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Abstract— Digital Fountain (DF) codes were introduced as
an efficient and universal Forward Error Correction (FEC)
solution for data multicast over lossy packet networks. However,
in real-time applications, the DF encoder cannot make use of the
“rateless” property as it was proposed in the DF framework,
due to its delay constraints. In this scenario, many receivers
might not be able to collect enough encoded symbols (packets) to
perform succesful decoding of the source data block (e.g., they
are connected as a low bit-rate receivers to a high bit-rate source
stream, or they are affected by severe channel conditions). This
paper proposes an application of recently introduced Expanding
Window Fountain (EWF) codes as a scalable and efficient
solution for real-time multicast data transmission. We show
that, by carefully optimizing EWF code design parameters, it
is possible to design a flexible DF solution that is capable of
satisfying multicast data receivers over a wide range of data
rates and/or erasure channel conditions.

I. INTRODUCTION

After sparse graph codes and iterative decoding algorithms
revolutionized the channel coding field, another idea based
on these concepts made a breakthrough in communications
theory: Digital Fountain (DF) codes. Conceptually intro-
duced in [1], the DF framework is a universal capacity-
approaching Forward Error Correction (FEC) solution for
multicasting data, over lossy packet networks without feed-
back, to a set of receivers with different capabilities and
erasure channel conditions. DF codes possess the “rate-
less” property, that is, they can generate potentially infinite
amounts of encoded symbols given the input symbols of the
source data block. The DF framework became a practical
solution upon introduction of the first class of DF-compliant
sparse graph codes: LT codes [2]. LT codes are able to
provide a complete recovery of the transmitted data block,
with high probability, for each receiver collecting any set
of encoded symbols of total number slightly larger than the
number of input symbols of the source data block. A degree
distribution can be chosen such that the encoding/decoding
complexity of LT codes is of the order O(k logk) for a source
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data block of length k input symbols. Raptor codes [3] are
an improvement over LT codes, obtained by precoding an
LT code defined by degree distribution of constant average
value (instead of logarithmic in k) with a high-rate Low-
Density Parity-Check (LDPC) code. Raptor codes represent
a state-of-the-art DF solution with excellent performance and
an encoding/decoding complexity of the order O(k).

For delay-constrained applications, such as real-time mul-
timedia streaming, the DF encoder cannot make use of
the “rateless” property (as proposed in the original DF
framework). Indeed, the DF encoder can produce “only” a
finite amount of encoded symbols per information data block
before moving to the next source block. In this scenario,
many receivers might not be able to collect enough encoded
symbols (per source block) to perform successful decoding of
the whole source block (e.g., low bit-rate receivers connected
to a high bit-rate source stream, or receivers affected by se-
vere channel conditions). However, many delay-constrained
applications do not require that each receiver recovers the
entire source data block, but as much of the block as
possible, because each decoded input symbol progressively
increases the source data reconstruction quality. In addition,
the importance of the input symbols of the source block
is typically highest at the start of the block and decreases
towards the end. These applications call for Unequal Error
Protection (UEP) codes that associate different protection
levels to the subsets of input symbols of different importance.

In this paper, we consider a scenario where a delay-
constrained information source is multicasting data to a set
of receivers divided into different receiver classes (based on
available bandwidth and/or channel quality). We assume that
the set of source input symbols is split into a number of
importance classes, where the most important class defines
the basic Quality of Service (QoS) guarantees, and subse-
quent importance classes define further QoS improvements.
As an example of such a source model, we will be par-
ticularly interested in a scalable image or video coder. In
this case, the source bitstream is divided into the base layer
that represents the most important class, and a number of
additional, so called enhancement layers, that, if received,
progressively improve the received image/video quality. For
a scalable source, and a number of different receiver classes,
we propose a scalable DF multicast system that is able to
accomodate a receiver class with the worst conditions with
at least basic QoS guarantees, as well as allocating progres-
sively increasing QoS guarantees for the receiver classes with
succesively better conditions. Our solution is based on the
UEP DF codes named Expanding Window Fountain (EWF)
codes [4], which are appropriate for this scenario due to their



design flexibility and excellent performance. We show that,
by carefully optimizing EWF code design parameters, it is
possible to devise a flexible DF solution that is capable of
satisfying multicast data receivers with a wide range of data
rates and/or erasure channel conditions.

The paper is organized as follows. Section II reviews the
design and the basic properties of EWF codes. In Section III,
we propose a scalable DF multicast solution based on EWF
codes and introduce various possible design scenarios for a
scalable DF multicast system. This system is demonstrated
by an example in Section IV, where a special attention
is given to a system design for a scalable multimedia
information source, and the parameters of an EWF code
are further optimized to provide optimal end-to-end system
performance. In Section V, we provide simulation results that
confirm numerical solutions obtained in Section IV. Finally,
the paper is concluded with details of our future work in
Section VI.

II. EXPANDING WINDOW FOUNTAIN (EWF)
CODES

Standard LT and Raptor codes are Equal Error Protection
(EEP) codes, because they place equal protection on input
symbols from the source data block. Recently, DF codes
designs with the UEP property have emerged [4][5]. In this
section, we describe EWF codes [4] as a the centerpiece of
the proposed scalable DF multicast solution.

EWF codes are a novel class of DF codes with an UEP
property, based on the idea of “windowing” the data set.
We assume that the data block to be transmitted consists of
k input symbols (or information packets). Let the sequence
of expanding windows (input symbol subsets), where each
window is contained in the next one in the sequence, be
defined over the information data block (see Figure 1).
Using the defined set of expanding windows, EWF encoding
proceeds in a slightly different fashion than the usual LT
encoding, i.e., to create a new encoded symbol, one of the
windows from the set is randomly selected with respect to
a probability distribution defined over the set of expanding
windows. Upon window selection, a new encoded symbol
is determined with an LT code of suitably chosen degree
distribution as if encoding were performed only on the
input symbols from the selected window. This procedure is
repeated at the DF encoder for each encoded symbol.

More formally, the EWF code FEW (Θ,Γ,Ω(1), . . . ,Ω(r))
can be defined using the set of polynomials
Θ(x),Γ(x),Ω(1)(x), . . . ,Ω(r)(x). Polynomial Θ(x) =
∑r

i=1 Θixi, where Θi = ki
k , describes the division of the

information data block into the set of r expanding windows1

of size ki,1 ≤ i ≤ r, where ki < k j if i < j, and kr = k. The
probability distribution associated with the set of expanding
windows is described using polynomial Γ(x) = ∑r

i=1 Γixi,
where Γi is the probability of selecting the i-th window.

1For the rest of this paper, we will assume without loss of generality that
one end of each expanding window is fixed at the beginning of the data
block, i.e., the importance of data decreases from the begining towards the
end of the data block.
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Fig. 1. Expanding Window Fountain (EWF) Codes.

The degree distribution Ω( j)(x) = ∑
k j
i=1 Ω( j)

i xi describes the
LT encoding performed on the j-th window. To summarize,
EWF code FEW (Θ,Γ,Ω(1), . . . ,Ω(r)) assigns each encoded
symbol to the j-th window of size k j = Θ j ·k with probability
Γ j and encodes the data from the selected window using the
LT code with the degree distribution Ω( j)(x) = ∑

k j
i=1 Ω( j)

i xi.
By dividing the information data block using the set of

expanding windows, we classify the set of input symbols
into r disjoint importance classes. Input symbols belonging
to the first (innermost) window are considered to be the
most important, and they participate in forming each of
the encoded symbols. The i-th importance class, 2 ≤ i ≤ r,
contains si = ki − ki−1 = (Θi −Θi−1)k input symbols, i.e.,
the input symbols from the i-th window that do not belong
to (i− 1)-th window. Before presenting the main results of
this paper, we define asymptotic erasure probability (i.e.,
the probability that an input symbol of the infinitely long
EWF code is unknown after infinitely many iterations of
iterative decoding) for input symbols of each importance
class of EWF codes decoded using the iterative message-
passing Belief-Propagation (BP) decoder. Evolution of the
erasure probability for input symbols of each class with the
iterations of the decoding algorithm is derived using the
generalized and-or-tree analysis in [4]. We summarize the
result in the following lemma (c.f. [4]):

Lemma 2.1: For EWF code FEW (Θ,Γ,Ω(1), . . . ,Ω(r)), the
probability yl, j that the input node of the j-th importance
class is not recovered at the receiver upon collecting (1+ε)k
encoded symbols, where ε is the reception overhead, after l
iterations of the iterative decoder is:

y0, j =1,

yl, j =δ j

(
1−

r

∑
i= j

µiΓi
Θi

∑r
m= j

µmΓm
Θm

βi

(
1−

i

∑
m=1

Θm−Θm−1

Θi
yl−1,m

))
,

(1)

where δ j(x) and β j(x) are given by the expressions:

δ j(x) = e(1+ε)∑r
l= j

Γl µl
Θl

(x−1)
, (2)

β j(x) =
Ω′( j)(x)
Ω′( j)(1)

, (3)
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Fig. 2. Asymptotic analysis of Bit Error Rate (BER) versus Γ1 for EWF
codes (reception overhead is ε = 0.05).

and µ j = ∑
k j
i=1 iΩ( j)

i is the average degree of the encoded
symbol generated from the input data of the j-th window.

It is useful to demonstrate possible applications of the
previous lemma by a numerical example. Let the code
under consideration be the EWF code FEW (Θ(x) = 0.1x +
x2,Γ(x) = Γ1x +(1−Γ1)x2,Ω(1),Ω(2)). Note that r = 2 and
the degree distributions applied on both windows is the
same and equal to degree distribution given in equation (5)
in Section IV. Asymptotic erasure probabilities for Most
Important Bit (MIB) class y∞,1 and Least Important Bit
(LIB) class y∞,2, as a function of the first window selection
probability Γ1, are presented in Figure 2. Additionally, for
Γ1 = 0.084 (the position of a local minimum of y∞,1 in Figure
2), we can track asymptotic erasure probabilities of the MIB
and LIB classes of source symbols as a function of overhead
ε of encoded data collected at the receiver (Figure 3).

III. SCALABLE DF MULTICAST DATA
TRANSMISSION

DF data transmission over lossy packet networks is uni-
versally capacity approaching for erasure channel associated
with any receiver, given that potentially infinite amount of
encoded symbols can be created at the DF encoder and sent
to the receivers. In practice, DF multicast is usually con-
cerned with two problems. First, the amount of the encoded
symbols sent is finite, moreover, for many delay-constrained
applications including real-time multimedia streaming, the
amount of encoded data that can be generated per source
data block is severely limited. The second problem is the
typical “avalanche decoding” behavior of the DF decoder
(or the iterative BP decoder) at the receiver end; that is,
with slightly less amount of received encoded symbols than
needed for succesful decoding, the DF decoder is typically
able to reconstruct only a negligible part of the data block
transmitted.

In current DF multicast transmission systems [6], data
multicast transmission typically proceeds in two phases. In
the first phase, enough encoded packets are sent to facilitate
successful decoding for most of the receivers. If some of
the receivers cannot collect enough encoded data to finish
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Fig. 3. Asymptotic analysis of BER versus overhead ε (Γ1 = 0.084).

decoding, by appropriate feedback signalling they indicate
their participation in the second, so called repair phase, where
only this subset of receivers is fed by a new stream of
encoded data. This scheme is suitable for applications that
are not delay-constrained. In both transmission phases, the
same DF code is used and all the source data are given
the same priority, regardless of the source characteristics,
receiver bandwidths and channel conditions.

In this work, we develop a scalable DF multicast scheme
that takes into account both, the limited amount of encoded
data that can be produced per transmitted data block, and the
variability in the (erasure) channel parameters and conditions
for different receivers. In other words, we adapt encoded
symbols at the output of the DF encoder to importance of
the data contained in the information block at the input. This
adaptation is performed in such a manner that ensures perfor-
mance guarantees, in terms of the amount and importance of
received data, for each receiver (or class of receivers) in the
DF system. In the following, we describe our DF multicast
system solution in detail.

A. Scalable DF Multicast: System Setting

We assume that a DF encoder generates and sends data to
sets of receivers of a multicast session over a lossy packet
network. The DF encoder transforms the delay-constrained
information data stream, segmented into data blocks of
length k input symbols, into an encoded data stream of
length (1 + εS)k encoded symbols, where εS is the source
overhead that saturates the available data rate of the multicast
connection. The encoded data stream is sent to sets of
multicast receivers with different capabilities over a lossy
packet network. We quantify each receiver’s capability by its
reception overhead εR, taking into account both the data rate
of the receiver multicast connection and the (packet) erasure
channel probability between the source and the receiver. In
other words, the receiver with reception overhead εR ≤ εS
will be able to receive (1+εR)k encoded symbols out of the
total (1+εS)k sent symbols, per transmitted data block. In the
following, we assume without loss of generality that the DF
multicast system serves r different receiver classes ordered
by their reception overheads: εR,1 < εR,2 < .. . < εR,r ≤ εS. It



is worth noting that, although our system is set up in terms
of overheads, it is straightforward to translate it to the data
rate system representation.

The task of the DF encoder is to supply receivers with
information data blocks through DF encoded data streams.
We assume that the input symbols of information data blocks
are such that their importance decreases from the beginning
of the block towards its end (e.g., the information stream
is the output of a scalable image or video coder). Due to
a different reception capabilities of different receivers, we
want to match the DF encoded data stream to the appropriate
receiver classes; that is, the first receiver class (with the worst
reception conditions) would recover the first part (the most
important part) of the source data with high probability, the
second receiver class would be able to recover the first two
parts of the source data with high probability, etc. This calls
for an EWF code with expanding windows defined to match
the importance classes of the source data. In order to match
the code to each of the r receiver classes, we select EWF
code FEW (Θ,Γ,Ω(1), . . . ,Ω(r)) with r expanding windows
defined across each source block to be transmitted. EWF
encoding with finite source overhead εS is then applied at
the source, as described in Section II.

For a given reception overhead of a receiver of the i-
th receiver class, εR,i, and the parameters of selected EWF
code FEW (Θ,Γ,Ω(1), . . . ,Ω(r)), using Lemma 2.1 we can
calculate (asymptotic) erasure probabilities of input symbols
in each of the r importance classes. Let p( j)

i denote erasure
probability of the input symbol of the i-th importance class
at the j-th receiver class. From Lemma 2.1, it follows that
p( j)

i = f (i,εR, j,FEW (Θ,Γ,Ω(1), . . . ,Ω(r))). Using p( j)
i , and

under the asymptotic assumption of independence of proba-
bilities p( j)

i for different input symbols, we can calculate the
probability P( j)

i that the i-th importance class of the input
symbols is completely reconstructed by the j-th receiver
class:

P( j)
i = (1− p( j)

i )si , (4)

where si is the number of input symbols in the i-th impor-
tance class.

We will use the set of probabilities P( j)
i to define QoS

guarantees2 for each receiver class of the proposed scalable
DF multicast system. It is worth noting that P( j)

i < P(k)
i

for j < k due to Lemma 2.1 and εR, j < εR,k; that is, a
receiver in the k-th class will be able to satisfy all the QoS
guarantees imposed on the j-th receiver class. Therefore,
it is convenient to define QoS guarantees for the scalable
DF multicast system as the following set of probabilities:
{P(1)

1 ,P(2)
2 , . . . ,P(r)

r }. In other words, for the i-th receiver
class, we define only QoS guarantee P(i)

i for reconstruction of
the input symbols of the i-th class. QoS guarantees for more
important classes of input symbols are already implicitly
included in the QoS guarantees P( j)

j of the receiver classes

2Note that the value P( j)
i defines the percentage of the receivers in the j-

th receiver class that will be able to reconstruct the set of all input symbols
from the i-th importance class.

indexed with j < i. For input symbols that belong to classes
of less importance, the i-th receiver class is not provided
with any QoS guarantees.

B. Scalable DF Multicast: Design Scenarios

Using the previously described system setting, the scalable
DF multicast system design reduces to the design of the EWF
code such that given QoS guarantees for different receiver
classes are satisfied. However, due to a large number of
parameters included in this design process, it is possible
to define many design scenarios of practical interest. For
the design of the scalable DF multicast system, we identify
three sets of “system parameters” of interest: the set of QoS
guarantees {P(1)

1 ,P(2)
2 , . . . ,P(r)

r }, shortly denoted by P(x) =
∑r

i=1 P(i)
i xi, the set of reception overheads {εR,1,εR,2, . . . ,εR,r}

of different receiver classes, denoted by ε(x) = ∑r
i=1 εR,ixi,

and the EWF code division of the transmitted data block
into importance classes, described by Θ(x) = ∑r

i=1 Θixi. By
fixing two out of three of these system polynomials, we can
optimize the third system polynomial by appropriately using
remaining EWF code design parameters in the optimization
procedure3. In the following, we discuss some design op-
tions.
• Scenario 1 - Θ(x) = f (ε(x),P(x)): In this scenario, the

inputs of the design process are system polynomials
ε(x) and P(x), and we are interested in optimizing
Θ(x). In other words, for a given reception performance
and requested QoS guarantees, how do we optimally
partition the source data into the importance classes?

• Scenario 2 - P(x) = f (ε(x),Θ(x)): This scenario opti-
mizes P(x) given system polynomials ε(x) and Θ(x).
Therefore, for a given reception performance and divi-
sion into importance classes, we are interested in the
maximum QoS guarantees the DF system can offer?

• Scenario 3 - ε(x) = f (P(x),Θ(x)): In the last scenario,
we fix Θ(x) and P(x), and we optimize ε(x). This means
that, given the division into importance classes and
QoS guarantees requested for each importance class,
we are interested in reception performance needed for
each of the receiver classes. In case when the reception
performance is dominated by data rate of the receivers
(i.e., a packet network with negligible packet losses),
this scenario determines the minimum data rates needed
by each receiver class in the system to meet QoS
guarantees P(x) for different importance classes Θ(x).

The previous design scenarios assume that the EWF code
parameters except Θ(x), i.e., Γ(x) and the set of r degree
distributions Ω(i)(x), are not fixed in advance. We will use
these parameters as additional “degrees of freedom” that
are available for tuning the performances of the designed
DF system. In the following section, we propose a design
example for the first design scenario of the proposed scalable
DF multicast system. Similar design examples for other
scenarios can be easily extended from this simple example.

3Note that the system polynomials are dependent, e.g., P(x) =
f (Θ(x),ε(x)).
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Fig. 4. The region of (Γ1,Θ1) that satisfies given constraints ε(x) and P(x).

IV. SCALABLE DF MULTICAST: NUMERICAL
SOLUTION

In this section, we are interested in the first design
scenario: determining the division Θ(x) of source data into
importance classes that meets the requested QoS guarantees
P(x), for a given reception performance ε(x). Due to the
fact that equation (1) is a non-linear recursion formula and
that (asymptotic) erasure probabilites p(i)

i are output of this
formula after infinitely many iterations, we provide only a
numerical solution for this design problem.

A. Scalable DF Multicast with Two Receiver Classes

For simplicity, we assume a setting with r = 2 receiver
classes (thereby, there are two windows of the EWF code).
We additionally simplify the EWF code design by assuming
that on both windows we apply the same degree distribution
(constant average degree distribution proposed in [3], and
used in the UEP DF code design [4][5]):

Ω(1)(x) = Ω(2)(x) = 0.007969x+0.493570x2 +
+0.166220x3 +0.072646x4 +0.082558x5 +
+0.056058x8 +0.037229x9 +0.055590x19 +
+0.025023x65 +0.003135x66 (5)

Using these simplifications, the design of the EWF code
FEW (Θ1x+x2,Γ1x+(1−Γ1)x2,Ω(1),Ω(2)) is determined by
two independent variables: Γ1 and Θ1 (the probability of
selection of the first window and the fraction of the data
contained in it). The design problem can be stated as follows:
for a given reception overheads (εR,1,εR,2) and requested
QoS guarantees (P(1)

1 ,P(2)
2 ), find the set of all values of

Θ1 (with their corresponding values of Γ1). In general, as
a result of this design process, we obtain a set (region) of
possible (Θ1,Γ1) pairs that satisfies given conditions. Note
that, depending on the values of ε(x) and P(x), this set can
be empty, providing no solution for the requested scenario.

As an example, we select the following constraints: ε(x) =
(0.25,1) and P(x) = (0.9,0.5) and the data block length
of k = 4250 symbols (packets). We adopt, without loss of

generality, that the symbol size is 8 bytes4. We have two
classes of receivers: the first, worse class, characterized by
the 25% reception overhead, and the second, better class,
with 100% overhead5. The QoS guarantees require that a
receiver in the worse class has a probability of reconstruction
of more important data block of at least 90% (i.e., at least
90% of receivers in the worse class will reconstruct more
important data block entirely), while a receiver in the better
class should, in addition, be able to reconstruct the less
important data block with probability of at least 50%. The re-
construction probabilities of the more important block for the
worse class of receivers, P(1)

1 , and the less important block
for the better class of receivers, P(2)

2 , are given as functions of
two variables (Θ1,Γ1) in Figures 4(a) and 4(b), respectively.
The darkest shaded region on Figures 4(a) and 4(b) consists
of (Θ1,Γ1) pairs that satisfy given QoS constraints, P(1)

1 >

0.9 and P(2)
2 > 0.5, respectively. Additionally, on both figures,

one can track changes of probabilities P(1)
1 and P(2)

2 presented
by lighter shaded gray regions. The intersection of the darkest
shaded regions, presented in Figure 4(c), is the region of
(Θ1,Γ1) pairs that satisfy given constraints ε(x) and P(x).

Figure 4(c) is a solution of a given design scenario. Since
its output is a set of (Θ1,Γ1) pairs, our next task is to select
operational pair (Θ1,Γ1) out of the given region using a
suitable criterion. One way to proceed would be to select
a solution that maximizes Θ1 value, i.e., to place as much
as possible data into the more important class. In this ex-
ample, such a solution is the point (Θ1,Γ1) = (0.39,0.2825)
that treats 39% of the transmitted data block as the more
important data. However, other optimality considerations of
points in the (Θ1,Γ1) region are possible, particularly in the
case when the information source is a scalable image or
video coder. We provide some examples in the following
subsection.

4Data block length and symbol size are selected to fit exactly the size of
the JPEG2000 512×512 Lena image of the highest compression rate used.

5For example, this corresponds to a DF multicast setting where the source
stream of 1Mbit/s bit rate is transmitted to two different receiver classes,
with 1.25Mbit/s and 2Mbit/s of available bandwidth respectively, assuming
that the DF encoded multicast data rate is at least 2Mbit/s, and that the
packet network is lossless.



B. Optimal (Θ1,Γ1) Pair Selection

The design example from the previous subsection can be
applied to any kind of information source. As a result, the
set of (Θ1,Γ1) pairs is obtained that provide certain QoS
performance for each class of receivers, in terms of the
reconstruction probabilities of different importance classes.
For a specific case of a scalable image/video information
source, different points from the (Θ1,Γ1) region will have
different performance in terms of the quality of the recon-
structed image/video data. In the following, we will focus on
a scalable image/video source and discuss the possibilities of
further optimization of EWF codes in this scenario.

Latest solutions for multimedia distribution often rely on
scalable image coders, such as SPIHT [7] or JPEG2000
[8], or scalable video coders, such as three-dimensional
(3D) scalable wavelet-based video coders [9][10]. Scalable
image/video coders are particularly useful in multicast sce-
narios, due to the fact that they efficiently accomodate
receivers with different data rates and/or channel conditions.
The output bitstream of a scalable image/video encoder
is segmented into layers of progressively decreasing im-
portance, so that receivers with better reception conditions
that receive more layers, will obtain a higher image/video
quality. This makes a scalable image/video coder together
with a scalable DF multicast system based on EWF codes a
promising combination for multicast multimedia distribution
services. Since EWF codes are a UEP DF solution flexible to
design, they can be easily adapted to a multi-layer scalable
coded bitstream offering more protection to more important
layers. Optimizing EWF codes such that we improve the
received image/video quality at the receiving end provides
a powerful DF Joint Source-Channel Coding (DF-JSCC)
multicast solution.

To select “optimal” (Θ1,Γ1) point from the region ob-
tained as an output of the DF multicast system design, we
apply two different approaches: the optimization with respect
to the expected number of correctly received information
symbols and the optimization with respect to the expected
(image/video) distortion at the receiving end. These per-
formance criteria are refered to as rate-based optimization
and distortion-based optimization, respectively [11]. Both of
these performance criteria take into account the fact that
the reconstruction process at a scalable image/video decoder
deteriorates significantly after the first transmission error is
encountered, due to an error propagation effect. Therefore,
for most scalable image/video decoders, the process of
source data reconstruction terminates upon detecting the first
undecoded symbol.

For the definition of the rate-based and distortion-based
optimization criteria, we will assume that the transmitted
data block is divided into N segments (layers) of lengths
L1,L2, . . . ,LN symbols. The importance of data contained in
segments decreases from the first towards the last segment in
the block. Reconstruction of the transmitted data block at the
receiver is based on correctly received consecutive segments
until the first segment for which a channel transmission error
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Fig. 5. Rate-distortion function of the JPEG2000 coded Lena image.

is detected. We denote a probability of correct reconstruction
of each of N data segments as P1,P2, . . . ,PN , respectively.

The transmission scheme that maximizes the average num-
ber of correctly received segments (i.e., the average length
of correctly received consecutive information symbols in the
data block) at the receiver is considered to be rate-based
optimal. This refers to a scheme that maximizes the following
expression:

Lavg =
N

∑
i=0

P(i) ·L(i), (6)

where L(i) is the total length (in information symbols) of the
first i data segments:

L(i) =
{

0 for i = 0
∑i

j=1 L j for 0 < i≤ N,
(7)

and P(i) is the probability that the first i consecutive seg-
ments are correctly received:

P(i) =





1−P1 for i = 0
∏i

j=1 Pj · (1−Pi+1) for i = 1,2, . . . ,N−1
∏N

j=1 Pj for i = N.
(8)

The motivation for using rate-based optimization lies in
the fact that if a longer bitstream is used for reconstruction,
a better reconstruction quality will be obtained. Hence, it
is desirable to delay the first uncorrected error as much as
possible. Note that the rate-based optimization is independent
of the information source and the data transmitted.

In order to define the distortion-based optimization cri-
terion, we need a rate-distortion function D(L), which is a
measure of image/video distortion after reconstruction based
on the first L information symbols. In this example we use
operational rate-distortion function D(L) of JPEG2000 coder
[8] derived from the 512×512 Lena image (Figure 5). It is
worth noting that the operational D(L) function is a function
of both, the type of a scalable coder used and the content
of the data transmitted. Therefore, the same holds for the
distortion-based criterion.

The transmission scheme that minimizes the expected
distortion of the image reconstructed at the receiver is
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Fig. 6. The optimal (Θ1,Γ1) points for different optimization criteria.

considered to be distortion-based optimal. It is obtained by
minimizing the following expression:

Davg =
N

∑
i=0

P(i) ·D(L(i)), (9)

where L(i) and P(i) are the same length and probability pa-
rameters as in the rate-based optimization given by equations
(7) and (8), respectively, D(0) is the source variance, and for
L > 0, D(L) is the operational rate-distortion function of the
image/video coder.

We apply the rate-based and distortion-based optimization
on the setting from the previous subsection in order to find
the optimal (Θ1,Γ1) point from the region given in Figure
4(c). Again, we assume that the transmitted data block is
divided into N = r = 2 segments of lengths L1 = s1 = Θ1k
and L2 = s2 = (Θ2−Θ1)k. The probabilities of the correct
reconstruction of each data segment for a receiver in the i-th
receiver class, i = {1,2}, are given as P1 = P(i)

1 and P2 = P(i)
2 .

In the multicast scenario, we are dealing with a number
of receiver classes, hence the expressions for Lavg and Davg

have to be averaged over all the classes. We denote by L(i)
avg

the average length of correctly received data at the receiver
of the i-th receiver class. The rate-based optimal solution is
the point (Θ(r.o)

1 ,Γ(r.o)
1 ) that maximizes average number of

received segments across both receiver classes:

Lavg =
1
N

N

∑
i=1

L(i)
avg =

L(1)
avg +L(2)

avg

2
. (10)

Similarly, the distortion-based optimal solution in the multi-
cast scenario is the point (Θ(d.o)

1 ,Γ(d.o)
1 ) that minimizes the

average image distortion across receiver classes:

Davg =
1
N

N

∑
i=1

D(i)
avg =

D(1)
avg +D(2)

avg

2
, (11)

where D(i)
avg is the expected distortion of reconstructed data

at the receiver of the i-th receiver class.
For all (Θ1,Γ1) pairs in the admissible region of Figure

4(c), we calculated Lavg and Davg values using equations

(10) and (11), respectively. The results are presented in
Figures 6(a) and 6(b), respectively, where the values of
Lavg and Davg increase towards the darkest shaded regions.
The rate-based optimal coordinates, attained for the point
(Θ(r.o)

1 ,Γ(r.o)
1 ) = (0.33,0.165), maximize Lavg value equal to

Lavg(0.33,0.165) = 2547 information symbols. Therefore,
the number of symbols that is expected to be correctly
received on average by both receiver classes reaches a
maximum value of 2547 symbols (163000 bits), out of a
total of 4250 symbols (272000 bits).

In order to compare optimization results, we applied
the distortion-based optimization on the information block
containing 512× 512 JPEG2000 coded Lena image. For
the distortion-based optimization, we obtained the optimal
minimum Davg point (Θ(d.o)

1 ,Γ(d.o)
1 ) = (0.225,0.25) that has

an average distortion value of Davg(0.33,0.22) = 23.15. For
the rate-based optimal solution (Θ(r.o)

1 ,Γ(r.o)
1 ) = (0.33,0.165),

an average distortion is equal Davg(0.33,0.165) = 127.
We observed a considerable variablity of the average

distortion inside the region. Indeed, even the rate-based
optimized solution, which approximates the rate-distortion
function with a linear function, is away from the global
minimum found by the distortion-based optimization. Hence,
the distortion-based optimization is needed to ensure a
proper (Θ1,Γ1) pair selection. We note that the result of the
distortion-based optimization is shorter and better protected
most important class, which is a typical behavior for scalable
sources [11].

V. SCALABLE DF MULTICAST: SIMULATION
RESULTS

The numerical results presented in the previous section
are derived using asymptotic erasure probabilities of input
symbols, but applied on the finite-length (k = 4250) DF
system scenario. To verify that these solutions are good
approximation of the “real-world” results, we perform sim-
ulation experiments. We select a simulation setting that cor-
responds to the numerical solution presented in the Section
IV A, where the optimal point (Θ1,Γ1) = (0.39,0.2825) is
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Fig. 7. Simulation results for reconstruction probabilities versus reception overheads: P(1)
1 = f (εR,1) and P(2)

2 = f (εR,2).

selected from the region in Figure 4(c) using the criterion of
maximizing the amount of data placed in the most important
window (i.e., maximizing Θ1 value over the region). There-
fore, we simulated the performance of the EWF code with
parameters FEW (0.39x+x2,0.2825x+0.7175x2,Ω(1),Ω(2)),
the information block length of k = 4250 symbols, and the
degree distributions in polynomial form as (5).

For the first receiver class, we simulate the average prob-
ability of correct reconstruction of the most important class
of input symbols, P(1)

1 , for different reception overheads in
the interval around the value εR,1 = 0.25. For the second
receiver class, similar simulations are performed for the
probability P(2)

2 in the interval around the reception overhead
εR,2 = 1. The results are presented in Figure 7(a) and 7(b),
respectively.

We note a very good matching of the experimental results
presented in Figure 7 with the results obtained in Section
IV, for the modest information block length of k = 4250
bits (symbols). Although applied on the finite-length realistic
scenario, the simulation results confirm our analysis based
on the asymptotic probability expressions and the numerical
solutions obtained in the previous two sections.

VI. CONCLUSIONS

A novel, scalable DF multicast system, based on EWF
codes is proposed as an effective solution for real-time
data delivery to various classes of receivers with different
reception conditions. In this scenario, classical EEP DF codes
would perform poorly due to a potentially large number of
receivers that are not able to collect enough encoded symbols
to perform successful decoding. A flexible EWF code design
is shown to be a promising solution, where the EWF encoder
adapts its encoded data stream to satisfy QoS guarantees of-
fered to each receiver class. Although the proposed system is
applicable to any information source, a scalable image/video
coder is particularly suitable and effective in combination

with an EWF encoder. We demonstrated that, in this case,
further optimization is possible in order to adapt EWF codes
to increase image/video reception quality.

In this paper, we presented basic ideas of applying EWF
codes in a scalable DF multicast scenario. For our future
work, we plan to investigate in more details the potential
of the proposed scheme in the real-world scalable video
distribution scenarios. Additionally, we would like to perform
more detailed investigations on the benefits of precoding the
EWF codes by high-rate outer LDPC codes (the Raptor code
scenario) for the scalable DF multicast.
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