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Abstract�In this paper we address the problem of efficient 

layered video streaming over peer-to-peer networks and we 

propose a new receiver-driven streaming mechanism. The main 

design goal of our new layered video requesting policy is to 

optimize the overall distribution of video streams in terms of 

reliability and overhead. Since the layered peer-to-peer 

streaming problem is NP-Hard, we show that the classic 

approaches widely used in layered P2P streaming systems have 

some limitations and we propose an optimization technique based 

on harmony search which aims at increasing the rate of 

successful data transmissions for the most important video 

layers, while reducing the protocol overhead and ensuring load 

balancing among the participating peers. Analytical results have 

demonstrated that our new requesting policy enhances the 

streaming of layered video over mesh-based peer-to-peer 

networks and outperforms classic approaches. 
 

Index Terms�P2P Video Streaming; H.264/SVC; Mesh-based 

P2P; Pull Delivery; Optimization; Harmony Search; 

I. INTRODUCTION 

Nowadays, Peer-to-Peer (P2P) video streaming has become 

a popular service in the Internet. P2P streaming systems such 

as CoolStreaming [1], PPLive [2], UUSee [3], Sop-Cast [4], 

and TVAnts [5] attract a lot of users. As more users get used 

to viewing multimedia content on-line, they will demand 

higher video quality than what is available with current P2P 

streaming systems. Providing high-quality streaming over P2P 

systems, however, faces multiple challenges, including: (i) the 

limited upload capacity of peers, (ii) high heterogeneity of 

receivers in terms of download bandwidth, screen resolution, 

and CPU capacity, and (iii) high churn rate as the peer 

population is constantly changing. Addressing these 

challenges requires not only increasing the capacity of peers 

and deploying additional seeding servers to make up the 

shortage in resources, but also employing novel methods for 

encoding and distributing multimedia content and developing 

algorithms and protocols to optimally utilize the available 

resources.  

Most of the currently deployed P2P streaming systems, e.g., 

[1][2][3][4][5], do not use scalable video streams. Thus, they 

serve a single version of the video stream to all peers, and 

therefore they have limited support for heterogeneous peers. 

To address these issues, several studies have proposed P2P 

streaming systems with scalable video streams, e.g. [6][7][8] 

[9][10]. Cui and Nahrstedt [6] presented an algorithm to 

decide at each receiver how to request video layers from a 

given set of senders. They assume that layers have equal 

bitrate and provide equal video quality. However, in Scalable 

Video Coding (H.264/SVC), layers do not have equal bitrate 

(spatial scalability enhancement layers may require more 

bandwidth than the base layer). Hefeeda and Hsu [7] studied 

the problem of video streaming in P2P networks for Fine-

Grained Scalable (FGS) videos, taking into account the rate-

distortion model of the video for maximizing the perceived 

quality. Rejaie and Ortega [10] presented a framework for 

layered P2P streaming, where a receiver coordinates the 

transmission of video packets from multiple senders using a 

TCP-friendly congestion control mechanism. The allocation of 

seed server resources in P2P streaming systems with scalable 

videos has been also considered in [9]. Lan et al. [8] proposed 

a scheduling algorithm for peers to request data from senders. 

These papers do not consider optimal delivery of data units 

in terms of reliability and overhead in case of SVC content 

having the following characteristics: (1) Inter-layer 

dependency, (2) layers with different and variable bitrates, and 

(3) consumers may view different sub-streams of the original 

content. In this paper, we considered a mesh-based peer-to-

peer architecture in order to distribute a layered video content 

(H.264/SVC). The main idea behind our contribution is the 

use of lightweight optimization heuristic in order to perform 

efficient content pulling in terms of small network overhead, 

reliability and load balancing. The rest of this paper is 

organized as follows: section II introduces harmonious 

requesting policy, section III presents and discusses the 

performance evaluation results and finally, section IV 

concludes the paper. 

II. HARMONIOUS REQUESTING POLICY 

We present in sub-section II.A the problem formulation of 

layered video delivery in a mesh-based peer-to-peer 

architecture. Given the information at each receiving peer 

(pieces to request, neighbouring peers, pieces availability …), 

we present a heuristic-based solution to solve the problem in 

sub-section II.B. 

A. Problem Formulation 

An overlay network is constructed upon an SVC stream; the 

overlay may be composed of different peers with different 
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profiles (terminal/network capabilities, user preferences …). 

These peers are interested in different stream scalabilities (i.e. 

different sub-streams). For example, a mobile device is 

interested in a lower spatial resolution, while a TV-set is 

interested in higher spatial resolution. Thus, the requested 

content differs from one peer to another one. Figure 1 shows 

an overview of such configuration. 

 

Figure 1: Distribution of a layered video content in a BitTorrent-like 

peer-to-peer architecture. 

In the following sub-sections, we introduce the necessary 

definitions to formulate our requesting policy (i.e. how the 

pieces are being requested from the P2P network): 

A.1.  Layer-encoded Stream:  

In our architecture, we have considered an SVC video to be 

streamed over the P2P network. The H.264/SVC format 

introduces three types of scalability: 

- Spatial scalability: by layering image resolution, 

- Temporal scalability: by layering the frame rate, 

- Quality scalability: by layering the image compression 

ratio. 

Thus, any combination of the three scalabilities is called a 

“layer”. The first combination of the lower scalabilities is 

called the Base Layer (BL) while the other layers (i.e. other 

combinations) are called Enhancement Layers (ELs) and may 

depend on lower layers in order to be decoded.  

Regarding the SVC bitstream, it can be seen as a collection of 

atomic data pieces named Network Abstraction Layer Units 

(NALUs).  

Figure 2 shows a 3D representation of an SVC stream. In this 

figure, we can see that the stream contains three spatial 

resolutions (QCIF, CIF, 4CIF), four temporal resolutions 

(3.25, 7.5, 15 and 30 fps) and three quality levels (low, 

medium, and high). From this stream we can view any 

combination of the three types of scalability. For example, the 

NALUs that are shown in dark represent the necessary 

NALUs to extract in order to decode a CIF resolution stream 

with 7.5 frames/s and having a medium image quality. 

A.2. Layered Video Pieces:  

A stream map is a data structure that describes the entire SVC 

stream and it contains all the necessary information about all 

the NALUs that form the bitstream. Each piece πj is described 

by its offset oj in the overall stream, its size sj, and the index of 

the layer lj it belongs to (i.e. πj=(oj,sj,lj)).  

 
Figure 2: 3D representation of an SVC bitstream. 

In the other side, the buffer map is a data structure that 

describes the availability of the different pieces (as described 

in the stream map) at a local peer. The buffer map is more 

likely a set of flags that indicate whether the peer has the 

corresponding NALU or not. 

A.3. Peers:  

In our architecture, each peer maintains a set of peers 

},,,,{=Π 321 Npppp K
 
serving the video stream. Each peer 

ip  is associated with information used to estimate its 

reliability 
ir  to deliver the video stream. This information 

includes: (1) the similarity of its buffer map with the local one, 

(2) the ratio of satisfied requests so far and (3) information 

about its uplink capacity. 

A.4. Pieces Availability: 

When a peer connects to the overlay to begin downloading 

the stream, it exchanges a buffer map that indicates the 

availability of the pieces described in the stream map. 

Considering a stream that contains K pieces, then the buffer 

map is as follows: 

else

available is piece the if
bK}b jj

   

0

1
=;j1,  {{  

All the received buffer maps from the peers that belong to 

the same overlay will form a matrix 
KjNi

ijb
1;1

)(  

(where 
ijb indicates the availability of the piece 

jπ
 at the peer

ip ) that we will call further the Piece Map.  

The Piece Map differs from the stream map. The former 

describes the availability of data pieces (NALUs) among the 

peers for the current streaming session while the latter 

describes the stream organization in terms of number of 

layers, index of each NALU, size of NALUs, etc. 

The main goal of our architecture and, especially of our 

new requesting policy, is to achieve efficient requests in the 

network. By efficient requests, we mean: (1) requesting the 

important pieces (i.e. pieces with a lower layer index) from 

reliable peers, (2) reducing the overhead introduced by 

multiple-piece requests, and (3) load balancing the requests of 

different layers from different peers. 
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The SVC Streaming over P2P problem (SSP Problem):  

Given a set of pieces to request from other peers with multi-

pieces requests, the SSP problem is to “pack” these pieces 

into a minimum number of multi-piece requests while 

optimizing the following metrics: (1) the reliability of all the 

requests, (2) the overhead induced by the multi-piece requests, 

and (3) the load balancing of requests among the senders. 

Theorem: The SVC streaming over P2P problem (SSP 

Problem) is NP-Hard. 

Proof:  First we show the problem is NP. The best set of 

requests can be found by going through all the possible 

requests sets, considering only the feasible ones, and assessing 

the “goodness” of each set in order to choose the best among 

them in a polynomial time. Next we show the problem is NP-

Hard. The Bin Packing Problem (BP) can be reduced to the 

SSP problem. Given a set of items },...,i,iI={i N21  of different 

packing cost ic  (volume, size, weight…) and an infinite set
1
 

of bins ,...},bB={b 21  of capacity C  each, a BP formulation is 

to pack all the items in a way that minimizes the number of 

used bins. The SSP problem can be seen as a constrained 

variant of the classical BP problem. Indeed, the SSP 

formulation is to “pack” pieces ip  of different sizes is  into a 

minimum set of requests while aiming at the same time to 

optimize other objectives (i.e. R : Reliability, LB : Load 

Balancing and O : Overhead). The problem instance reduction 

is in fact done by considering an overloaded version of the 

objective function. In the classical formulation of the BP 

problem, the objective function used to evaluate an 

“assignment” A  is the number of used bins U (i.e.
 

UAf =)( ),  while in the SSP problem, the objective 

function considers other parameters in addition to the number 

of “bins” (i.e. requests in the SSP problem), in other words 

),,,()( OLBRUfAf = . Above, we showed that BP can be 

reduced to our problem. Therefore, the SSP problem is also 

NP-Hard. 

B. Harmony Search Heuristic 

Given the NP-Hardness of the SSP problem, we propose a 

heuristic based on Harmony Search (HS) [11]. The idea 

behind the original HS heuristic is the process of searching a 

perfect state of musical harmony where each musician in a 

group plays a note to find the best harmony all together. The 

Harmony Search meta-heuristic exhibits the following 

properties: 

- HS can consider both continuous and discontinuous 

objective functions. 

- HS can handle discrete as well as continuous variables. 

- HS is free from divergence and may escape local optima. 

 
1 Actually, the cardinality of the subset of B  that will be used to pack the 

items in I, is bounded to the number of items in I, i.e., |B| <= |I|. In other 

words, for the worst case, each item is packed into a different bin 

Along these properties, the harmony search heuristic is 

known to be a quick optimization technique in terms of 

necessary iterations to converge to the optimum. Figure 3 

shows the harmony search heuristic applied to the SSP 

problem. Harmony Search algorithm is known to be free from 

parameter setting problem. In fact, the default values [11] are 

often of good choice. 

Harmony_Search_for_SSP (SSP Data) 

SSP inputs: 

- PieceSet: a set of data pieces to request (i.e. NALs) 

- π.Peers / π in PieceSet: a set of peers having piece π  

- Piece-Map: a matrix for the availability of the different 

pieces at the different peers. 

HS inputs (default values): 

- HMS: Harmony Memory Size (default : 20) 

- hmcr: Harmony Memory Choosing Rate (default: 0.80) 

- par: Pitch Adjustment Rate (default : 0.20) 

- Termination Criterion: (default: 10 iterations) 

1. Generate the set HarmonyMemory of size S: 

foreach solution s in HarmonyMemory do 

foreach piece π in s.Pieces do 

Assign piece π to randomly chosen peer p in the set 

π.Peers. 

2. Harmony Search Algorithm: 

repeat : 

Generate a new solution s
*
: 

foreach piece π in PieceSet do 

with probability hmcr do 

Assign piece π to the same peer p in a randomly 

chosen solution s from HarmonyMemory. 

with probability par do 

Assign piece π to a peer p
*
 “similar” to peer p 

within the set π.Peers 

endwith 

endwith 

with probability 1–hmcr do 

Assign piece π to randomly chosen peer p in the set 

π.Peers. 

endwith 

endforeach 

Compare the new solution s
*
 to the worst solution s

∞
 in 

HarmonyMemory: 

if (solution s
*
 “is better than” solution s

∞
) then 

Replace solution s
*
 by solution s

∞
 in the set 

HarmonyMemory. 

endif 

until (termination criterion is satisfied). 

Figure 3: Harmony Search algorithm for the SSP problem. 

B.1. Solution Coding 

A solution to the SSP problem is a set of requests. Each 

request is a collection of information including the peer to 

which it is sent, and the different pieces to request. To apply 

the harmony search algorithm to the SSP problem, we need a 

vector representation of the solution. Thus, we introduce the 

following definitions: 
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Given a set of K pieces to request, ],...,,[ 21 KsssS=  is a 

solution, where is represents the peer from which the piece iπ  

will be requested. Since all the peers do not have the same 

pieces, each is takes a value in a different set rather than the 

global peers set P. We denote this set as Peersiπ . . It represents 

the peers that have the piece iπ . 

Based on a solution vector S , the algorithm will construct the 

requests with respect to the size constraint C  (for example, 

KBC 16=  is the optimal response size in BitTorrent Protocol 

as described in [12][13]). 

B.2. Solution Fitness 

In order to measure the fitness of a SSP solution f(s), we 

compute the following criteria: 

a) Requests Diversity:  

First, the diversity of a single request is computed by eq. 1.  

 
(Eq.  1) 

Where *l  is the dominant layer index in the request iReq  (for 

example, *l  related to the request Req[1,2,3,2,2,3,2] is *l =2). 

L is the highest layer index of the SVC stream and α is a 

constant set to avoid a zero dominator (any α≠1). This 

indicator computes the “distance” between a layer index of a 

piece il and the dominant layer index *l  within a particular 

request, in a way that a larger difference will result in a larger 

“distance”. Moreover, this distance is not the same for two 

layer indexes il  and jl  surrounding *l  (i.e. ji lll <<
*

).  

 
Figure 4: The diversity “distance” for a certain layer l* and the 

other layers in the scalable stream. 

 
Figure 5: The diversity “distance” for all the layers in the 10-layers 

stream. 

We defined this indicator in a way to tolerate diversity with 

lower layer indexes rather than with higher layer indexes. A 

plot of this indicator is given in Figure 4.  

Figure 5 shows this indicator regarding a scalable stream 

composed of 10 layers. The diversity indicator has the 

following properties: 

a) The diversity between *l  and itself is null. 

b) The diversity is proportional to the lag between *l
 
and a 

layer index il . 

c) The diversity is less important with lower layers than 

with higher layers. 

While the first two properties are obvious, the third property is 

driven by the fact that a peer having pieces of layer l* is more 

likely to have lower layers (l < l*) 
than higher layers (l > l*). 

Second, the overall diversity of a SSP solution D(s) is defined 

as follows: 

 
(Eq.  2) 

b) Requests Reliability 

The reliability of a request depends inherently on the 

reliability of the peer to which it is sent and the priority of the 

layers being requested in this request. The reliability of a 

request is computed by equation 3: 

 
(Eq.  3) 

Where, 
*

l  is the priority of the dominant layer index in a 

request. In order to have a monotone increasing function, the 

priority of a layer l is lLl -= (i.e. lower layers are given 

higher priority values, and higher layer are given lower 
priority values). 

Clearly, the reliability of a request is proportional to the 

priority of the dominant layer in the request and the reliability 

of the peer to which this request is sent. A plot of ρ  is given 

in Figure 6 for a scalable stream composed of 15 layers and 

peer reliability ranging from 0% to 100%. This figure shows 

that in the p function, more importance is given to the layer 

priority than to the reliability of the peer. This is because the 

lower layers in a SVC stream are essential for its successful 

decoding. 

The overall reliability of a SSP solution )(sR  is defined as 

follows: 

 
(Eq.  4) 
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Figure 6: The reliability indicator for a 15-layers stream 
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c) Requests Overhead 

In our architecture, we have defined a BitTorrent-like protocol 

for data exchange between the peers. Each data piece, when 

sent to a peer, introduces an overhead (piece index, bloc index, 

offset) while the overhead of a request is defined by the 

request index and the data size. Thus, the overhead of a 

request depends on the number of pieces sent in the response, 

since all these pieces will share the same request header. 

 
(Eq.  5) 

To model overhead, we have also considered the ratio of 

response filling to the optimal response size C. Thus, a 

response to a request that minimizes the overhead will contain 

a great number of pieces while filling the response to its 

optimal size C. 

 
(Eq.  6) 

So the overall overhead for a SSP solution is defined as 

follows:  

 
(Eq.  7) 

Having the entire indicators (i.e. the criteria to optimize), 

we build a simple objective function that is a linear 

combination of all the standardized indicators: request count, 

request diversity, request reliability and request overhead (N, 

D, R and W): 

 
(Eq.  8) 

A simple objective function has the coefficient equal to 1 

which we have utilized in our requesting policy. These 

coefficients can be managed to give more importance to 

certain parameters. 

III. PERFORMANCE EVALUATION 

In order to evaluate the performance of our new requesting 

policy, we carried out some simulation experiments, using a 

real data set. The data set is a snapshot of a P2P network 

streaming a real SVC file. Table 1 summarizes the different 

parameters.  

Data Set Summary 

Number of Layers 
Number of NALs 

Reception Buffer Size 

Total Video Length 

14 Layers 
7030 NALs 

~60 KB 

~60sec 

Table 1: Data Set Information 

The entire piece set was organized into small NALU subsets 

(according to the reception buffer size). For each NALU 

subset we run our pull algorithm (HS), and two other existing 

approaches: (1) the Chunk per Peer (CPP) and the Layer per 

Peer (LPP)[14]. 

In the CPP approach, the NAL units are packed into 

requests with no consideration of their layer; the CPP is 

equivalent to the Best-Fit method in the classical Bin Packing 

Problem [15]. In the LPP approach on the other hand, the 

NALUs are packed into requests according to their layer and 

each request contains only NALUs of the same layer. Figure 7 

shows an example of the generated requests for the three pull 

approaches. 

0 1 2 0 1 2 1 3 0 1 3 0 1 2 3 0 2 0 2 3NAL Subset

CPP Requests

LPP Requests

HS Requests

0 2 0 2 33 0 1 2 32 1 3 0 10 1 2 0 1

0 0 0 0 0 0 1 1 1 1 1 2 2 2 2 2 3 3 33

0 10 20 101 00 21 122 332 3 3  

Figure 7: Generated requests for the three pull approaches. 

For each NALU subset, the three algorithms: HS, CPP, LPP 

output a set of requests considered as a “solution”. This 

solution is then evaluated by computing its overall fitness (i.e. 

score) which is based on the selected optimization indicators 

(Request Count, Request Diversity, Request Reliability, and 

the Request Overhead). The overall objective function (i.e. 

solution fitness) is a linear combination of the different 

standardized indicators (N, D, R and W). These indicators were 

transformed to be always maximized (i.e. to minimize the 

number of request N, we maxmize N).  

Figure 8 shows a plot for the objective function for the three 

approaches. We can see clearly that our pull algorithm 

outperforms the other two algorithms since the HS approach 

optimizes conjointly all the criteria at the same time unlike the 

two other approaches. 

Then, we have separately studied each criterion of the 

objective function; Figure 9 shows a plot of the number of 

generated request per NALU subsets for the three approaches. 

We can see in this figure that our approach generates a number 

of requests that is closest to the optimal number of requests 

achieved here by the CPP approach. Since the CPP approach 

is more likely a file download, the number of its requests is the 

smallest that we can have (see Figure 7). From this figure, we 

can also see that the LPP gives poor results. Indeed, when the 

peers are specialized to different layers, the number of 

requests will considerably grow since each request must have 

the same layer NALUs and requests for NALUs in different 

layers cannot be merged. 

Figure 10, shows a plot of the request reliability indicator. 

In this figure we can see that LPP has the best performance 

since each request contains only NALs of a single layer. This 

results in a greater reliability when requests for lower layers 

are sent to more reliable peers (as performed in the LPP 

approach). However, the HS approach results are quite good 

since the average reliability indicator in the entire data set is 

0.500 (i.e. 50%) and the standard deviation is 0.096 (i.e. 

9.6%). 

Figure 11 shows a plot for the request overhead indicator 

for the three approaches. In this figure, we can see that the 

overhead introduced by our approach is no significantly 

greater than the minimum overhead achieved here by the CPP 

approach. This overhead can be explained by the fact that, 

when trying to form requests in order to optimize all the 

criteria at the same time, NALUs can be assigned to a request 

without filling it to its optimal size (i.e. C=16KB), increasing 
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thus the associated overhead. However this overhead is still 

smaller than the overhead produced by the LPP approach 

 
Figure 8: Objective Function Value per NAUL subset for the three 

pull approaches. 

 
Figure 9: Request count per NAL subset for the three approaches. 

 
Figure 10: Request Reliability Indicator per NAL subset for the three 

pull approaches. 

 
Figure 11: Request Overhead Indicator per NAL subset for the three 

pull approaches. 

 

IV. CONCLUSION 

In this paper, we proposed a new pull approach (HS) for 

efficient layered video content (e.g. SVC bitstream) 

distribution in a mesh-based peer-to-peer architecture. The 

proposed scheme optimizes different distribution criteria such 

as request diversity, request reliability, the number of requests 

and the request overhead. The performance evaluation of HS 

shows comparative results against two existing approaches. 
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