for ZRP in [10,11].
2 Nodes with inbound links to that node.
3 Details with regards to the computation of the bordercast tree will be explained later.

number of times that a query may be enhanced may be limited to
some predetermined value.

An important point to note is that our protocol treats a bi-
directional link as consisting of two separate unidirectional links and
in the rest of the document, a ‘link’ denotes a unidirectional link.
The rest of this document consists of a description of the IARP
component, the IERP component and the various Query Control
Mechanisms used for improving the performance of our protocol.
The novel query enhancement mechanism is described as part of the
IERP.

3. IntrA Zone Routing Protocol (IARP): The
Proactive Component

The goal of the IARP algorithm is to maintain an outbound tree to

some nearby nodes. In case of networks with only bi-directional
links, ZRP defines the zone as consisting of nodes which are within
ZONE_RADIUS hops. In our protocol, zone membership of a node
is not determined by the number of hops to the node, but rather by
the number of hops from the node. Thus, for a node (say j) to be in
the zone of a node (say i), node i must be reachable from node j in
ZONE_RADIUS hops or less.

For computing the outbound tree, every node uses the units
obtained from some nearby nodes. Every node (say node x)
formulates a unit that consists of the following information:

a) IN (Inbound Neighbors): The set of neighbors which have a
link to the node x.

b) ON (Outbound Neighbors): The set of neighbors to which
node x has a link.

c) OT (Outbound Tree Nodes): The nodes on the outbound tree
of node x (computed from the units obtained from other nodes).

d) SN (Sequence Number)

e) UF (Urgent Flag): If this flag is set, then the unit is to be
forwarded as soon as possible. This is typically used when the unit is
generated after the deletion of a link since mis-information about
presence of a link should be removed from other nodes’ routing
tables as soon as possible, in order to avoid wrong route
computations.

f) TTL (Time to Live): Number of hops up to which the unit can
be further forwarded. The TTL is initialized to the ZONE_RADIUS
and is decremented as the unit traverses a path.

At startup, IN, ON, and OT are each initialized to “empty”. A
sequence number is assigned to the SN field and the UF is not set.
The information in the IN field of a unit is used for computing the
outbound tree. The sequence number, SN is used to identify the
most up to date unit when more than one are received. The fields
(ON and OT) are used for computing the bordercast tree and for the
query control mechanisms used in the IERP protocol. The fields IN
and ON have a space complexity bounded by the maximum degree
of a node, i.e., the size of the IN field is O(D), where D is the
maximum degree of a node. The field OT has a space complexity of
the maximum number of nodes in a zone, i.e., the size of the OT
field is O(N), where Nz is the maximum number of nodes in a zone.
Hence, the IARP message size depends on the maximum degree of
a node and the maximum number of nodes in a zone, which in turn
depends on the ZONE_RADIUS. But the important thing to note is

that the size of the unit is independent of the network size, and hence
is key to the scalability of our protocol.

Periodically (with period BEACON_INTERVAL), the unit is
formulated and a new sequence number is assigned. A packet which
includes the node’s unit and units from other nodes for which the
TTL has not become zero, is then locally broadcast. Other nodes use
sequence numbers to keep track of the latest unit initiated by a node.
Each unit has a purge time (determined by the parameter
UNIT_PURGE_TIME_INTERVAL) associated with it. If a link
goes down, then the node, on which the link was incident, creates a
new unit and sets the urgent flag for this unit. The urgent units are
forwarded in a separate packet immediately rather than waiting for
the next beacon to be generated.

Using the information in the IN field of each received unit, the
outbound tree is computed periodically. For computing the
outbound tree, the link information from the IN fields of all received
and stored live units (which have not expired) are used to construct a
graph which represents a partial network. As an example, let node x
be in the process of computing the outbound tree, and let node x
have a unit that originated at node i. If this unit includes nodes j, k
and l in the IN field, then links j->i, k->i and l->i are added to the
graph being constructed. A shortest path algorithm (such as
Dijkstra’s algorithm [16]) is then used to compute the shortest path
tree from node x to other nodes. Thus the IARP protocol supports
the maintenance of an outbound tree from every node.

3.1. Routing of Data Packets within a Zone

Any routing protocol may be used for routing within a zone. A
shortest path tree may be computed from node x to other nodes
within its zone. However, it is to be noted that the entire route might
have to be included in the packet. This is required since, for some
unidirectional links present along the path to the destination, the
presence of the link might not be known to the node at the head of
the unidirectional link. Thus, the head node might not even be aware
of the existence of the tail node of the unidirectional link and if only
the address of the next border node is provided, the node might not
be able to forward the packet appropriately. Providing a source
route will enable the node to not only forward packets correctly but
also to cache the information with regards to the unidirectional and
use it for subsequent routing requests. The details of the
methodology for caching information with regards to the
unidirectional link are beyond the scope of this work.

Note that the outbound tree information might also be cached or
propagated to enable more efficient routing, but this would result in
excessive overhead.

4. IntEr Zone Routing Protocol (IERP): The
Reactive Component

The purpose of the IERP algorithm is to compute routes when the
outbound tree computed by the IARP algorithm does not have a
route to the destination. IERP mainly relies on a mechanism called
bordercasting, which stands for forwarding the route request to a
subset of nodes (border nodes) using a tree, called the bordercast
tree.

When the routing layer receives a route request, the outbound tree is
first inspected to look for a route to the desired destination. If this
lookup fails, the route request is forwarded by the node to its border

nodes (the methodology for choosing border nodes is described in a
subsequent subsection) by using its bordercast tree. If a border node
knows a path to the destination, then the particular border node
responds to the query; otherwise bordercasting is repeated at the
border node. Every border node which receives the query and does
not know a path to the destination, checks its inbound tree4 to see if
it knows of alternate nodes which have a path to the desired
destination. If such nodes exist, the border node then sends a query
enhancement message to the sender informing it of these alternate
destinations which might be queried for, in order to reach the desired
destination. If the source of the query does not receive a route
response message within a preset time interval
(ENHACEMENT_INTERVAL), it then checks for any received
query enhancement messages. If at least one query enhancement
message has been received then the alternate destination(s) specified
in the query enhancement message(s) are specified in a newly
created enhanced query message. This enhanced query is then
processed like a new query. However, the number of times that a
query can be enhanced is usually limited to a preset number, since
multiple queries for the same destination might lead large latencies
in route computation.

Note that the above mechanism assumes small inclusive cycles. To
enhance the performance of our protocol for large inclusive cycles,
we use a heuristic approach outlined below. If the source does not
receive a response to a query (either a query response message or a
query enhancement message) within a preset time-out referred to as
the ENHANCEMENT_INTERVAL, it issues a fresh query to
enquire about nodes that know of partial paths to the destination.
Thus the source learns of alternate destinations for which it can issue
a fresh query. Since the bordercast nodes have already been
enquired, the heuristic uses a tree different from the bordercast tree
to possibly reach a different subset of border nodes. Furthermore,
when the bordercast tree is empty5 such an enhancement request
needs to be sent out. For this purpose, a two-way tree (to be
described in a subsequent subsection) is used (let us refer to it as the
two way tree bordercast or the TWT bordercast) to initiate a
modified bordercast. The two-way tree is a shortest path tree such
that all nodes in the tree are two-way nodes. Two-way nodes are
those nodes in a querying node’s outbound tree that can reach the
querying node by using their own outbound trees. The advantage of
using such a tree is that all nodes on this tree are known to have a
reverse route to the current node, unlike in a bordercast tree in which
only the border nodes are required to be two-way nodes. This two-
way feature is used when responding to a route query. It is to be
noted that the leaves of the two-way tree may be different from the
leaves of the bordercast tree described in the previous paragraph.
These concepts will be elucidated in the forthcoming subsections.

Following is a list of the different kinds of IERP messages deployed:

4 A tree rooted at the destination being queried for, with branches pointing towards the
root (destination) computed based on the known partial topology of the network.
5 Due to the presence of unidirectional links it is possible for the bordercast tree to be
empty (unlike in ZRP). This is illustrated in Section 4.2.

1. Route Query Request (RQRQ): It is targeted for one
destination and is generated by the source of the query. This
message is bordercast using the bordercast tree.
2. Query Enhancement Request (QERQ): A message
explicitly requesting other nodes to respond if they know of alternate
nodes that have paths to the original destination, so that these nodes
can then be queried for as alternate destinations. This message is
bordercast using the two-way tree (TWT bordercast) when either the
bordercast tree is empty or when it has failed to reach nodes that
know of alternate destinations.
3. Enhanced Route Request (ERRQ): This message is
similar to the Route Query Request except for the fact that it cannot
be enhanced any further if it has already been enhanced
MAX_NUMOF_ENHANCEMENTS times, the upper limit on the
number of times that a query can be enhanced. Thus, a counter is
incremented each time an ERRQ is transmitted to keep track of the
number of times it has been enhanced.
4. Query Response (QR): QR is generated as a response to a
RQRQ or QERQ, when a border node knows a path to the
destination by means of its outbound tree. This response is sent back
using the reverse path formulated by the recorded traversed path in
the query. The path recorded consists of only the border-nodes
processing the query, and by virtue of the fact that the border nodes
(in the bordercast tree) are two-way nodes, the reversed sequence of
border nodes can be followed on the reverse path. The non-border
nodes visited in the reverse path could be different from the ones
traversed on the forward path.
5. Query Enhancement Response (QER): This message
could be generated for an RQRQ, QERQ or an ERRQ. For an
ERRQ, a QER can be sent back to the original source only if the
query can be enhanced at least once more (based on the
MAX_NUMOF_ENHANCEMENTS). It is generated if the border
node does not have a path to any of the queried destinations but it
knows of at least one node with a path to at least one of the queried
destinations by means of its inbound tree. The set of nodes which
are known to have a path to the subset (or complete set) of queried
destinations are then reported back to the source node, which then
adds these nodes to the set of alternate destinations to form a
modified ERRQ, if this query does not result in the discovery of a
path to any of the former destinations.

As described above, the bordercast tree and the two-way tree are
very crucial to the functioning of the IERP. Some mechanisms that
are a part of the IERP, especially the query control mechanisms are
based on the assumption that the packets are transmitted reliably and
are not dropped by a lower layer (e.g, MAC layer dropping packets
due to failure in accessing the channel). The following sub-sections
describe these two trees in detail, and the section concludes with a
detailed description of the IERP.

4.1 Bordercast Tree

The bordercast tree is a tree used for sending a bordercast message
to a set of nodes. When the destination is not reachable by using the
outbound tree computed by IARP, this tree is used for forwarding
the route query. As the bordercast tree, preferably, is a shortest path

tree, it is a sub-graph of the outbound tree. Here are some other
properties that the bordercast tree needs to satisfy:

1. When a route has been discovered from a source node to a
destination node, unlike in the case of bi-directional networks, it is
possible that the query response may not be able to retrace the path
traversed by the query in the reverse direction, as some of the links
in the forward path may be unidirectional. It appears that another
query for discovering a path from the destination to the source might
be required. However, if each border node has the preceding
querying border node (let us denote each border node involved in
the query as a center node) in their outbound trees then the same
center nodes can be used to tunnel the query response back to the
source. A node in the outbound tree that has a path to the root node
of the tree, is defined as a two-way node. The set of two-way nodes
is determined using the list of nodes in the outbound tree (OT); note
that the list is a field in the unit. Hence, it is essential that each border
node be a two-way node.
2. The border nodes are supposed to lead to destinations that
are being searched for. Hence, they must have links incident to
nodes outside the bordercast tree. The list of outbound neighbors
(ON; also a field in the units), is used to identify the nodes from
which such links are incident. Such nodes are candidates for being
chosen as border nodes.
3. The inner nodes of the bordercast tree should not be
candidates for border nodes. Note that, the inner nodes of the
bordercast tree do not have links incident to nodes that are not a part
of the outbound tree of the querying node.

Based on the above criteria, the following algorithm is used for
constructing the bordercast tree:

1. Identify the two-way nodes in the outbound tree. The
nodes that are one hop away on the outbound tree, are always two-
way nodes. This is based on the following argument:

Let node B be a node at a distance of one hop from node A in the
outbound tree of node A. As node A is using the link from node A
to node B, node A must have node B’s unit, implying that the path
from node B to node A must be less than the ZONE_RADIUS. The
link from node A to node B and the reverse path from node B to
node A together form a cycle of length at most ZONE_RADIUS+1.
Hence node B would also know of a path to node A from its IARP.

2. Mark nodes (may or may not be two-way nodes) in the
outbound tree that have outbound neighbors not belonging to the
outbound tree, as candidates for being border nodes.
3. Unmark a marked node if there is another marked node on
the path from that node to the root of the outbound tree (which is in
fact the node initiating the bordercast). Since the leaves of the
bordercast tree are going to be the final border nodes, two nodes
along the same path on the tree, from the root, cannot be border
nodes. If the candidate node closer to the root (say A) is not selected
as a border node in the final bordercast tree, then some of the nodes
that A can reach, and which are outside the outbound tree might not
be reachable at all by the route query.

4. Initialize the bordercast tree to the smallest rooted sub-tree
of the outbound tree, which has the border nodes (marked as in
Steps 2 and 3) as its leaves.
5. If there is a border node which is not a two-way node then
delete the sub-tree rooted at its parent from the bordercast tree.
6. Repeat 5 until all such nodes are pruned.

Thus, this algorithm computes a bordercast tree such that the border
nodes are two-way nodes.

Figure 2 illustrates the formation of the outbound tree and the
bordercast tree by means of an example. Figure 2(a) shows a
network that has only one unidirectional link. The ZONE_RADIUS
is assumed to be 3. Figure 2(b) shows the links that are known to
node A. Note that nodes that have a path of ZONE_RADIUS hops
or less have broadcast their units, which contains their inbound
neighbors. For example, the link FE is known at A because node E
has a path of ZONE_RADIUS hops to node A. But the shortest path
from F to A is 4 (more than ZONE_RADIUS) hops, and hence, the
link EF incident on F is not known at A. Figure 2(c) shows the
outbound tree at the node A, computed from the available link state
information. It is essentially the shortest path tree computed from the
link state shown in Figure 2(b). Using the outbound tree, the
bordercast tree is computed, and this tree has only one border node,
namely E, since E knows of links to nodes (namely F and G
corresponding to the links EF and EG) that do not belong to the
outbound tree. This is made known to node A by the ON field of the
unit that originated at node E.

A

B

C

D

E G

F

(a) The Network

A

B

C

D

E

F

(b) Links known at Node A

A

B

C

D

E

(b) Outbound Tree at Node A

A C

D

E

(b) Bordercast Tree at Node A

Figure 2: Example illustrating the outbound tree and the bordercast

tree. All edges are bi -directional unless drawn otherwise.

4.2 Two-Way Tree

The two-way tree is used to find alternate destinations. Alternate
destinations are nodes that are known to have routes to the desired
destination. The process of trying to compute the list of alternate
destinations is termed as query enhancement. When the bordercast
tree fails to compute a route to the destination either because the tree
is empty or because the unidirectional links prevented any route
computation or query enhancement, the two-way tree is used to

possibly reach a different set of nodes in an attempt to enhance the
query.

In the query enhancement phase, the aim is to be able to reach some
nodes that were not reached by the bordercast tree. So a tree is
needed whose leaves are two-way nodes (so that the query response
can be sent back through the same border nodes) and is different
from the bordercast tree. So, we simply define the two-way tree as
the largest sub-tree of the outbound tree that has all of its nodes as
two-way nodes.
Figure 3 illustrates the outbound tree, the two-way tree and the
enhancement mechanism with a 8 node network. Figure 3 (a) shows
the network, which has two unidirectional links. The
ZONE_RADIUS is assumed to be 3. The link state information
available at node 6 is shown in Figure 3 (b). Based on the available
link state, node 6 computes the outbound tree, which is shown in
Figure 3 (c). Since none of the non-root nodes in the outbound tree,
namely 4, 5, 7 and 8 have reported outbound links to nodes not in
the outbound tree, none of the nodes are a part of the bordercast tree.
So, the bordercast tree is empty in this case. However, all these
nodes, 4, 5, 7 and 8 have reported to node 6 that node 6 exists in
their outbound trees, using the OT field of the corresponding units.
Thus the two-way tree is same as the outbound tree for this example.

8

7 6

5

1 4

32

8

7 6

5

4

32

Source

Destination

8

7 6

5

4

(a) The Network (b) Link State at Node 6

(c) Outbound Tree at Node 6 (also the Two Way Tree at Node 6)

Figure 3: Example illustrating the outbound tree and the two-way tree.

All edges are bi -directional unless drawn otherwise.

If node 6 issues a query request with the destination node as node 1,
then first, node 6 finds that the outbound tree does not have a route
to node 1. The problem stems from the fact that the inclusive cycle
for the unidirectional link from node 8 to node 1 is too large for a
zone radius of 3, and so 8 is not aware of the link to node 1. Hence
node 6 has to initiate a bordercast. But since it has an empty
bordercast tree, it tries to enhance the query by asking other nodes if
they know of nodes having paths to the destination. The two-way
tree is then used to send the query enhancement request. When the
request reaches node 4, it computes the inbound tree to the
destination (node 1), using the link state it currently possesses. The
idea of the inbound tree to the destination is to compute shortest
paths to the destination from other nodes. Thus node 4 is able to

compute that node 8 is an alternate destination for node 1. This
inbound tree to node 1 (trivially the link 8 to 1 here) is reported back
to the source (node 6). After the ENHANCEMENT_INTERVAL,
the source issues a new query request with a list of alternate
destinations obtained from the query enhancement responses
obtained. This new request only has one alternate destination
(namely 8). Since the source has a path to the node 8 in its outbound
tree, the route computation is completed, the discovered route being
through the nodes 7 and 8 to the destination viz., node 1.

Figure 4 illustrates outbound tree and two-way tree with another
example. The ZONE_RADIUS is 3 for this example and all links
are unidirectional in the network shown in Figure 4(a). The distance
from any node, to node F is within 3 hops, hence node F has the
entire topology using which it computes the outbound tree shown in
Figure 4(b). Note that outbound tree of node F has a path to node E,
whereas the outbound tree of node E does not have a path to node F.
In fact, the outbound tree of node E will be empty as the only
outgoing link from node E is link EA, and the shortest path from A
to E is 4 hops, which is larger than the ZONE_RADIUS. Thus all
outbound tree nodes need not be two-way. In the outbound tree of
node F, only nodes A, B and C are two-way. And the largest rooted
sub-tree of the outbound tree with all nodes being two-way nodes,
i.e., the two-way tree is shown in Figure 4(c). Nodes A, B and C
learn of the paths to F as they lie on the cycle FABC, whose length 4
is within 1more than the ZONE_RADIUS. As opposed to the
previous example, this example also illustrates that the two-way tree
need not be same as the outbound tree. Note that if the outbound tree
is empty (like in the case of node E), no IARP is possible and hence
one will have to rely on an on-demand flood mechanism to discover
a destination node.

F

E B

A

CD

F

E B

A

CD

F

B

A

C

(a) The Network

(c) Two -way Tree at F

(b) Outbound Tree at F

Figure 4: Illustrating outbound and two-way trees.

4.3 The IERP algorithm

The functioning of the IERP algorithm at the source and at the
border nodes are presented as two different flow charts in Figure 4,
as the processing at the border nodes is different from that at the

source. The details of the flow chart at different states are described
below. The functionality of the states in Figure 5(a) are as follows:

State 1: A new query initiated by the node has one destination and
an enhanced query will have a set of destinations. If there is a path to
any of the destinations in the outbound tree computed by the IARP
algorithm, the path found is the desired path.

State 2: The bordercast tree could be empty (For an example refer to
Figure 3). In such a case an attempt is made to use a different tree to
do the bordercasting to possibly learn about alternate nodes that
know of one or more paths to the original destination.

State 3: The bordercast tree is stored in the query packet and is
forwarded along the same tree. The intermediate nodes of the
bordercast tree (non-border nodes) forward the query packet until it
reaches a border node. The processing at the border node is shown
in Figure 1(b). After sending the bordercast, there is a pause for
ENHANCEMENT_INTERVAL, during which the source waits
either for a query response or enhancement messages.

State 4: If a response to the route query is received in the interim,
then the query processing is termed complete and the computed
route is returned to the higher layer.

State 5: Since a query response is not received, the source node
checks for the reception of an enhancement message, the
ENHANCEMENT_INTERVAL having passed since the initiation
of the bordercast. If there were one or more query enhancement
messages received in that interval, then the alternate destination(s)
suggested in the query enhancement message(s) are queried for as
they are supposed to have routes to the original destination.

State 6: A set of alternate destinations is formed from the query
enhancement messages and is inserted into a new modified query,
which is processed like the original query. For practical
implementations, the number of times that a query can be enhanced
should be limited to reduce the amount of query traffic and the
latency in finding routes, as every enhancement and repeated query
for the same original destination increases the route discovery
latency. For simplicity of presentation, the flow chart does not limit
the number of times that the query can be enhanced.

State 7: Since the bordercasting did not result in any enhancement of
the query, the bordercast tree is incapable of reaching nodes that can
enhance the query (assuming no message losses). This state is also
reached from the State 2, when the bordercast tree is empty. A
different tree, namely the two-way tree, is then used for sending a
request to enhance the query. The source and the border nodes
forward this Query Enhancement Request (QERQ) just like they
would forward a regular query, except that the two-way tree is used
for bordercasting, instead of the bordercast tree. The key idea here is
to try and discover nodes, which know of paths to the destination.

State 8: After waiting for ENHANCEMENT_INTERVAL, the
source node checks to see if there were any responses to the request.

Once again, as in State 5, if there were one or more query
enhancement responses (QERs) received in that interval, the
alternate destination(s) suggested in the QERs can be queried for as
they are supposed to have routes to the desired destination. If no
such enhancement message was received then the destination is
assumed to be unreachable.

New query (1 destination)

Enhanced Query (>=1 destination)

Yes

Yes

Yes

Yes

Yes

No

No

No

No

No

Done

Done

Wait for
ENHANCEMENT_INTERVAL

Wait for
ENHANCEMENT_INTERVAL

Path to any of
the destination(s)?

1

Bordercast tree
is empty?

2

Send Bordercast
3

Route found?
4

Query Enhanced?
5

Query Enhanced?
8

Create Enhanced Query with
new set of destinations

6

Send Query Enhancement
Request using two-way
tree as bordercast tree 7

Done

(a) The IERP at the route query source

Path known to any of
the destinations?

4

Bordercast Query
8

No

No

Done

Yes

Done

Done

Incoming Query

Apply Query Control
Mechanisms

1

Query needs to
be dropped?

2

Path known from other
nodes to the destination(s)?

6

Inform alternativedests .
to sender 7

Inform route to sender
5

Drop Query
3

No

Yes

Yes

(b) The IERP at an intermediate border node
Figure 5: Flow Charts showing the functioning of the IERP at the source

and at an intermediate border node.

The various states of Figure 5(b) are explained below. This flow
chart shows the manner in which a query is processed at a border
node.

State 1: Apply the Query Control Mechanisms, namely Query
Detection (QD) and Early Termination (ET). These mechanisms are
described later in the paper. This essentially involves extracting the
query identifier and matching it with the recently cached query
identifiers seen by the node. If the query identifier has been seen
before, then the query can be dropped.

State 2: The node checks to identify if the query is to be dropped or
sent out as another bordercast.

State 3: The query is dropped as the Query Control Mechanisms
have identified this query thread to be unnecessary.

State 4: If a path is known to any of the destinations in the query,
then the route discovery is complete.

State 5: A response to the query is initiated which contains the
computed path (only the border nodes, also referred to as center
nodes, traversed by the route query packet are recorded). The
response is sent along a path that traverses the same center nodes.
This is possible because each center node has a path to the previous
center node. Thus, the response is forwarded from one center node
to another center node until it reaches the source node, which
initiated the query.

State 6: Inbound trees are computed for each of the destinations
being queried. The links discovered by the IARP are used to
compute these trees. If any such trees exist and can be computed,
then the nodes (besides the destinations) in these inbound trees
would denote the alternate destinations. These trees are computed
using a mechanism similar to the one used for computing the
outbound trees. The IN field of the live units available at the node
are used to construct a graph. Then for each destination the shortest
path algorithm is executed on the graph by considering each
destination as a sink node. Any shortest path algorithm (such as the
Dijkstra’s algorithm) can be used to compute these inbound trees.

State 7: The inbound trees computed in State 3 are sent back to the
sender using the same mechanism as in Step 2 above.

State 8: The node ID is stamped on the query packet and it is then
sent out using the bordercast mechanism. If the query is Route
Query Request (RQRQ) or Enhanced Query Request (EQRQ) then
the bordercast tree is used for bordercasting. If instead, the request is
a Query Enhancement Request (QERQ), the two-way tree is used
for bordercasting.

5. Query Control Mechanisms

In the IERP algorithm, each bordercast usually results in increasing
the number of query threads (unless there is only one border node).
As a result of this, typically with every bordercast, the number of
query threads keeps increasing. These query threads may result in
the degeneration of the zone routing protocol to flooding. The Query
Control Mechanisms are used to stop unnecessary route query
threads, which are probing previously queried zones. These
mechanisms were originally proposed for bi-directional networks
for ZRP and have been modified to function with unidirectional
networks in this work. This part of the work requires further
investigation, but has provided encouraging experimental results.

Query Detection (QD): The goal of the QD mechanism is to
identify nodes that do not need to initiate bordercast. Trivially, the

nodes which have already initiated bordercast (e.g., the source node)
or have been border nodes in some bordercast of the same query,
need not perform subsequent bordercasts for the same query if there
are no enhancements. To identify a query, the query identifier,
which is a pair consisting of the source address and a unique query
number assigned by the source, is used. Each border node keeps
track of query identifiers seen in the recent past (based on the largest
time taken by a query to transit from one node to another). After a
border node receives a query, if the query identifier matches an
identifier stored in the cache, then the node simply drops the query.

Furthermore, if a node (say node x) has already been a non-border
relay node for some query, it does not need to initiate a bordercast or
be a border node for a subsequent query thread with the same query
identifier. When an earlier query passed through node x, node x
would have been selected as a border node if it were a candidate for
being a border node. Hence, each non-border node also keeps track
of query identifiers seen in the recent past. Thus QD helps in
limiting the number of bordercasts that can take place, to the number
of nodes in the network.

Early Termination (ET): Although QD provides an upper bound
on the number of bordercasts for a single query, it does not prevent
previously traversed nodes (central and non-central) from being a
non-central node in the future.

C D

A

EB

C D

A

EB

(a) The First
Network

(b) The Second
Network

Figure 6: In (a) Node A has the link from Node B to Node C in its
outbound tree and Node B also knows of the existence of that link. In (b)
Node A has the link from Node B to Node C, but Node B does not know
of its existence. We assume that in our networks, the case (b) does not

occur.

ET states that if a query has visited a node (as a border node or
otherwise), then it need not transport a thread for the same query to
any other border node. For this we assume that if node A’s
outbound tree has a link from node B to node C, then node B also
knows of the link from node B to node C. This condition might not
hold in some cases. It appears that if the network has a large
percentage of unidirectional links, then this condition might not
hold. Figure 6 illustrates it with an example. The ZONE_RADIUS
is assumed to be three. In both the networks, Figure 6 (a) and 6 (b),
node A learns about the link from node B to node C. But in Figure 6
(a), node B knows of the link (node B to node C), because it is bi-
directional, whereas in Figure 6 (b), B does not learn of the link
because the path from node C to node B is more than 3
(ZONE_RADIUS) hops.

With this assumption, let us consider the following two cases for
node B:

• Node B has been a border node for a particular query.
Subsequently, a bordercast message for the same query
from node D is to use node B as a non-border node with
node C as a node following B in the bordercast tree. Then
by the assumption, node B knows about the existence of
the link to node C and hence, node B would have already
considered that link, when it received the bordercast
message in its role as a border node. So, the bordercast
message from node D can be dropped at node B.

• Node B has been a non-border node (say in an earlier

bordercast from a different node, say node M) and now a
bordercast for the same query from node D is to use node
B as a non-border node with node C as a node following
node B in node D’s bordercast tree. Then by the
assumption, node B knows about the existence of the link
to node C and hence, the existence of the link BC must
have been propagated to node M and this information
must have been taken into account by node M when this
node M constructed its bordercast tree. So, the bordercast
message from node D can be dropped at node B.

The above two cases do not consider the latency incurred while
updating link information and possible discrepancy of information
between different nodes about the existence/non-existence of links.

Hence QD and ET together imply that a node need not process a
query thread if the node has been seen that query before. So, for
implementing QD and ET, the query identifier is cached at every
node processing the query, and is kept for a short preset time
interval. If any other query thread with the same identifiers is
received in that interval, then it is dropped without further
processing. Thus, the number of messages propagated for a single
query is upper-bounded by the number of links in the network,
which is same as the number of messages required for flooding the
network. It is to be noted that this upper bound is applicable for a
Route Query Request (RQRQ), or a Route Enhancement Request
(RERQ), or a Enhanced Route Request (ERRQ). As shown in
Figure 3 (a), a route request may result in the source first sending out
a RQRQ, then sending out a RERQ upon receiving no response and
then sending out an enhanced query (ERRQ) if it gets a response to
the enhancement request (QER). Assuming that
MAX_NUMOF_ENHANCEMENTS is set to one, these three
messages, namely RQRQ, ERRQ and ERRQ together achieve a
message complexity of thrice the number of links in the network..

6. Simulation Results

We implemented the Zone Routing Protocol with our extensions
using the ns-2 simulator. The extension, which uses the two-way
tree for soliciting alternate destinations, has not been studied using
our simulator. The results presented here are produced not having

that extension. The study reported here is based on a network of 50
nodes moving in an area of 1500ḿ1500m following the random
waypoint model. In this model every node picks random position
and moves towards it with a speed uniformly chosen between 0 and
a maximum speed (we have varied it between 0 and 30m/s). Once it
reaches that position, it pauses for some amount of time and then
chooses another location and the process is repeated. For our
simulations, we used a pause time of 0 to simulate continuous
mobility. To simulate unidirectional links, we used two different
transmission ranges. Some nodes had a transmission range of 250m
and others had a range of 125m. All the data points reported are
based on simulating the network for 2 hours of real time. Since the
network can get partitioned, the route queries used to test the
protocol were generated in such a way that a query was generated
only when the underlying network had a route to that particular
destination. Queries were generated at the rate of 1 query/s, by
picking random source and destination nodes that had a path
between them in the underlying network at that time. We studied the
performance with a varying percentage of nodes having lower
transmission ranges, which in turn varies the number of
unidirectional links in the underlying network. We tested the
performance with 10%, 20% or 40% of the nodes having lower
transmission ranges. We present four kinds of results in this section
and discuss them in the following paragraphs.

Figure 7(a) shows the percentage of queries that were resolved.
Queries could be resolved if the IARP or IERP succeeds, or if the
query is enhanced by some node that reports that there exist alternate
destinations having paths to the original destination, resulting in a
new query with an alternate set of destinations. The enhanced query
however is not enhanced further, to avoid large querying latencies.
We see that the initial query and the enhanced queries together are
capable of resolving more than 90% of the queries even at high
mobility, independent of the number of unidirectional links.

(a) % of queries resolved (b) % of queries resolved
correctly

Figure 7: Study of Queries Resolved.

Figure 7 (b) shows the number of computed routes that physically
exist after the route computation is over. We see that the accuracy of

the computed routes decreases as the mobility increases; this is
because the link-state information gets stale faster as the nodes move
faster. Also, for a higher percentage of lower transmission range
nodes, the computed route would typically consist of more number
of hops and hence, has a higher chance of being invalid at the end of
route computation. But even at 20m/s in scenarios wherein 40% of
the nodes have half the (125m) transmission range of the other 60%
of the nodes, the accuracy is close to 90%.

Figure 8(a) shows that without the enhancement mechanism a lot of
queries (up to 40%) would remain unresolved. For mobility from 20
to 30m/s, close to 40% of the queries are resolved on account of the
enhancement mechanism. When mobility is introduced we see a
sudden increase in the number of enhanced queries. In such cases,
the topology changes are not learnt quickly resulting in the failure of
IARP/IERP mechanisms for a fresh query. However, the
enhancement mechanisms are able to help and suggest alternate
destinations which could instead be queried for. This significant
contribution from the enhancement mechanism is able to keep the
total number of queries resolved (Figure 7 (a)) above 90%, even at
high mobility.

(a) % of queries resolved by
enhancement

(b) % of correct resolutions

Figure 8: Study of queries resolved by vi rtue of the enhancement
mechanism.

Figure 8 (b) reports the accuracy of the routes computed due to
enhancement. For the same reasons as reported for Figure 7 (b),
Figure 8(b) shows that the accuracy goes down with increase in
mobility and percentage of nodes with low transmission ranges. But
even at 20m/s for 40% of nodes with low transmission range, the
accuracy is above 80%.

7. Conclusions

This work extends the Zone Routing Protocol for functioning in
networks with unidirectional links. The most common reason for the
presence of unidirectional links is the difference in transmission
capabilities of the mobile nodes. The intra zone and inter zone
routing protocols have been modified to work for unidirectional
links. For unidirectional links with large (larger than
ZONE_RADIUS) inclusive cycles, a mechanism for recursive

enhancement of the query has been proposed. The nodes that do not
know of the destination but know of alternate nodes that have paths
to the destination are reported back to the source. If the query is
unresolved the source then issues an enhanced query that computes
route for one of the alternate destinations. A heuristic has also been
proposed to solicit enhancement messages from nodes when all the
previous mechanisms fail to compute routes due to unidirectional
links with large inclusive cycles. The protocol has been
implemented and studied using the ns-2 simulator. The results show
that even in the presence of a large number of unidirectional links
and high mobility of 20m/s, about 90% queries are resolved with a
very high accuracy (correctness of route) of 90%. The proposed
enhancement mechanism by itself is responsible for route
computation in 40% of the cases and the routes computed due to this
enhancement are valid 80% of the time, in scenarios with mobility
of 20m/s and 40% of nodes having low transmission ranges. Thus,
we have proposed and studied the performance of an extended Zone
Routing Protocol for functioning in networks with unidirectional
links.

REFERENCES

[1] http://www.ietf.org/html.charters/manet-charter.html

[2] E. Royer and C-K.Toh, “A Review of Current Routing

Protocols for Ad Hoc Mobile Wireless Networks”, IEEE
Personal Communications Magazine, April 1999.

[3] C. E. Perkins and P. Bhagwat, “Highly Dynamic Destination

Sequenced Distance Vector Routing (DSDV) for Mobile
Computers”, In Proc. of ACM SIGCOMM, pages 234-244,
London, England, Aug. 1994.

[4] S. Murthy and J.J. Garcia-Luna-Aceves, "An Efficient Routing

Protocol for Wireless Networks", ACM Mobile Networks and
Applications Journal, Special issue on Routing in Mobile
Communication Networks, 1996.

[5] J.J.Garcia-Luna-Aceves and M. Spohn, “Source-Tree Routing in

Wireless Networks”, In Proc. IEEE ICNP 99, 7th Intl. Conf.
On Network Protocols, Toronto, Canada, Oct 1999.

[6] C. E. Perkins, E. M. Royer, and Samir Das, “Ad Hoc On

Demand Distance Vector (AODV) Routing’’, Internet Draft
draft-ietf-manet-aodv-04.txt, Oct. 1999.

[7] J. Broch, D. B. Johnson, and D. A. Maltz, “The Dynamic

Source Routing Protocol for Movile Ad Hoc Networks’’,
Internet Draft draft-ietf-manet-dsr-03.txt, Oct. 1999.

[9] V. Park and S. Corson, “Temporally-Ordered Routing

Algorithm (TORA) Version I Functional Specification”,
Internet Drafft draft-ietf-manet-tora-spec-01.txt, Aug 1998.

[10] Z. J. Haas and M. R. Pearlman, "The Zone Routing Protocol

(ZRP) for Ad Hoc Networks", Internet Draft draft-zone-
routing-protocol-01.txt, Aug, 1998.

[11] Z. J. Haas, “The Routing Algorithm for the Reconfigurable

Wireless Networks”, ICUPC’97, San Diego, CA, Oct 1997

[12] Z. J.Haas and M. R. Pearlman, "The Performance of Query

Control Schemes for the Zone Routing Protocol”, Proc. of
ACM SIGCOMM '98, Vancouver, British Columbia, Sept.
1998.

[13] M. R. Pearlman and Z. J. Haas, “Determining the Optimal

Configuration for the Zone Routing Protocol”, IEEE JSAC,
special issue on Ad-Hoc Networks, vol. 17, no. 8, Aug. 1999.

[14] L. Bao and J. J. Garcia-Luna-Aceves, “Link State Routing in

Networks with Unidirectional Links”, In Proceedings of IEEE
IC3N, Boston, Massachusetts, Oct. 1999.

[15] C. A. Pomalaza-Raez, “A Distributed Routing Algorithm for

Multihop Packet Radio Networks with Uni- and Bi-Directional
Links, IEEE Transactions on Vehicular Technology, Vol 44,
No. 3, Aug. 95.

[16] T.H.Cormen et al, Introduction to Algorithms, MIT Press,

1994.

