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Abstract

Gaussian process classification is a popular
method with a number of appealing proper-
ties. We show how to scale the model within
a variational inducing point framework, out-
performing the state of the art on benchmark
datasets. Importantly, the variational formu-
lation can be exploited to allow classification
in problems with millions of data points, as
we demonstrate in experiments.

1 Introduction

Gaussian processes (GPs) provide priors over functions
that can be used for many machine learning tasks. In
the regression setting, when the likelihood is Gaussian,
inference can be performed in closed-form using linear
algebra. When the likelihood is non-Gaussian, such as
in GP classification, the posterior and marginal like-
lihood must be approximated. Kuss and Rasmussen
[2005] and Nickisch and Rasmussen [2008] provide ex-
cellent comparisons of several approximate inference
methods for GP classification. More recently, Opper
and Archambeau [2009] and Khan et al. [2012] consid-
ered algorithmic improvements to variational approx-
imations in non-conjugate GP models.

The computational cost of inference in GPs is O(N3)
in general, where N is the number of data. In the
regression setting, there has been much interest in
low-rank or sparse approaches to reduce this computa-
tional complexity: Quiñonero-Candela and Rasmussen
[2005] provides a review. Many of these approximation
schemes rely on the use of a series of inducing points,
which can be difficult to select. Titsias [2009] sug-
gests a variational approach (see section 2) which pro-
vides an objective function for optimizing these points.
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This variational idea was extended by Hensman et al.
[2013], who showed how the variational objective could
be reformulated with additional parameters to enable
stochastic optimization, which allows GPs to be fitted
to millions of data.

Despite much interest in approximate GP classifica-
tion and sparse approximations, there has been lit-
tle overlap of the two. The approximate inference
schemes which deal with the non-conjugacy of the like-
lihood generally scale with O(N3), as they require fac-
torization of the covariance matrix. Two approaches
which have addressed these issues simultaneously are
the IVM [Lawrence et al., 2003] and Generalized FITC
[Naish-Guzman and Holden, 2007] which both have
shortcomings as we shall discuss.

It is tempting to think that sparse GP classification is
simply a case of combining a low-rank approximation
to the covariance with one’s preferred non-conjugate
approximation, but as we shall show this does not nec-
essarily lead to an effective method: it can be very
difficult to place the inducing input points, and scala-
bility of the method is usually restricted by the com-
plexity of matrix-matrix multiplications.

For these reasons, there is a strong case for a non-
conjugate sparse GP scheme which provides a vari-
ational bound on the marginal likelihood, combining
the scalability of the stochastic optimization approach
with the ability to optimize the positions of the induc-
ing inputs. Furthermore, a variational approach would
allow for integration of the approximation within other
GP models such as GP regression networks [Wilson
et al., 2012], latent variable models [Lawrence, 2004]
and deep GPs [Damianou and Lawrence, 2013], as the
variational objective could be optimized as part of such
a model without fear of overfitting.

The rest of the paper is arranged as follows. In sec-
tion 2, we briefly cover some background material
and existing work. In section 3, we show how vari-
ational approximations to the covariance matrix can
be used post-hoc to provide variational bounds with
non-Gaussian likelihoods. These approaches are not
entirely satisfactory, and so in section 4 we provide a
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variational approach which does not first approximate
the covariance matrix, but delivers a variational bound
directly. In section 5 we compare our proposals with
the state of the art, as well as demonstrating empiri-
cally that our preferred method is applicable to very
large datasets through stochastic variational optimiza-
tion. Section 6 concludes.

2 Background

Gaussian Process Classification Gaussian pro-
cess priors provide rich nonparametric models of func-
tions. To perform classification with this prior, the
process is ‘squashed’ through a sigmoidal inverse-link
function, and a Bernoulli likelihood conditions the
data on the transformed function values. See Ras-
mussen and Williams [2006] for a review.

We denote the binary class observations as y =
{yn}

N
n=1, and then collect the input data into a de-

sign matrix X = {xn}
N
n=1. We evaluate the covariance

function at all pairs of input vectors to build the co-
variance matrix Knn in the usual way, and arrive at
a prior for the values of the GP function at the input
points: p(f) = N (f |0,Knn).

We denote the probit inverse link function as
φ(x) =

∫ x

−∞ N (a | 0, 1)da and the Bernoulli distribu-

tion B(yn |φ(fn)) = φ(fn)
yn(1−φ(fn))

1−yn . The joint
distribution of data and latent variables becomes

p(y, f) =
N
∏

n=1

B(yn |φ(fn)) N (f |0,Knn) . (1)

The main object of interest is the posterior over func-
tion values p(f |y), which must be approximated. We
also require an approximation to the marginal likeli-
hood p(y) in order to optimize (or marginalize) pa-
rameters of the covariance function. An assortment of
approximation schemes have been proposed (see Nick-
isch and Rasmussen [2008] for a comparison), but they
all require O(N3) computation.

Sparse Gaussian Processes for Regression The
computational complexity of any Gaussian process
method scales with O(N3) because of the need to in-
vert the covariance matrix K. To reduce the com-
putational complexity, many approximation schemes
have been proposed, though most focus on regression
tasks, see Quiñonero-Candela and Rasmussen [2005]
for a review. Here we focus on inducing point meth-
ods [Snelson and Ghahramani, 2005], where the latent
variables are augmented with additional input-output
pairs Z,u, known as ‘inducing inputs’ and ‘inducing
variables’.

The random variables u are points on the function in

exactly the same way as f , and so the joint distribution
can be written

p(f ,u) = N

([

f

u

]

∣

∣

∣
0,

[

Knn Knm

K⊤
nm Kmm

])

(2)

where Kmm is formed by evaluating the covariance
function at all pairs of inducing inputs points zm, zm′ ,
and Knm is formed by evaluating the covariance func-
tion across the data input points and inducing inputs
points similarly. Using the properties of a multivariate
normal distribution, the joint can be re-written as

p(f ,u) = p(f |u)p(u) (3)

= N (f |KnmK−1
mmu,Knn −Qnn)N (u |0, Kmm)

with Qnn = KnmK−1
mmK⊤

nm. The joint distribution
now takes the form

p(y, f ,u) = p(y | f)p(f |u)p(u) . (4)

To obtain computationally efficient inference, integra-
tion over f is approximated. To obtain the popular
FITC method (in the case of Gaussian likelihood), a
factorization is enforced: p(y |u) ≈

∏

n p(yn |u). To
get a variational approximation, the following inequal-
ity is used

log p(y |u) ≥ Ep(f |u) [log p(y | f)] , log p̃(y |u) . (5)

Substituting this bound on the conditional into the
standard expression p(y) =

∫

p(y|u)p(u)du gives a
tractable bound on the marginal likelihood for the
Gaussian case [Titsias, 2009]:

log p(y) ≥ logN (y |0,KnmK−1
mmK⊤

nm + σ2I)

−
1

2σ2
tr(Knn −Qnn) ,

(6)

where σ2 is the variance of the Gaussian likelihood
term. This bound on the marginal likelihood can then
be used as an objective function in optimizing the
covariance function parameters as well as the induc-
ing input points Z. The bound becomes tight when
the inducing points are the data points: Z = X so
Knm =Kmm =Knn and (6) becomes equal the true
marginal likelihood logN (y |0, Knn + σ2I).

Computing this bound (6) and its derivatives costs
O(NM2). A more computationally scalable bound
can be achieved by introducing additional variational
parameters [Hensman et al., 2013]. Noting that (6) im-
plies an approximate posterior p̃(u |y), we introduce
a variational distribution q(u) = N (u |m,S) to ap-
proximate this distribution, and applying a standard
variational bound, obtain:

log p(y) ≥ logN (y |KnmK−1
mmm, σ2I)

−
1

2σ2
tr(KnmK−1

mmSK−1
mmKmn) (7)

−
1

2σ2
tr(Knn −Qnn)−KL[q(u)||p(u)] .
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This bound has a unique optimum in terms of the vari-
ational parameters m,S, at which point it is tight to
the original sparse GP bound (6). The advantage of
the representation in (7) is that it can be optimized in
a stochastic [Hensman et al., 2013] or distributed [Dai
et al., 2014, Gal et al., 2015] fashion.

Of course for the Bernoulli likelihood, the required in-
tegrals for (6) and (7) are not tractable, but we will
build on them both in subsequent sections to build
sparse GP classifiers.

Related work The informative vector machine
(IVM) [Lawrence et al., 2003] is the first work to ap-
proach sparse GP classification to our knowledge. The
idea is to combine assumed density filtering with a se-
lection heuristic to pick points from the data X to act
as inducing points Z: the inducing variables u are then
a subset of the latent function variables f .

The IVM offers superior performance to support vector
machines [Lawrence et al., 2003], along with a proba-
bilistic interpretation. However we might expect bet-
ter performance by relaxing the condition that the in-
ducing points be a sub-set of the data, as is the case for
regression [Quiñonero-Candela and Rasmussen, 2005].

Subsequent work on sparse GP classification [Naish-
Guzman and Holden, 2007] removed the restriction of
selecting Z to be a subset of the dataX, and ostensibly
improved over the assumed density filtering scheme by
using expectation propagation (EP) for inference.

Naish-Guzman and Holden [2007] noted that when us-
ing the FITC approximation for a Gaussian likelihood,
the equivalent prior (see also Quiñonero-Candela and
Rasmussen [2005]) is

p(f) ≈ N (f |0, Qnn + diag(Knn −Qnn)) . (8)

The Generalized FITC method combines this approx-
imate prior with a Bernoulli likelihood and uses EP
to approximate the posterior. The form of the prior
means that the linear algebra within the EP updates is
simplified, and a round of updates costs O(NM2). EP
is nested inside an optimization loop, where the covari-
ance hyper-parameters and inducing inputs are opti-
mized against the EP approximation to the marginal
likelihood. Computing the marginal likelihood approx-
imation and gradients costs O(NM2).

The generalized FITC method works well in practise,
often finding solutions which are as good as or bet-
ter than the IVM, with fewer inducing inputs points
[Naish-Guzman and Holden, 2007].

Discussion Despite performing significantly better
than the IVM, GFITC does not satisfy our require-
ments for a scalable GP classifier. There is no clear

way to distribute computation or use stochastic op-
timization in GFITC: we find that it is limited to a
few thousand data. Further, the positions of the in-
ducing input points Z can be optimized against the
approximation to the marginal likelihood, but there is
no guarantee that this will provide a good solution:
indeed, our experiments in section 5 show that this
leads to suboptimal behaviour.

To obtain the ability to place inducing inputs as Tit-
sias [2009] and to scale as Hensman et al. [2013], we de-
sire a bound on the marginal likelihood against which
to optimize Z. In the next section, we attempt to build
such a variational approximation in the same fashion
as FITC, by first using existing variational methods
to approximate the covariance, and then using further
variational approximate methods to deal with non-
conjugacy.

3 Two stage approaches

A straightforward approach to building sparse GP
classifiers is to separate the low-rank approximation
to the covariance from the non-Gaussian likelihood.
In other words, simply treat the approximation to the
covariance matrix as the prior, and then select an ap-
proximate inference algorithm (e.g. from one of those
compared by Nickisch and Rasmussen [2008]), and
then proceed with approximate inference, exploiting
the form of the approximate covariance where possi-
ble for computation saving.

This is how the generalized FITC approximation was
derived. However, as described above we aim to con-
struct variational approximations.

It’s possible to construct a variational approach in this
mould by using the fact that the probit likelihood can
be written as a convolution of a unit Gaussian and a
step function. Without modifying our original model,
we can introduce a set of additional latent variables g
which relate to the original latent variables f through
a unit variance isotropic Gaussian, similar in spirit to
Girolami and Rogers [2006]:

p(y, f ,g) =

N
∏

n=1

B(yn|θ(gn))N (g|f , I)N (f |0,K) (9)

where θ is a step-function inverse-link.
The original model (1) is recovered by
marginalization of the additional latent vec-
tor:

∫
∏N

n=1 B(yn | θ(gn))N (g | f , I)dg =
∏N

n=1 B(yn |φ(fn)).

We can now proceed by using a variational sparse GP
bound on g, followed by a further variational approx-
imation to deal with the non-Gaussian likelihood.
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3.1 Sparse mean field approach

Encouraged by the success of a (non-sparse) factoriz-
ing approximation made by [Hensman et al., 2014], we
couple a variational bound on p(g) with a mean-field
approximation. Substituting the variational bound for
a Gaussian sparse GP (6) with our augmented model
(9) (where g in (9) replaces y in (6)), we arrive at a
bound on the joint distribution:

p(y, g) ≥
N
∏

n=1

B(yn | θ(gn))N (g |0,Qnn + I)

exp{− 1
2 tr(Knn −Qnn)} .

(10)

Assuming a factorizing distribution q(g) =
∏

n q(gn),
we obtain a lower bound on the marginal likelihood in
the usual variational way, and the optimal form of the
approximating distribution is a truncated Gaussian

q⋆(gn) = B(yn | θ(gn))N (gn | an, σ̃
2
n)/γn , (11)

where σ̃−2
n is given by the nth diagonal element of

[Qnn + I]−1, γn are the required normalizers and an
are free variational parameters. Some cancellation in
the bound leads to a tractable expression:

log p(y) ≥
N
∑

n=1

log γn − 1
2 log |Qnn + I|

− 1
2 tr([Qnn + I]−1

Eq(g)[gg
⊤])

+ 1
2

N
∑

n=1

{

log σ̃2
n +

Eq(gn)[(an − gn)
2]

σ̃2
n

}

− 1
2 tr(Knn −Qnn). (12)

All the components of this bound can be computed
in maximum O(NM2) time. The expectations under
the factorizing variational distribution (and their gra-
dients) are available in closed form.

Approximate inference can now proceed by optimizing
this bound with respect to the variational parameters
a = {an}

N
n=1, alongside the hyper-parameters of the

covariance function and the inducing points Z. Em-
pirically, we find it useful to optimize the variational
parameters on an ‘inner loop’, which costs O(NM)
per iteration. Computing the relevant gradients out-
side this loop costs O(NM2).

Predictions To make a prediction for a new latent
function value g⋆ at a test input point x⋆, we would
like to marginalize across the variational distribution:

p(g⋆ |y) ≈

∫

p(g⋆ |g)q(g)dg . (13)

Since this is in general intractable, we approximate it
by Monte Carlo. Since the approximate posterior q is

a factorized series of truncated normal distributions,
it is straight-forward to sample from. Prediction of a
single test point costs O(N).

Alternatively, we can employ a Gaussian approxima-
tion to the posterior as suggested by Nickisch and
Rasmussen [2008]. In our sparse formulation, this re-
sults in p(g |y) ≈ N (g |ΣK−1

mmKmnEq(g)[g],Σ), with
Σ = Kmm − Kmn[Qnn + I]−1Knm. Substituting in
to (13) results in a computational cost of O(M2) to
predict a single test point.

3.2 A more scalable method?

The mean-field method in section 3.1 is somewhat un-
satisfactory since the number of variational parameters
scales with N . The variational parameters are also de-
pendent on each other, and so application of stochastic
optimization or distributed computing is difficult. For
the Gaussian likelihood case, Hensman et al. [2013]
proposes a bound on log p(y) (7) which can be opti-
mized effectively with O(M2) parameters. Perhaps it
is possible to obtain a scalable algorithm by substitut-
ing this bound for p(g) as in the above?

Substituting (7) into (9) (again replacing y with g)
results in a tractable integral to obtain a bound on
the marginal likelihood [Hensman et al., 2013]:

log p(y) ≥
∏

n

B(yn |φ(k
⊤
nK

−1
mmm))

− 1
2 tr(KnmK−1

mmSK−1
mmKmn)

− 1
2 tr(Knn −Qnn)−KL[q(u)||p(u)] ,

where k⊤
n is the nth row of Knm. This bound can be

optimized in a stochastic or distributed way [Tolva-
nen, 2014], but has been found to be less effective than
might be expected (Owen Thomas, personal commu-
nication). To understand why, consider the case where
the inducing points are set to the data points Z = X,
so that u = f . The bound reduces to

log p(y) ≥
∏

n

B(yn |φ(mn))

− 1
2 tr(S)−KL[q(f)||p(f)] .

(14)

A straight-forward derivative reveals a unique opti-
mum where S−1 = K−1

nn + I, and m is the maximum
a posteriori (MAP) point. This variational approxi-
mation ‘decouples’ the latent function values f from
the non-Gaussian likelihood throught g, and we are
left with an unsatisfactory posterior variance S which
depends only on the unit-isotropic noise of g.

This approximation is reminiscent of the Laplace ap-
proximation, which also places the mean of the pos-
terior at the MAP point, and approximates the co-
variance with S−1 = K−1

nn +W, where W is the Hes-
sian of the log likelihood evaluated at the MAP point.
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The Laplace approximation is known to be relatively
ineffective for classification [Nickisch and Rasmussen,
2008], so it is no surprise that this variational approx-
imation should be ineffective. From here we abandon
this bound: the next section sees the construction of a
variational bound which is scalable and (empirically)
effective.

4 A single variational bound

Here we obtain a bound on the marginal likelihood
without introducing the additional latent variables as
above, and without making factorizing assumptions.
We first return to the bound (5) on the conditional
used to construct the variational bounds for the Gaus-
sian case:

log p(y |u) ≥ Ep(f |u) [log p(y | f)] (15)

which is in general intractable for the non-conjugate
case. We nevertheless persist, recalling the standard
variational equation

log p(y) ≥ Eq(u) [log p(y |u)]−KL [q(u)||p(u)] . (16)

Substituting (15) into (16) results in a (further) bound
on the marginal likelihood:

log p(y) ≥ Eq(u) [log p(y |u)]−KL [q(u)||p(u)]

≥ Eq(u)

[

Ep(f |u) [log p(y|f)]
]

−KL [q(u)||p(u)]

= Eq(f) [log p(y | f)]−KL [q(u)||p(u)] (17)

where we have defined: q(f) :=
∫

p(f |u)q(u)du.

Consider the case where q(u) = N (u |m,S). This
gives the following functional form for q(f):

q(f) = N (f |Am ,Knn +A(S−Kmm)A⊤) (18)

with A = KnmK−1
mm. Since in the classification case

the likelihood factors as p(y | f) =
∏N

i=1 p(yi | fi), we
only require the marginals of q(f) in order to compute
the expectations in (17). We are left with some one-
dimensional integrals of the log-likelihood, which can
be computed by e.g. Gauss-Hermite quadrature, and
the bound log p(y) ≥

N
∑

n=1

Eq(fn) [log p(yn | fn)]−KL [q(u)||p(u)] . (19)

Our algorithm then consists of maximizing the pa-
rameters of q(u) with respect to this bound on the
marginal likelihood using gradient based optimization.
To maintain positive-definiteness of S, we represent it
using a lower triangular form S = LL⊤, which allows
us to perform unconstrained optimization.

Computations and Scalability Computing the
KL divergence of the bound (19) requires O(M3) com-
putations. Since we expect the number of required in-
ducing points M to be much smaller than the number
of data N , most of the work will be in computing the
expected likelihood terms. To compute the derivatives
of these, we use the Gaussian identities made familiar
to us by Opper and Archambeau [2009]:

∂

∂µ
EN (x|µ,σ2)

[

f(x)
]

= EN (x|µ,σ2)

[ ∂

∂x
f(x)

]

∂

∂σ2
EN (x|µ,σ2)

[

f(x)
]

= 1
2EN (x|µ,σ2)

[ ∂2

∂x2
f(x)

]

.

(20)

We can make use of these by substituting f for
log p(yn | fn) and µ, σ2 for the marginals of q(f) in (19).
These derivatives also have to be computed by quadra-
ture methods, after which derivatives with respect to
m,L,Z and any covariance function parameters re-
quires the application of straight-forward algebra.

We also have the option to optimize the objective in
a distributed fashion due to the ease of parallelizing
the simple sum over N , or in a stochastic fashion by
selecting mini-batches of the data at random as we
shall show in the following. We note that our bound
is similar to that proposed by Chai [2012] for multi-
nomial probit regression, and also by [Seeger, 2003]
for a subset-of-data approach: we propose scalability
of our method through stochastic optimization of the
variational parameters and inducing input positions.

Predictions Our approximate posterior is given as
q(f ,u) = p(f |u)q(u). To make predictions at a set
of test points X⋆ for the new latent function values
f⋆, we substitute our approximate posterior into the
standard probabilistic rule:

p(f⋆ |y) =

∫

p(f⋆ | f ,u)p(f ,u |y)dfdu

≈

∫

p(f⋆ | f ,u)p(f |u)q(u)dfdu

=

∫

p(f⋆ |u)q(u)du (21)

where the last line occurs due to the consistency rules
of the GP. The integral is tractable similarly to (18),
and we can compute the mean and variance of a test-
latent f⋆ in O(M2), from which the distribution of the
test label y⋆ is easily computed.

Limiting cases To relate this method to existing
work, consider two limiting cases of this bound. First,
when the inducing variables are equal to the data
points Z=X, and second, where the likelihood is re-
placed with Gaussian noise.
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Figure 1: The effect of increasing the number of inducing points for the banana dataset. Rows represent the
KL method, the mean field method and Generalized FITC, whilst columns show increasing numbers of inducing
points. In each pane, the colored points represent training data, the inducing inputs are black dots and the
decision boundaries are black lines. The rightmost column shows the result of the equivalent non-sparse methods

When Z = X, the approximate posterior reduces to
q(f) = N (f |m, S), and the number of parameters
required to represent the covariance can be reduced
to 2N [Opper and Archambeau, 2009], and we have
recovered the full-Gaussian approximation (the ‘KL’
method described by Nickisch and Rasmussen [2008]).

If the likelihood were Gaussian, the expectations in
equation (19) would be computable in closed form, and
after a little re-arranging the result is as [Hensman
et al., 2013], equation (7). In this case the bound has
a unique solution for m and S, which recovers the
variational bound of Titsias [2009], equation (6). In
the case where Z=X and the likelihood is Gaussian,
exact inference is recovered.

5 Experiments

We have proposed two variational approximations for
GP classification. The first in section 3 comprises a
mean-field approximation after making a variational
approximation to the prior over an augmented latent
vector. The second in section 4 proposes to minimize
the KL divergence using a Gaussian approximation at
a set of inducing points. We henceforth refer to these
as the MF (mean-field) and KL methods respectively.

Increasing the number of inducing points To
compare the methods with the state-of-the-art Gen-
eralized FITC method, we first turn to the two-
dimensional Banana dataset. For all three methods,
we initialized the inducing points using k-means clus-

tering. For the generalized FITC method we used the
implementation provided by Rasmussen and Nickisch
[2010]. For all the methods we used the L-BFGS-B
optimizer [Zhu et al., 1997].

With the expectation that increasing the number of
inducing points should improve all three methods, we
applied 4 to 64 inducing points, as shown in Figure
1. The KL method pulls the inducing points positions
toward the decision boundary, and provides a near-
optimal solution with 16 inducing points. The MF
method is less able to adapt the inducing input posi-
tions, but provides good solutions at the same number
of inducing points. The Generalized FITC method
appears to pull inducing points towards the decision
boundary, but is unable to make good use of 64 induc-
ing points, moving some to the decision boundary and
some toward the origin.

Numerical comparison We compared the perfor-
mance of the classifiers for a number of commonly used
classification data sets. We took ten folds of the data
and report the median hold out negative log probabil-
ity and 2-σ confidence intervals. For comparison we
used the EP FITC implementation from the GPML
toolbox [Rasmussen and Nickisch, 2010] which is gen-
erally considered to be amongst the best implementa-
tions of this algorithm. For the KL and sparse KL
methods we found that the optimization behaviour
was improved by freezing the kernel hyper parameters
at the beginning of optimization and then unfreezing
them once a reasonable set of variational parameters
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Table 1: comparison of the performance of our proposed methods and Generalized FITC on benchmark datasets.

Dataset N\P KL EP EPFitc
M=8

EPFitc
M=30%

KLSp
M=8

KLSp
M=30%

MFSp
M=8

MFSp
M=30%

thyroid 140\5 .11± .05 .11± .05 .15± .04 .13± .04 .13± .06 .09± .05 .22± .16 .15± .14
heart 170\13 .46± .14 .43± .11 .42± .08 .44± .08 .42± .11 .47± .18 .41± .15 .43± .19
twonorm 400\20 .17± .43 .08± .01 Large .08± .01 .08± .01 .09± .02 Large Large
ringnorm 400\20 .21± .22 .18± .02 .34± .01 .20± .01 .41± .09 .15± .03 .46± .00 Large
german 700\20 .51± .09 .48± .06 .49± .04 .50± .04 .49± .05 .51± .08 .52± .06 .51± .09
waveform 400\21 .23± .09 .23± .02 .22± .01 .22± .01 .23± .01 .25± .04 .28± .01 Large
cancer 192\9 .56± .09 .55± .08 .58± .06 .56± .07 .56± .07 .58± .13 .58± .11 .59± .11
flare solar 108\9 .59± .02 .60± .02 .57± .02 .57± .02 .59± .02 .58± .02 .64± .05 .60± .04
diabetes 468\8 .48± .04 .48± .03 .50± .02 .51± .02 .47± .02 .51± .04 Large .50± .04

has been attained. Table 1 shows the result of the
experiments. In the case where a classifier gives a ex-
tremely confident wrong prediction for one or more
test points one can obtain a numerically high negative
log probability. These cases are denoted as ‘large’.

The table shows that mean field based methods of-
ten give over confident predictions. The results show
similar performance between the sparse KL and FITC
methods. The confidence intervals of the two methods
either overlap or sparse KL is better. As we shall see,
Sparse KL runs faster in the timed experiments that
follow and can be run on very large datasets using
stochastic gradient descent.

Time-performance trade-off Since all the algo-
rithms used perform optimization there is a trade-off
for amount of time spent on optimization against the
classification performance achieved. The whole trade-
off curve can be used to characterize the efficiency of
a given algorithm.

Naish-Guzman and Holden [2007] consider the image
dataset amongst their benchmarks. Of the datasets
they consider it is one of the most demanding in terms
of the number of inducing points that are required. We
ran timed experiments on this dataset recording the
wall clock time after each function call and computing
the hold out negative log probability of the associated
parameters at each step.

We profiled the MFSp and KLSp algorithms for a va-
riety of inducing point numbers. Although GPML is
implemented in MATLAB rather than Python both
have access to fast numerical linear algebra libraries.
Optimization for the sparse KL and FITC methods
was carried out using the LBFGS-B Zhu et al. [1997]
algorithm. The mean field optimization surface is chal-
lenging numerically and we found that performance
was improved by using the scaled conjugate gradients
algorithm. We found no significant qualitative differ-
ence between the wall clock time and CPU times.

Figure 2 shows the results. The efficient frontier of the
comparison is defined by the algorithm that for any

given time achieves the lowest negative log probabil-
ity. In this case the efficient frontier is occupied by the
sparse KL method. Each of the algorithms is showing
better performance as the number of inducing points
increases. The challenging optimization behaviour of
the sparse mean-field algorithm can be seen by the un-
predictable changes in hold out probability as the opti-
mization proceeds. The supplementary material shows
that in terms of classification error rate this algorithm
is much better behaved, suggesting that MFSp finds it
difficult to produce well calibrated predictions.

The supplementary material contains plots of the hold
out classification accuracy for the image dataset. It
also contains similar plots for the banana dataset.

Stochastic optimization To demonstrate that the
proposed KL method can be optimized effectively in
a stochastic fashion, we first turn to the MNIST data
set. Selecting the odd digits and even digits to make
a binary problem, results in a training set with 60000
points. We used ADADELTA method [Zeiler, 2012]
from the climin toolbox [Osendorfer et al., 2014]. Se-
lecting a step-rate of 0.1, a mini-batch size of 10 with
200 inducing points resulted in a hold-out accuracy of
97.8%. The mean negative-log-probability of the test-
ing set was 0.069. It is encouraging that we are able to
fit highly nonlinear, high-dimensional decision bound-
aries with good accuracy, on a dataset size that is out
of the range of existing methods.

Stochastic optimization of our bound allows fitting of
GP classifiers to datasets that are larger than previ-
ously possible. We downloaded the flight arrival and
departure times for every commercial flight in the USA
from January 2008 to April 2008. 1 This dataset con-
tains information about 5.9 million flights, including
the delay in reaching the destination. We build a clas-
sifier which was to predict whether any flight was to
subject to delay. As a benchmark, we first fitted a lin-
ear model using scikits-learn [Pedregosa et al., 2011]
which in turns uses LIBLINEAR [Fan et al., 2008]. On

1Hensman et al. use this data to illustrate regression,
here we simply classify whether the delay ≤ zero.
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Figure 2: Temporal performance of the different methods on the image dataset.
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Figure 3: Performance of the airline delay dataset.
The red horizontal line depicts performance of a linear
classifier, whilst the blue line shows performance of the
stochastically optimized KLsparse method.

our randomly selected hold-out set of 100000 points,
this achieved an error rate of 37%, the negative-log
probability of the held-out data was 0.642.

We built a Gaussian process kernel using the sum of
a Matern- 32 and a linear kernel. For each, we intro-
duced parameters which allowed for the scaling of the
inputs (sometimes called Automatic Relevance Deter-
mination, ARD). Using a similar optimization scheme
to the MNIST data above, our method was able to ex-
ceed the performance of a linear model in a few min-
utes, as shown in Figure 3. The kernel parameters at
convergence suggested that the problem is highly non-
linear: the relative variance of the linear kernel was
negligible. The optimized lengthscales for the Matern
part of the covariance suggested that the most useful
features were the time of day and time of year.

6 Discussion

We have presented two novel variational bounds for
performing sparse GP classification. The first, like
the existing GFITC method, makes an approximation
to the covariance matrix before introducing the non-
conjugate likelihood. These approaches are somewhat
unsatisfactory since in performing approximate infer-
ence, we necessarily introduce additional parameters
(variational means and variances, or the parameters
of EP factors), which naturally scale linearly with N .

Our proposed KLSP bound outperforms the state-of-
the art GFITC method on benchmark datasets, and is
capable of being optimized in a stochastic fashion as
we have shown, making GP classification applicable to
big data for the first time.

In future work, we note that this work opens the door
for several other GP models: if the likelihood factorizes
in N , then our method is applicable through Gauss-
Hermite quadrature of the log likelihood. We also note
that it is possible to relax the restriction of q(u) to
a Gaussian form, and mixture model approximations
follow straightforwardly, allowing scalable extensions
of Nguyen and Bonilla [2014].
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