

Scalable Video Streaming over P2P Networks:

A Matter of Harmony?

Samir Medjiah
1
, Toufik Ahmed

1
, Eleni Mykoniati

2
 and David Griffin

2

1
 CNRS-LaBRI University of Bordeaux-1

351, Cours de la Libération

Talence 33405,

France

{medjiah, tad}@labri.fr

2
Department of Electronic and Electrical

Engineering University College London,

Torrington Place, London WC1E 7JE,

United Kingdom

{e.mykoniati, dgriffin}@ee.ucl.ac.uk

Abstract�In this paper we address the problem of efficient

layered video streaming over peer-to-peer networks and we

propose a new receiver-driven streaming mechanism. The main

design goal of our new layered video requesting policy is to

optimize the overall distribution of video streams in terms of

reliability and overhead. Since the layered peer-to-peer

streaming problem is NP-Hard, we show that the classic

approaches widely used in layered P2P streaming systems have

some limitations and we propose an optimization technique based

on harmony search which aims at increasing the rate of

successful data transmissions for the most important video

layers, while reducing the protocol overhead and ensuring load

balancing among the participating peers. Analytical results have

demonstrated that our new requesting policy enhances the

streaming of layered video over mesh-based peer-to-peer

networks and outperforms classic approaches.

Index Terms�P2P Video Streaming; H.264/SVC; Mesh-based

P2P; Pull Delivery; Optimization; Harmony Search;

I. INTRODUCTION

Nowadays, Peer-to-Peer (P2P) video streaming has become

a popular service in the Internet. P2P streaming systems such

as CoolStreaming [1], PPLive [2], UUSee [3], Sop-Cast [4],

and TVAnts [5] attract a lot of users. As more users get used

to viewing multimedia content on-line, they will demand

higher video quality than what is available with current P2P

streaming systems. Providing high-quality streaming over P2P

systems, however, faces multiple challenges, including: (i) the

limited upload capacity of peers, (ii) high heterogeneity of

receivers in terms of download bandwidth, screen resolution,

and CPU capacity, and (iii) high churn rate as the peer

population is constantly changing. Addressing these

challenges requires not only increasing the capacity of peers

and deploying additional seeding servers to make up the

shortage in resources, but also employing novel methods for

encoding and distributing multimedia content and developing

algorithms and protocols to optimally utilize the available

resources.

Most of the currently deployed P2P streaming systems, e.g.,

[1][2][3][4][5], do not use scalable video streams. Thus, they

serve a single version of the video stream to all peers, and

therefore they have limited support for heterogeneous peers.

To address these issues, several studies have proposed P2P

streaming systems with scalable video streams, e.g. [6][7][8]

[9][10]. Cui and Nahrstedt [6] presented an algorithm to

decide at each receiver how to request video layers from a

given set of senders. They assume that layers have equal

bitrate and provide equal video quality. However, in Scalable

Video Coding (H.264/SVC), layers do not have equal bitrate

(spatial scalability enhancement layers may require more

bandwidth than the base layer). Hefeeda and Hsu [7] studied

the problem of video streaming in P2P networks for Fine-

Grained Scalable (FGS) videos, taking into account the rate-

distortion model of the video for maximizing the perceived

quality. Rejaie and Ortega [10] presented a framework for

layered P2P streaming, where a receiver coordinates the

transmission of video packets from multiple senders using a

TCP-friendly congestion control mechanism. The allocation of

seed server resources in P2P streaming systems with scalable

videos has been also considered in [9]. Lan et al. [8] proposed

a scheduling algorithm for peers to request data from senders.

These papers do not consider optimal delivery of data units

in terms of reliability and overhead in case of SVC content

having the following characteristics: (1) Inter-layer

dependency, (2) layers with different and variable bitrates, and

(3) consumers may view different sub-streams of the original

content. In this paper, we considered a mesh-based peer-to-

peer architecture in order to distribute a layered video content

(H.264/SVC). The main idea behind our contribution is the

use of lightweight optimization heuristic in order to perform

efficient content pulling in terms of small network overhead,

reliability and load balancing. The rest of this paper is

organized as follows: section II introduces harmonious

requesting policy, section III presents and discusses the

performance evaluation results and finally, section IV

concludes the paper.

II. HARMONIOUS REQUESTING POLICY

We present in sub-section II.A the problem formulation of

layered video delivery in a mesh-based peer-to-peer

architecture. Given the information at each receiving peer

(pieces to request, neighbouring peers, pieces availability …),

we present a heuristic-based solution to solve the problem in

sub-section II.B.

A. Problem Formulation

An overlay network is constructed upon an SVC stream; the

overlay may be composed of different peers with different

2011 IEEE 16th International Workshop on Computer Aided Modeling and Design of Communication Links and Networks
(CAMAD)

978-1-61284-282-0/11/$26.00 ©2011 IEEE 127

profiles (terminal/network capabilities, user preferences …).

These peers are interested in different stream scalabilities (i.e.

different sub-streams). For example, a mobile device is

interested in a lower spatial resolution, while a TV-set is

interested in higher spatial resolution. Thus, the requested

content differs from one peer to another one. Figure 1 shows

an overview of such configuration.

Figure 1: Distribution of a layered video content in a BitTorrent-like

peer-to-peer architecture.

In the following sub-sections, we introduce the necessary

definitions to formulate our requesting policy (i.e. how the

pieces are being requested from the P2P network):

A.1. Layer-encoded Stream:

In our architecture, we have considered an SVC video to be

streamed over the P2P network. The H.264/SVC format

introduces three types of scalability:

- Spatial scalability: by layering image resolution,

- Temporal scalability: by layering the frame rate,

- Quality scalability: by layering the image compression

ratio.

Thus, any combination of the three scalabilities is called a

“layer”. The first combination of the lower scalabilities is

called the Base Layer (BL) while the other layers (i.e. other

combinations) are called Enhancement Layers (ELs) and may

depend on lower layers in order to be decoded.

Regarding the SVC bitstream, it can be seen as a collection of

atomic data pieces named Network Abstraction Layer Units

(NALUs).

Figure 2 shows a 3D representation of an SVC stream. In this

figure, we can see that the stream contains three spatial

resolutions (QCIF, CIF, 4CIF), four temporal resolutions

(3.25, 7.5, 15 and 30 fps) and three quality levels (low,

medium, and high). From this stream we can view any

combination of the three types of scalability. For example, the

NALUs that are shown in dark represent the necessary

NALUs to extract in order to decode a CIF resolution stream

with 7.5 frames/s and having a medium image quality.

A.2. Layered Video Pieces:

A stream map is a data structure that describes the entire SVC

stream and it contains all the necessary information about all

the NALUs that form the bitstream. Each piece πj is described

by its offset oj in the overall stream, its size sj, and the index of

the layer lj it belongs to (i.e. πj=(oj,sj,lj)).

Figure 2: 3D representation of an SVC bitstream.

In the other side, the buffer map is a data structure that

describes the availability of the different pieces (as described

in the stream map) at a local peer. The buffer map is more

likely a set of flags that indicate whether the peer has the

corresponding NALU or not.

A.3. Peers:

In our architecture, each peer maintains a set of peers

},,,,{=Π 321 Npppp K

serving the video stream. Each peer

ip is associated with information used to estimate its

reliability
ir to deliver the video stream. This information

includes: (1) the similarity of its buffer map with the local one,

(2) the ratio of satisfied requests so far and (3) information

about its uplink capacity.

A.4. Pieces Availability:

When a peer connects to the overlay to begin downloading

the stream, it exchanges a buffer map that indicates the

availability of the pieces described in the stream map.

Considering a stream that contains K pieces, then the buffer

map is as follows:

else

available is piece the if
bK}b jj

0

1
=;j1, {{

All the received buffer maps from the peers that belong to

the same overlay will form a matrix
KjNi

ijb
1;1

)(

(where
ijb indicates the availability of the piece

jπ
 at the peer

ip) that we will call further the Piece Map.

The Piece Map differs from the stream map. The former

describes the availability of data pieces (NALUs) among the

peers for the current streaming session while the latter

describes the stream organization in terms of number of

layers, index of each NALU, size of NALUs, etc.

The main goal of our architecture and, especially of our

new requesting policy, is to achieve efficient requests in the

network. By efficient requests, we mean: (1) requesting the

important pieces (i.e. pieces with a lower layer index) from

reliable peers, (2) reducing the overhead introduced by

multiple-piece requests, and (3) load balancing the requests of

different layers from different peers.

128

The SVC Streaming over P2P problem (SSP Problem):

Given a set of pieces to request from other peers with multi-

pieces requests, the SSP problem is to “pack” these pieces

into a minimum number of multi-piece requests while

optimizing the following metrics: (1) the reliability of all the

requests, (2) the overhead induced by the multi-piece requests,

and (3) the load balancing of requests among the senders.

Theorem: The SVC streaming over P2P problem (SSP

Problem) is NP-Hard.

Proof: First we show the problem is NP. The best set of

requests can be found by going through all the possible

requests sets, considering only the feasible ones, and assessing

the “goodness” of each set in order to choose the best among

them in a polynomial time. Next we show the problem is NP-

Hard. The Bin Packing Problem (BP) can be reduced to the

SSP problem. Given a set of items },...,i,iI={i N21 of different

packing cost ic (volume, size, weight…) and an infinite set
1

of bins ,...},bB={b 21 of capacity C each, a BP formulation is

to pack all the items in a way that minimizes the number of

used bins. The SSP problem can be seen as a constrained

variant of the classical BP problem. Indeed, the SSP

formulation is to “pack” pieces ip of different sizes is into a

minimum set of requests while aiming at the same time to

optimize other objectives (i.e. R : Reliability, LB : Load

Balancing and O : Overhead). The problem instance reduction

is in fact done by considering an overloaded version of the

objective function. In the classical formulation of the BP

problem, the objective function used to evaluate an

“assignment” A is the number of used bins U (i.e.

UAf =)(), while in the SSP problem, the objective

function considers other parameters in addition to the number

of “bins” (i.e. requests in the SSP problem), in other words

),,,()(OLBRUfAf = . Above, we showed that BP can be

reduced to our problem. Therefore, the SSP problem is also

NP-Hard.

B. Harmony Search Heuristic

Given the NP-Hardness of the SSP problem, we propose a

heuristic based on Harmony Search (HS) [11]. The idea

behind the original HS heuristic is the process of searching a

perfect state of musical harmony where each musician in a

group plays a note to find the best harmony all together. The

Harmony Search meta-heuristic exhibits the following

properties:

- HS can consider both continuous and discontinuous

objective functions.

- HS can handle discrete as well as continuous variables.

- HS is free from divergence and may escape local optima.

1 Actually, the cardinality of the subset of B that will be used to pack the

items in I, is bounded to the number of items in I, i.e., |B| <= |I|. In other

words, for the worst case, each item is packed into a different bin

Along these properties, the harmony search heuristic is

known to be a quick optimization technique in terms of

necessary iterations to converge to the optimum. Figure 3

shows the harmony search heuristic applied to the SSP

problem. Harmony Search algorithm is known to be free from

parameter setting problem. In fact, the default values [11] are

often of good choice.

Harmony_Search_for_SSP (SSP Data)

SSP inputs:

- PieceSet: a set of data pieces to request (i.e. NALs)

- π.Peers / π in PieceSet: a set of peers having piece π

- Piece-Map: a matrix for the availability of the different

pieces at the different peers.

HS inputs (default values):

- HMS: Harmony Memory Size (default : 20)

- hmcr: Harmony Memory Choosing Rate (default: 0.80)

- par: Pitch Adjustment Rate (default : 0.20)

- Termination Criterion: (default: 10 iterations)

1. Generate the set HarmonyMemory of size S:

foreach solution s in HarmonyMemory do

foreach piece π in s.Pieces do

Assign piece π to randomly chosen peer p in the set

π.Peers.

2. Harmony Search Algorithm:

repeat :

Generate a new solution s
*
:

foreach piece π in PieceSet do

with probability hmcr do

Assign piece π to the same peer p in a randomly

chosen solution s from HarmonyMemory.

with probability par do

Assign piece π to a peer p
*
 “similar” to peer p

within the set π.Peers

endwith

endwith

with probability 1–hmcr do

Assign piece π to randomly chosen peer p in the set

π.Peers.

endwith

endforeach

Compare the new solution s
*
 to the worst solution s

∞
 in

HarmonyMemory:

if (solution s
*
 “is better than” solution s

∞
) then

Replace solution s
*
 by solution s

∞
 in the set

HarmonyMemory.

endif

until (termination criterion is satisfied).

Figure 3: Harmony Search algorithm for the SSP problem.

B.1. Solution Coding

A solution to the SSP problem is a set of requests. Each

request is a collection of information including the peer to

which it is sent, and the different pieces to request. To apply

the harmony search algorithm to the SSP problem, we need a

vector representation of the solution. Thus, we introduce the

following definitions:

129

Given a set of K pieces to request,],...,,[21 KsssS= is a

solution, where is represents the peer from which the piece iπ

will be requested. Since all the peers do not have the same

pieces, each is takes a value in a different set rather than the

global peers set P. We denote this set as Peersiπ . . It represents

the peers that have the piece iπ .

Based on a solution vector S , the algorithm will construct the

requests with respect to the size constraint C (for example,

KBC 16= is the optimal response size in BitTorrent Protocol

as described in [12][13]).

B.2. Solution Fitness

In order to measure the fitness of a SSP solution f(s), we

compute the following criteria:

a) Requests Diversity:

First, the diversity of a single request is computed by eq. 1.

(Eq. 1)

Where *l is the dominant layer index in the request iReq (for

example, *l related to the request Req[1,2,3,2,2,3,2] is *l =2).

L is the highest layer index of the SVC stream and α is a

constant set to avoid a zero dominator (any α≠1). This

indicator computes the “distance” between a layer index of a

piece il and the dominant layer index *l within a particular

request, in a way that a larger difference will result in a larger

“distance”. Moreover, this distance is not the same for two

layer indexes il and jl surrounding *l (i.e. ji lll <<
*

).

Figure 4: The diversity “distance” for a certain layer l* and the

other layers in the scalable stream.

Figure 5: The diversity “distance” for all the layers in the 10-layers

stream.

We defined this indicator in a way to tolerate diversity with

lower layer indexes rather than with higher layer indexes. A

plot of this indicator is given in Figure 4.

Figure 5 shows this indicator regarding a scalable stream

composed of 10 layers. The diversity indicator has the

following properties:

a) The diversity between *l and itself is null.

b) The diversity is proportional to the lag between *l

and a

layer index il .

c) The diversity is less important with lower layers than

with higher layers.

While the first two properties are obvious, the third property is

driven by the fact that a peer having pieces of layer l* is more

likely to have lower layers (l < l*)
than higher layers (l > l*).

Second, the overall diversity of a SSP solution D(s) is defined

as follows:

(Eq. 2)

b) Requests Reliability

The reliability of a request depends inherently on the

reliability of the peer to which it is sent and the priority of the

layers being requested in this request. The reliability of a

request is computed by equation 3:

(Eq. 3)

Where,
*

l is the priority of the dominant layer index in a

request. In order to have a monotone increasing function, the

priority of a layer l is lLl -= (i.e. lower layers are given

higher priority values, and higher layer are given lower
priority values).

Clearly, the reliability of a request is proportional to the

priority of the dominant layer in the request and the reliability

of the peer to which this request is sent. A plot of ρ is given

in Figure 6 for a scalable stream composed of 15 layers and

peer reliability ranging from 0% to 100%. This figure shows

that in the p function, more importance is given to the layer

priority than to the reliability of the peer. This is because the

lower layers in a SVC stream are essential for its successful

decoding.

The overall reliability of a SSP solution)(sR is defined as

follows:

(Eq. 4)

1500

1250

1000

750

500

250

0

10

20

30

40

50
60

70

90

80

Reliability

Indicator

Peer Reliability
(%

)
Lay

er
In

dex

5
6

7

8
9

10

11

12

14

13

4
3

2

Figure 6: The reliability indicator for a 15-layers stream

() () ()
2

*

j i

i j j

Req

d Req l l L l
p

a
Î

= - -å

0

10

20

30

40

50

60

70

80

90

100

D
is

ta
n
c
e
 (

%
)

Layer[*]

0

5

10

15

20

25

30

35

40

D
is

ta
n
c
e

Layer[0]

Layer[1]

Layer[2]

Layer[3]

Layer[4]

Layer[5]

Layer[6]

Layer[7]

Layer[8]

Layer[9]

() ()
i

i

Req s

D s d Req
Î

= å

() *i iReq l rr = ´

() ()
i

i

Req s

R s Reqr
Î

= å

130

c) Requests Overhead

In our architecture, we have defined a BitTorrent-like protocol

for data exchange between the peers. Each data piece, when

sent to a peer, introduces an overhead (piece index, bloc index,

offset) while the overhead of a request is defined by the

request index and the data size. Thus, the overhead of a

request depends on the number of pieces sent in the response,

since all these pieces will share the same request header.

(Eq. 5)

To model overhead, we have also considered the ratio of

response filling to the optimal response size C. Thus, a

response to a request that minimizes the overhead will contain

a great number of pieces while filling the response to its

optimal size C.

(Eq. 6)

So the overall overhead for a SSP solution is defined as

follows:

(Eq. 7)

Having the entire indicators (i.e. the criteria to optimize),

we build a simple objective function that is a linear

combination of all the standardized indicators: request count,

request diversity, request reliability and request overhead (N,

D, R and W):

(Eq. 8)

A simple objective function has the coefficient equal to 1

which we have utilized in our requesting policy. These

coefficients can be managed to give more importance to

certain parameters.

III. PERFORMANCE EVALUATION

In order to evaluate the performance of our new requesting

policy, we carried out some simulation experiments, using a

real data set. The data set is a snapshot of a P2P network

streaming a real SVC file. Table 1 summarizes the different

parameters.

Data Set Summary

Number of Layers
Number of NALs

Reception Buffer Size

Total Video Length

14 Layers
7030 NALs

~60 KB

~60sec

Table 1: Data Set Information

The entire piece set was organized into small NALU subsets

(according to the reception buffer size). For each NALU

subset we run our pull algorithm (HS), and two other existing

approaches: (1) the Chunk per Peer (CPP) and the Layer per

Peer (LPP)[14].

In the CPP approach, the NAL units are packed into

requests with no consideration of their layer; the CPP is

equivalent to the Best-Fit method in the classical Bin Packing

Problem [15]. In the LPP approach on the other hand, the

NALUs are packed into requests according to their layer and

each request contains only NALUs of the same layer. Figure 7

shows an example of the generated requests for the three pull

approaches.

0 1 2 0 1 2 1 3 0 1 3 0 1 2 3 0 2 0 2 3NAL Subset

CPP Requests

LPP Requests

HS Requests

0 2 0 2 33 0 1 2 32 1 3 0 10 1 2 0 1

0 0 0 0 0 0 1 1 1 1 1 2 2 2 2 2 3 3 33

0 10 20 101 00 21 122 332 3 3

Figure 7: Generated requests for the three pull approaches.

For each NALU subset, the three algorithms: HS, CPP, LPP

output a set of requests considered as a “solution”. This

solution is then evaluated by computing its overall fitness (i.e.

score) which is based on the selected optimization indicators

(Request Count, Request Diversity, Request Reliability, and

the Request Overhead). The overall objective function (i.e.

solution fitness) is a linear combination of the different

standardized indicators (N, D, R and W). These indicators were

transformed to be always maximized (i.e. to minimize the

number of request N, we maxmize N).

Figure 8 shows a plot for the objective function for the three

approaches. We can see clearly that our pull algorithm

outperforms the other two algorithms since the HS approach

optimizes conjointly all the criteria at the same time unlike the

two other approaches.

Then, we have separately studied each criterion of the

objective function; Figure 9 shows a plot of the number of

generated request per NALU subsets for the three approaches.

We can see in this figure that our approach generates a number

of requests that is closest to the optimal number of requests

achieved here by the CPP approach. Since the CPP approach

is more likely a file download, the number of its requests is the

smallest that we can have (see Figure 7). From this figure, we

can also see that the LPP gives poor results. Indeed, when the

peers are specialized to different layers, the number of

requests will considerably grow since each request must have

the same layer NALUs and requests for NALUs in different

layers cannot be merged.

Figure 10, shows a plot of the request reliability indicator.

In this figure we can see that LPP has the best performance

since each request contains only NALs of a single layer. This

results in a greater reliability when requests for lower layers

are sent to more reliable peers (as performed in the LPP

approach). However, the HS approach results are quite good

since the average reliability indicator in the entire data set is

0.500 (i.e. 50%) and the standard deviation is 0.096 (i.e.

9.6%).

Figure 11 shows a plot for the request overhead indicator

for the three approaches. In this figure, we can see that the

overhead introduced by our approach is no significantly

greater than the minimum overhead achieved here by the CPP

approach. This overhead can be explained by the fact that,

when trying to form requests in order to optimize all the

criteria at the same time, NALUs can be assigned to a request

without filling it to its optimal size (i.e. C=16KB), increasing

()
1

i

i

Req s

s P
N

h
Î

= å

()
j i

i j

Req

w Req C s
p Î

= - å

() ()
i

i

Req s

W s w Req
Î

= å

() 1 2 3 4
ˆ ˆ ˆ ˆ. . . .f s N D R Wa a a a= + + +

131

thus the associated overhead. However this overhead is still

smaller than the overhead produced by the LPP approach

Figure 8: Objective Function Value per NAUL subset for the three

pull approaches.

Figure 9: Request count per NAL subset for the three approaches.

Figure 10: Request Reliability Indicator per NAL subset for the three

pull approaches.

Figure 11: Request Overhead Indicator per NAL subset for the three

pull approaches.

IV. CONCLUSION

In this paper, we proposed a new pull approach (HS) for

efficient layered video content (e.g. SVC bitstream)

distribution in a mesh-based peer-to-peer architecture. The

proposed scheme optimizes different distribution criteria such

as request diversity, request reliability, the number of requests

and the request overhead. The performance evaluation of HS

shows comparative results against two existing approaches.

ACKNOWLEDGEMENT

The research leading to these results has received funding

from the European Union's Seventh Framework Programme

(FP7/2007-2013) in the ENVISION project, grant agreement

248565.

REFERENCES

[1] PPLive. http://www.pplive.com/

[2] SopCast. http://www.sopcast.com/

[3] TVAnts. http://www.tvants.com/.

[4] UUSee. http://www.uusee.com/.
[5] X. Zhang, J. Liu, B. Li, and T. Yum. DONet/CoolStreaming: a

data-driven overlay network for live media streaming. In Proc.

of IEEE INFOCOM’05, pages 2102–2111, Miami, FL, March

2005.

[6] Y. Cui and K. Nahrstedt. Layered peer-to-peer streaming. In

Proc. of ACM Workshop on Network and Operating System

Support for Digital Audio and Video (NOSSDAV’03), pages

162–171, Monterey, CA, June 2003.

[7] M. Hefeeda and C. Hsu. Rate-distortion optimized streaming of

fine-grained scalable video sequences. ACM Transactions on

Multimedia Computing, Communications and Applications,

4(1):1–28, January 2008.

[8] X. Lan, N. Zheng, J. Xue, X. Wu, and B. Gao. A peer-to-peer

architecture for efficient live scalable media streaming on

Internet. In Proc. of ACM Multimedia’07, pages 783–786,

Augsburg, Germany, September 2007.

[9] K. Mokhtarian and M. Hefeeda. Efficient allocation of seed

servers in peer-to-peer streaming systems with scalable videos.

In Proc. of IEEE International Workshop on Quality of Service

(IWQoS’09), pages 1–9, Charleston, SC, July 2009.

[10] R. Rejaie and A. Ortega. PALS: peer-to-peer adaptive layered

streaming. In Proc. of ACM International Workshop on Network

and Operating System Support for Digital Audio and Video

(NOSSDAV’03), pages 153–161, Monterey, CA, June 2003.

[11] Z.W. Geem, J.-H. Kim and G.V. Loganathan, A new heuristic

optimization algorithm: harmony search, Simulation 76 (2001)

(2), pp. 60–68.

[12] P. Marciniak, N. Liogkas, A. Legout, and E. Kohler, “Small is

not always Beautiful”. In Proceedings of IPTPS, 2008

[13] BitTorrent Protocol Specification (Version 1.0), Link:

http://wiki.theory.org/BitTorrentSpecification, 2010.

[14] Zhengye Liu; Yanming Shen; Ross, K.W.; Panwar, S.S.; Yao

Wang, "LayerP2P: Using Layered Video Chunks in P2P Live

Streaming," Multimedia, IEEE Transactions on, vol.11, no.7,

pp.1340-1352, Nov. 2009.

[15] D. S. Johnson. Fast algorithms for bin-packing. J. Computer.

System Science, 8:272–314, 1974.

0,000

0,200

0,400

0,600

0,800

1,000

1,200

1 60

F
it

n
e
s
s
 I

n
d

ic
a
to

r

Time (sec)

Solution Fitness

HS
CPP
LPP

0

10

20

30

40

50

60

1 60

R
e
q

u
e
s
t

C
o

u
n

t
(u

n
it

s
)

Time (sec)

Requests Count

HS

CPP

LPP

0,000

0,100

0,200

0,300

0,400

0,500

0,600

0,700

0,800

0,900

1,000

1 60

R
e
li
a
b

il
it

y
 I

n
d

ic
a
to

r

Time (sec)

Request Reliability

HS
CPP
LPP

0,000

0,100

0,200

0,300

0,400

0,500

0,600

0,700

0,800

0,900

1,000

1 60

O
v
e
rh

e
a
d

 I
n

d
ic

a
to

r

Time (sec)

Request Overhead

HS
CPP
LPP

132

