
Scalable Virtual Machine Storage using Local Disks

Jacob Gorm Hansen
VMware

Aarhus, Denmark
jgorm@vmware.com

Eric Jul
Bell Laboratories

Alcatel-Lucent, Dublin, Ireland
eric@cs.bell-labs.com

ABSTRACT
In virtualized data centers, storage systems have tradition-
ally been treated as black boxes administered separately
from the compute nodes. Direct-attached storage is often
left unused, to not have VM availabilty depend on individ-
ual hosts. Our work aims to integrate storage and com-
pute, addressing the fundamental limitations of contempo-
rary centralized storage solutions. We are building Lithium,
a distributed storage system designed specifically for virtu-
alization workloads running in large-scale data centers and
clouds. Lithium aims to be scalable, highly available, and
compatible with commodity hardware and existing appli-
cation software. The design of Lithium borrows techniques
from Byzantine Fault Tolerance, stream processing, and dis-
tributed version control software, and demonstrates their
practical applicability to the performance-sensitive task of
virtual machine storage.

Categories and Subject Descriptors
D.4.3 [Operating Systems]: File Systems Management—
Distributed file systems; D.4.5 [Operating Systems]: Re-
liability—Fault-tolerance

General Terms
Design, Experimentation, Performance, Reliability

1. INTRODUCTION
Cloud computing has motivated a new breed of distributed
storage systems that trade backwards-compatibility for bet-
ter scalability and the ability to run reliably on cheap com-
modity hardware. To reduce cost, reliability is achieved
in software, for instance by using replication and integrity-
preserving techniques such as strong checksums and crypto-
graphic signatures. While interesting for new applications
written specifically for deployment in the cloud, few of these
new systems have been able to provide the throughput or
consistency guarantees needed to act as primary storage for
legacy applications running in virtual machines (VMs), for
instance on VMware’s ESX platform. Because they provide
backwards-compatible disk semantics with high throughput
and enable virtualization features like live VMmigration [11,
3], shared storage (SAN or NAS) disk arrays prevail in the
modern enterprise.

Virtualization in data centers was initially for consolidation
of few server VMs with high throughput demands, but is now
increasingly used to host many smaller VMs, for instance

to provide hundreds or thousands of employees with VM-
backed thin client desktops. Here, per-VM storage through-
put requirements are modest (users expect performance sim-
ilar to a laptop drive), but the ability to scale incrementally
and tolerate bursty access patterns, such as when all VMs
are powered on Monday morning, becomes important. In
such scenarios, access to shared storage often becomes a bot-
tleneck. To provide better scalability, and to bridge the cur-
rent gap between VMs and low-cost cloud storage, we have
designed and built Lithium. Lithium is a distributed stor-
age system for VMs with many of the features that shared
storage users have come to expect, such as clones and snap-
shots and support for seamless VM migration. Lithium
makes VM storage location-independent and exploits the
local storage capacity of compute nodes, to allow installa-
tions to grow incrementally and to reduce cost compared
with non-commodity shared storage hardware. The system
is aimed at applications such as virtual desktop serving, and
for deployment in large-scale data centers such as those of
cloud providers. It consists of a replication-optimized log-
structured storage engine, and of a set of network protocols
for managing replica consistency and failover in decentral-
ized manner, without scalability bottlenecks or single points
of failure.

The rest of this paper is laid out as follows: section 2 fur-
ther motivates our approach, section 3 describes Lithium’s
overall design, data format, and replica consistency proto-
cols, and section 4 describes our prototype implementation
for the VMware ESX platform. Section 5 compares the per-
formance of our prototype against an enterprise class Fibre
Channel disk array, and section 6 concludes. This paper is
a condensed and updated version of [5], and the reader is
referred to that paper for additional implementation details
and a full discussion of related work.

2. BACKGROUND
This work describes a distributed system that provides vir-
tual block storage for a potentially large set of VMs running
in an enterprise or cloud hosting data center. The aim is
not to replace high-end storage arrays for applications that
require the combined throughput of tens or hundreds of disk
spindles, but rather to address the scalability and reliabil-
ity needs of many smaller VMs that individually would run
acceptably from one or a few local disk drives, but today re-
quire shared storage for taking advantage of features such as
live VM migration. To provide location-independence and
reliability, Lithium uses peer-to-peer replication at the gran-

71

ularity of individual VM disk writes, and its design is based
on the following set of observations:

• Replication often leads to write bias, and virtualiza-
tion, where each physical disk is shared by multiple
concurrently running VMs, often destroys access lo-
cality. This makes exploiting disk bandwidth difficult,
because most physical disk accesses end up being ran-
dom.

• The need for supporting parallel IOs, for performance,
may result in replica inconsistencies due to disk sched-
ulers arbitrarily reordering writes.

• Non-dedicated networks may experience transient out-
ages or throughput degradation that, if not masked,
may cause VMs to throw timeouts or other errors back
at the user. With today’s high network transmission
speeds and huge disk capacities, the risk of silent data
corruption cannot be ignored either.

Based on the above, we decided to design Lithium to more
resemble a message server or streaming database than a tra-
ditional file system. To make most of disk bandwidth, and
to counter the non-determinism caused by unpredictable IO
schedulers, we concluded that Lithium would need to store
its data in a write-optimized, log-structured format, with
explicitly ordered updates protected by strong checksums.
Such as format would also support tunable degrees of replica
consistency, to allow users to trade consistency for availabil-
ity and performance when appropriate.

3. DESIGN
Lithium is a scalable distributed storage system optimized
for the characteristics of virtual machine IO: random and
mostly exclusive block accesses to large and sparse virtual
disk files. For scalability reasons, Lithium does not provide
a globally consistent POSIX name space, but names stor-
age objects in a location-independent manner using globally
unique incremental state hashes, similar to a key-value store
but where each value is a large 64-bit address space, or vol-
ume. VMs see only a virtual disk abstraction, which they
can format, e.g., using a traditional file system or on which
a database can be stored.

Lithium supports instant volume creation with lazy space
allocation, instant creation of writable snapshots, and repli-
cation of volumes and snapshots with tunable consistency
ranging from per-update synchronous replication to even-
tual consistency modes that allow VMs to remain available
during periods of network congestion or disconnection.

Lithium’s underlying data format is self-certifying and self-
sufficient, in the sense that data can be stored on unreliable
hosts and disk drives without fear of silent data corruption,
and all distributed aspects of the protocol are persisted as
part of the core data format. This means that Lithium can
function independently, without reliance on any centralized
lock management or meta-data service, and can scale from
just a couple of hosts to a large cluster.

Lithium consists of a kernel module for the VMware ESX
hypervisor, and of a number of small user space tools that

Figure 1: The components of Lithium on each host.
VMs access the Lithium kernel module inside ESX
through a virtual SCSI interface, and the user space
replication agent and management tools append to
the log through a special device node.

handle volume creation, branching, and replication. Fig-
ure 1 shows the main components installed on a Lithium-
enabled host. All data is made persistent in a single on-
disk log-structure that is indexed by per-volume B-trees, to
allow for random access reads. The kernel module handles
performance-critical network and local storage management,
while user space processes are responsible for policy-driven
tasks such as volume creation, branching, replication, mem-
bership management, and fail-over. This split responsibili-
ties design allows for more rapid development of high-level
policy code, while retaining performance on the critical data
path.

Like in a modern file system, space for volumes is allocated
lazily when blocks are written, however, volumes differ from
files in that their names are 160-bit unique identifiers chosen
at random from a single flat name space, instead of paths
that point to physical hosts or disk drives. There is no
need for a global, hierarchical name space, and no global
meta-data server that could become a bottleneck or single
point of failure. Volumes are self-describing and location-
independent, and can be easily replicated and migrated be-
tween hosts.

All writes to a given volume are logged to disk, and the loca-
tion of the logical blocks written recorded in that volume’s
B-tree. Each write in the log is prefixed by a commit header
with a strong checksum, update ordering information, and
the logical block addresses affected by the write. Log entries
can optionally be forwarded to other hosts for replication,
and replica hosts maintain their own log and a B-tree for
each replicated volume. The same data format is used on
disk and wire.

A new volume can be created on any machine by appending
an appropriate log entry to the local log. To avoid the vol-
ume being lost if the host crashes immediately, volume cre-
ation and other operations that modify the volume’s replica
set are implemented as distributed transactions using two-
phase commit across the affected hosts. Once created, the
new volume is identified by a permanent unique base id and
a current version id, calculated as the incremental hash of

72

all updates in the volume’s history. Replica consistency can
be verified quickly by simple comparison of version ids.

Hosts communicate over HTTP. Other hosts can create
replicas of a volume merely by connecting to a tiny HTTP
server inside the Lithium kernel module. They can sync
up from a given version id, and when completely synced,
the HTTP connection switches over to synchronous replica-
tion. As long as the connection remains open, the volume
replicas stay tightly synchronized. Hosts without a volume
replica can access the volume remotely using HTTP byte-
range PUT and GET commands. The use of HTTP makes
Lithium simple to integrate with other Cloud storage sys-
tems such as Amazon S3, and allows immutable VM images
to be served from standard web servers like Apache. A sim-
ple distributed hash table (DHT) is used for keeping track
of all volume replicas in the system.

A host within the replica set is selected to be the primary (or
owner) for that volume. The primary serializes access, and
is typically the host where the VM is running. Ownership
can be transferred seamlessly to another replica, which then
becomes the new primary. The integrity and consistency
of replicas is protected by a partially ordered data model
known as fork-consistency, described next.

3.1 Fork-consistent Replication
Logged updates in Lithium form a hash-chain, with individ-
ual updates uniquely identified and partially ordered using
cryptographic hashes of their contexts and contents. Use
of a partial rather than a total ordering removes the need
for a central server acting as a coordinator for update ver-
sion numbers, and allows for simple distributed branching
of storage objects, which in a storage system is useful for
cloning and snapshotting of volumes. The use of strong
checksums of both update contents and the accumulated
state of the replication state machine allows for easy de-
tection of replica divergence and integrity errors (“forks”).
Each update has a unique id and a parent id, where the
unique id is computed as a secure digest of the parent id
concatenated with the contents of the current update, i.e.,
id = h(parentid||updatecontents), where h() is the secure
digest implemented by a strong hash function (SHA-1 in
our implementation). By having updates form a hash-chain
with strong checksums, it becomes possible to replicate data
objects onto untrusted and potentially Byzantine hardware;
recent studies have found such Byzantine hardware surpris-
ingly common [2]. Figure 2 shows how each volume is stored
as a chain of updates where the chain is formed by backward
references to parent updates. Fork-consistency allows a vir-
tual disk volume to be mirrored anywhere, any number of
times, and allows anyone to clone or snapshot a volume with-
out coordinating with other hosts. Snapshots are first-class
objects with their own unique base and version ids.

3.2 Replica Consistency
State-machine replication systems have been studied ex-
tensively and the theory of their operation is well under-
stood [14]. In practice, however, several complicating factors
make building a well-performing and correct VM disk repli-
cation system less than straight-forward. Examples include
parallel queued IOs that in combination with disk scheduler
nondeterminism can result in replica divergence, and net-

work and disk data corruption that if not checked will result
in integrity errors propagating between hosts. Finally, the
often massive sizes of the objects to be replicated makes full
resynchronization of replicas, for instance to ensure consis-
tency after a crash, impractical.

In a replication system that updates data in place, a two-
phase commit (2PC) is necessary to avoid replica diver-
gence. Updates are first logged out-of-place at all replicas,
and when all have acknowledged receipt, the head node tells
them to destructively commit. Unfortunately, 2PC proto-
cols suffer a performance overhead from having to write ev-
erything twice. If 2PC is not used, a crash can result in not
all replicas applying updates that were in flight at the time
of the crash. It is acceptable for the replicas to diverge, as
long as the divergence is masked or repaired before data is
returned to the application. In practice, this means that the
cost of 2PC can be avoided as long as replicas are properly
resynchronized after a crash. Previous replication systems
such as Petal [9] have used a bitmap of unstable disk re-
gions, to avoid having to resynchronize entire disks after a
crash. Unfortunately bitmaps can be impractical for high-
degree replication. Instead, Lithium uses update logging to
also support Bayou-like eventual consistency [15].

The Lithium replication mechanism is similar to the first
phase of 2PC in that updates are logged non-destructively.
Once an update has been logged at a quorum of the replicas,
the write IO is acknowledged back to the application VM.
In eventual-consistency mode, IOs are acknowledged when
they complete locally. Because updates are non-destructive,
crashed or disconnected replicas can sync up by replay-
ing of missing log updates from peers. Data lives perma-
nently in the log, so the protocol does not require a separate
commit-phase. Writes are issued and serialized at the pri-
mary replica, typically where the VM is running. We make
the simplifying assumption that writes always commit to
the primary’s log, even when the VM tries to abort them
or the drive returns a non-fatal error condition. We catch
and attempt to repair drive errors (typically retry or busy
errors) by quiescing IO to the drive and retrying the write,
redirecting to another part of the disk, if necessary. This
assumption allows us to issue IO locally at the primary and
to the replicas in parallel.

Multiple IOs can be issued in parallel, a requirement for
exploiting the full disk bandwidth. The strong checksum
in our disk format commit headers ensures that incomplete
updates can be detected and discarded. This means that
we do not require a special “end-of-file” symbol: we recover
the end of the log after a crash simply by rolling forward
from a checkpoint until we encounter an incomplete update.
To avoid problems with “holes” in the log, writes are always
acknowledged back to the VM in log order, even if reordered
by the drive. For mutable volumes, reads are always han-
dled at the primary, whereas immutable (snapshot) volumes
can be read-shared across many hosts. The on-disk format
guarantees temporal ordering, so it is trivial to find the most
recent out of a set of replicas, and to emulate disk semantics
it is always safe to roll a group of replicas forward to the
state of the most recent one. We use an access token, de-
scribed in section 3.4, to ensure replica freshness and mutual
exclusion.

73

a0 a1 a2 a3 . . . an

b0 b1 b2

p = a0 p = a1 p = a2 p = a3 p = an−1

p =
a
1

p = b0 p = b1

Figure 2: Partial update ordering and branches in a traditional fork-consistent system. The partial ordering
is maintained through explicit “parent” back-references, and branches can be expressed by having multiple
references to the same parent.

3.3 Log-structured Volumes
On each host, Lithium exposes a single on-disk log-structure
as a number of volumes. Each entry in the log updates ei-
ther block data or the meta-data of a volume. The state of
each volume equals the sum of its updates, and a volume
can be recreated on another host simply by copying its up-
date history. Each host maintains per-volume B-tree indexes
to support random access reads from each volume’s 64-bit
block address space. Volumes can be created from scratch,
or as branches from a base volume snapshot. In that case,
multiple B-trees are chained, so that reads “fall through”
empty regions in the children B-trees and are resolved re-
cursively at the parent level. Branching a volume involves
the creation of two new empty B-trees, corresponding to the
left and right branches, a near-instant operation. Unwritten
regions consume no B-tree or log space, so there is no need
to pre-allocate space for volumes or to zero disk blocks in the
background to prevent information leakage between VMs.

The disk log is the only authoritative data store used for
holding hard state that is subject to replication. All other
state is host-local soft-state that in the extreme can be recre-
ated from the log. As such, Lithium may be considered a
log-structured file system (LFS) [13] or a scalable collec-
tion of logical disks [4]. Log-structuring is still regarded by
many as a purely academic construct hampered by clean-
ing overheads and dismal sequential read performance. For
replicated storage, however, log-structuring is attractive be-
cause it preserves the temporal order of writes, and because
it improves write throughput compared to in-place layouts.

Non-destructive, temporally ordered writes simplify the im-
plementation of an eventually consistent [15] replication sys-
tem, for instance to support disconnected operation [7] or
periodic asynchronous replication to off-site locations. Write
throughput is important because replication often results in
write-bias. For example, a workload with a read-skewed
2:1 read-to-write ratio without replication is transformed
to a write-skewed 3:2 write-to-read ratio by triple repli-
cation. Furthermore, parallel replication of multiple vir-
tual disk update streams exhibits poor locality because each
stream wants to position the disk head in its partition of the
physical platter, but with a log-structured layout all repli-
cation writes can be made sequential, fully exploiting disk
write bandwidth. Other methods, such as erasure-coding
or de-duplication, can reduce the bandwidth needs, but do
not by themselves remedy the disk head contention prob-
lems caused by many parallel replication streams. While
it is true that sequential read performance may be nega-
tively affected by log-structuring, large sequential IOs are
rare when multiple VMs compete for disk bandwidth. A re-

cent study [10] also indicated that the general write-to-read
ratio tends to be increasing. This may be due to a trend
towards more archival storage, or to programmers getting
better at working around the exponentially widening gap be-
tween CPU and disk performance. Finally, log-structuring
can help overcome some of the inherent limitations of Flash-
based storage devices, as described in [1].

The downside to log-structuring is that it creates additional
fragmentation, and that a level of indirection is needed to
resolve logical block addresses into physical log offsets. In-
terestingly, when we started building Lithium, we did not
expect log-structured logical disks to perform well enough
for actual hosting of VMs, but expected them to run only as
live write-only backups at replicas. However, we have found
that the extra level of indirection rarely hurts performance,
and now use the log format both for actual hosting of VMs
and for their replicas.

3.4 Mutual Exclusion
We have already described the fork-consistency model that
uses cryptographic checksums to prevent silent replica diver-
gence as a result of silent data corruption, and that allows
branches of volumes to be created anywhere and treated as
first-class replicated objects. We now describe our exten-
sions to fork consistency that allow us to emulate shared-
storage semantics across multiple volume replicas, and that
allow us to deal with network and host failures. While such
functionality could also have been provided through an ex-
ternal service, such as a distributed lock manager, a mech-
anism that is integrated with the core storage protocol is
going to be more robust, because a single mechanism is re-
sponsible for ordering, replicating, and persisting both data
and mutual exclusion meta-data updates. This is imple-
mented as an extension to the fork-consistency protocol by
adding the following functionality:

• A mutual exclusion access token constructed by aug-
menting the partial ordering of updates, using one-
time secrets derived from a single master key referred
to as the secret view-stamp.

• A fallback-mechanism that allows a majority quorum
of the replicas to recover control from a failed primary
by recovering the master key through secret sharing
and a voting procedure.

3.4.1 Access Token
For emulating the semantics of a shared storage device, such
as a SCSI disk connected to multiple hosts, fork-consistency
alone is insufficient. VMs expect either “read-your-writes

74

consistency”, where all writes are reflected in subsequent
reads, or the weaker “session-consistency”, where durability
of writes is not guaranteed across crashes or power losses
(corresponding to a disk controller configured with write-
back caching). In Lithium, the two modes correspond to
either synchronous or asynchronous eventually-consistent
replication. In the latter case, we ensure session consistency
by restarting the VM after any loss of data.

Our SCSI emulation supports mutual exclusion through the
reserve and release commands that lock and unlock a vol-
ume, and our update protocol implicitly reflects ownership
information in a volume’s update history, so that replicas
can verify that updates were created by a single exclusive
owner. To ensure that this mechanism is not the weakest
link of the protocol, we require the same level of integrity
protection as with regular volume data. To this end, we in-
troduce the notion of an access token, a one-time secret key
that must be known to update a volume. The access token
is constructed so that only an up-to-date replica can use it
to mutate its own copy of the volume. If used on the wrong
volume, or on the wrong version of the correct volume, the
token is useless.

Every time the primary replica creates an update, a new se-
cret token is generated and stored locally in volatile memory.
Only the current primary knows the current token, and the
only way for volume ownership to change is by an explicit
token exchange with another host. Because the token is a
one-time password, the only host that is able to create valid
updates for a given volume is the current primary. Replicas
observe the update stream and can verify its integrity and
correctness, but lack the necessary knowledge for updating
the volume themselves. At any time, the only difference be-
tween the primary and the replicas is that only the primary
knows the current access token.

The access token is constructed on top of fork-consistency
by altering the partial ordering of the update hash chain.
Instead of storing the clear text id of a version in the log
entry, we include a randomly generated secret view-stamp s
in the generation of the id for an update, so that

instead of: id = h(parentid||update)
we use: id = h(s||parentid||update)

where h is our strong hash function. The secret view-stamp s
is known only by the current primary. In the update header,
instead of storing the clear text value of id, we store h(id)
and only keep id in local system memory (because h() is
a strong hash function, guessing id from h(id) is assumed
impossible). Only in the successor entry’s parentid field do
we store id in clear text. In other words, we change the
pairwise ordering

from: a < b iff a.id = b.parentid
to: a < b iff a.id = h(b.parentid)

where < is the direct predecessor relation. The difference
here being that in order to name a as the predecessor to
b, the host creating the update must know a.id, which only

the primary replica does. Other hosts know h(a.id), but not
yet a.id. We refer to the most recent id as the secret access
token for that volume. The randomly generated s makes
access tokens unpredictable. While anyone can replicate a
volume, only the primary, which knows the current access
token id, can mutate it. Volume ownership can be passed to
another host by exchange of the most recent access token.
Assuming a correctly implemented token exchange protocol,
replica divergence is now as improbable as inversion of h().
Figure 3 shows how updates are protected by one-time secret
access tokens. The new model still supports decentralized
branch creation, but branching is now explicit. When the
parent for an update is stated as described above, the update
will be applied to the existing branch. If it is stated as in
the old model, e.g., b.parentid = a.id, then a new branch
will be created and the update applied there.

3.4.2 Automated Fail-over
A crash of the primary results in the loss of the access token,
rendering the volume inaccessible to all. To allow access to
be restored, we construct on top of the access token a view-
change protocol that allows recovery of s by a remaining
majority of nodes. A recovered s can be used to also re-
cover id. To allow recovery of s, we treat it as a secret
view-stamp [12], or epoch number, that stays constant as
long as the same host is the primary for the volume, and we
use secret sharing to disperse slices of s across the remain-
ing hosts. Instead of exchanging the access token directly,
volume ownership is changed by appending a special view-
change record to the log. The view-change record does not
contain s but its public derivate h(s), along with slices of
s, encrypted under each replica’s host key. Thus h(s) is the
public view-stamp identifying that view.

If a host suspects that the current primary has died, it gen-
erates a new random s′ and proposes the corresponding view
h(s′) to the others. Similar to Paxos [8], conflicting propos-
als are resolved in favor of the largest view-stamp. Hosts
cast their votes by returning their slices of s, and whoever
collects enough slices to recover s wins and becomes the new
primary. The new primary now knows both s and s′ so it
can reconstruct id using the recovered s, and append the
view-change that changes the view to h(s′). When there is
agreement on the new view, IO can commence. The former
s can now be made public to revoke the view h(s) every-
where. If there are still replicas running in the former view
h(s), the eventual receipt of s will convince them that their
views are stale and must be refreshed. Should the former
primary still be alive and eventually learn s, it knows that
it has to immediately discard of its copy of the VM and any
changes made (if running in eventual consistency mode) af-
ter the point of divergence. Discarding and restarting the
VM in this case ensures session-consistency.

The use of the secret token protects against replica diver-
gence as a result of implementation or data corruption er-
rors. Prevention against deliberate attacks would require
signing of updates, which is straightforward to add. Using
signatures alone is not enough, because a signature guar-
antees authenticity only, not freshness or mutual exclusion
as provided by the access token. We have found that ac-
cess tokens are a simple and practical alternative to central-
ized lock servers. During development, the mechanism has

75

h(a0) h(a1) h(a2) h(a3) . . . h(an)

h(b0) h(b1) h(b2)

p = a0 p = a1 p = a2 p = a3 p = an−1

p =
h(a

1)

p = b0 p = b1

Figure 3: Update ordering and branches in Lithium. In contrast to the original fork-consistent model in
Figure 2, appending an update to an existing branch requires knowledge of its clear-text id to state it as a
parent reference. Branching is an explicit but unprivileged operation.

struct LogHeader {
hash parent id , id , checksum ;
u in t64 t f i r s tB l o c k , numBlocks ;
b i t b i tVector [maxBlocksPerUpdate] ; } ;

Figure 4: Format of the log entry header. The bit
vector is used for zero block compression.

helped identify several implementation and protocol errors
by turning replica divergence into a fail-stop condition.

4. IMPLEMENTATION DETAILS
Lithium treats each local storage device as a single log that
holds a number of virtual volumes. Write operations trans-
late directly into synchronous update records in the log, with
the on-disk location of the update data being recorded in a
B-tree index. The update may also propagate to other hosts
that replicate the particular volume. Depending on config-
uration, the write is either acknowledged back to the VM
immediately when the update is stable in the local log, or
when all or a quorum of replicas have acknowledged the up-
date. The first mode allows for disconnected operation with
eventual consistency, while the second mode corresponds to
synchronous replication.

When storing data on disk and when sending updates over
the wire, the same format is used. A 512-byte log entry com-
mit header describes the context of the update (its globally
unique id and the name of its parent), the location of the up-
date inside the virtual disk’s 64-bit address space, the length
of the extent, and a strong checksum. The rest of the header
space is occupied by a bit vector used for compressing away
zero blocks, both to save disk space and network bandwidth
(in practice, this often more than offsets the cost of commit
headers), and to simplify log-compaction. The header defi-
nition is shown in figure 4. For practical reasons, the on-disk
log is divided into fixed size segments of 16MB each.

4.1 B-tree Indexes
Applications running on top of Lithium are unaware of the
underlying log-structure of physical storage, so to support
random access reads, Lithium needs to maintain a live in-
dex that maps between the logical block addresses (LBAs)
used by VMs, and the actual physical locations of the data
on disk. This index could be implemented as a per-volume
lookup table with an entry for each logical block number
in the volume, but because each Lithium volume is a 64-
bit block address space, a lookup table might become pro-
hibitively large. Instead, Lithium uses a 64-bit extent in-

Workload Type Avg.len Overhead

Windows XP (NTFS) FS 29.9 0.26%
IOZone (XFS) FS 33.8 0.23%
PostMark (XFS) FS 61.8 0.13%
DVDStore2 (MySQL) DB 24.0 0.33%
4096-byte random Synthetic 8.0 0.98%
512-byte random Synthetic 1.0 7.81%

Table 1: Average extent sizes and worst-case B-tree
memory overhead for different workloads.

dexed B-tree to track logical block locations in the log.
The B-tree is a more complex data structure than a simple
lookup table or a radix tree, but is also more flexible, and
designed to perform well on disk. The B-tree index does
not track individual block locations, but entire extents. If
a VM writes a large file into a single contiguous area on
disk, this will be reflected as just a single key in the B-tree.
Figure 5 shows an example B-tree index with block ranges
that correspond to different log entries. In the pathological
worst case, the VM may write everything as tiny, random
IOs, but we have found that on average the use of extents
provides good compression. For instance, a base Windows
XP install has an average extent length of 29.9 512-byte disk
sectors. Each B-tree extent key is 16 bytes plus 4 bytes for
each child pointer, and B-tree nodes are always at least half
full. In this case the space overhead for the B-tree is at most
(16+4)×2
512∗29.9 ≈ 0.26% of the disk space used by the VM. Table 1
lists the average extent sizes and resulting B-tree memory
overheads we have encountered during development, along
with the pathological worst cases of densely packed 4kB and
512B completely random writes. Guest OS disk schedulers
attempt to merge adjacent IOs, which explains the large av-
erage extent sizes of the non-synthetic workloads. B-tree
nodes are paged and cached in main memory, and as long
as a similar percentage of the application’s disk working set
fits in the cache, performance is largely unaffected by the
additional level of indirection.

We carefully optimized the B-tree performance: Most IO
operations are completely asynchronous, the tree has a
large fan-out (over 1,600 keys per tree node), and updates
are buffered and applied in large batches to amortize IO
costs. The B-tree uses copy-on-write updates and is crash-
consistent. B-trees are not replicated, but if two hosts repli-
cate the same volume, they will end up with similar B-trees.
The B-trees are always kept up to date at all replicas, to
allow control of a volume to migrate to another replica in-
stantly. Periodic checkpoints ensure constant time restart
recovery.

76

3 6 2 - 3 7 0 = 6 6 4 9 - 6 5 1 = 5

6 7 - 6 9 = 1 5 1 7 2 - 1 7 9 = 1 0 3 8 6 - 3 8 9 = 4 5 4 0 - 5 4 7 = 9 7 7 7 - 7 8 2 = 2 7 9 3 - 7 9 9 = 3

1 1 - 1 4 = 2 0 2 2 - 3 1 = 1 7 6 9 - 7 7 = 1 8 2 1 1 - 2 2 0 = 1 1 3 8 3 - 3 8 6 = 1 3 8 9 - 3 9 0 = 1 3 9 3 - 4 0 0 = 1 9 5 6 7 - 5 7 7 = 1 2 6 9 0 - 7 0 0 = 7 7 6 3 - 7 7 0 = 8 7 8 2 - 7 8 3 = 1 3 8 6 2 - 8 6 6 = 1 4 9 2 9 - 9 3 2 = 1 6

Figure 5: Simplified example of the B-tree used for mapping logical block offsets to version numbers in the
log. Block number 765 would resolve to revision number 8, and block 820 would return NULL, indication that
the block were empty. Multiple trees can be chained together, to provide snapshot and cloning functionality.

4.2 Log Compaction
A local log compactor runs on each host in parallel with
other workloads, and takes care of reclaiming free space as
it shows up. Free space results from VMs that write the
same logical blocks more than once, and the frequency with
which this occurs is highly workload-dependent. Free space
is tracked per log-segment in an in-memory priority queue,
updated every time a logical block is overwritten in one of
the volume B-trees, and persisted to disk as part of periodic
checkpoints. When the topmost n segments in the queue
have enough free space for a compaction to be worthwhile,
the log compactor reads those n segments and writes out at
most n−1 new compacted segments, consulting the relevant
B-trees to detect unreferenced blocks along the way. Unref-
erenced blocks are compressed away using the zero block bit
vector described previously. The log compactor can operate
on arbitrary log segments in any order, but preserves the
temporal ordering of updates with pointer records as not to
conflict with eventual consistency replication. Compaction
works on entire 16MB log segments, to make the most of
disk bandwidth and minimize workload interference. In a
real deployment, one would likely want to exploit diurnal
workload patterns to run the compaction only when disks
are idle, but in our experiments, we run the compactor as
soon as enough free space is available for compaction to be
worthwhile.

Due to compaction, a lagging replica that syncs up from a
compacted version may not see the complete history of a
volume, but when the replica has been brought up to the
compacted version, it will have a complete and usable copy.
Though we remove overwritten data blocks, we currently
keep their empty update headers to allow lagging replicas
to catch up from arbitrary versions. In the future, we plan
to add simple checkpoints to our protocol to avoid storing
update headers perpetually.

4.3 POSIX Interface
Lithium provides block-addressable object storage, but by
design does not expose a global POSIX name space. Like
shared memory, faithfully emulating POSIX across a net-
work is challenging and introduces scalability bottlenecks
that we wish to avoid. The VMs only expect a block-
addressable virtual disk abstraction, but some of the tools
that make up our data center offering need POSIX, e.g.,
for configuration, lock, and VM-swap files. Each VM has
a small collection of files that make up the runtime and
configuration for that VM, and these files are expected to
be kept group-consistent. For convenience, we provide the
option of formatting a Lithium volume using a tiny POSIX-
compatible file system that can host the set of of files belong-

ing to a VM, similar to a fileset in AFS [6]. Initial lookups
for a volume are resolved through the DHT, where after the
volume gets auto-mounted and can be accessed directly by
VMs and local applications.

5. EVALUATION
Our evaluation focuses on the performance of the prototype
when configured for synchronous 2 and 3-way replication.
To measure the performance of our prototype we ran the
following IO benchmarks:

PostMark PostMark is a file-system benchmark that simu-
lates a mail-server workload. In each VM we ran Post-
Mark with 50,000 initial files and 100,000 transactions.
PostMark primarily measures IO performance.

DVDStore2 This online transaction processing benchmark
simulates an Internet DVD store. We ran the bench-
mark with the default “small” dataset, using MySQL
as database backend. Each benchmark ran for three
minutes using default parameters. DVDStore2 mea-
sures a combination of CPU and IO performance.

Our test VMs ran Linux 2.6.25 with 256MB RAM and
8GB of virtual storage. Data volumes were stored either in
Lithium’s log-structure, or separately in discrete 8GB disk
partitions. When running Lithium, log compaction ran ea-
gerly in parallel with the main workload, to simulate a disk
full condition. Lithium was configured with 64MB of cache
for its B-trees. Apart from the settings mentioned above,
the benchmarks were run with default parameters.

5.1 Replication Performance
Replication performance was one of the motivations for the
choice of a write-optimized disk layout, because it had been
our intuition that multiple parallel replication streams to
different files on the same disk would result in poor through-
put. When multiple VMs and replication streams share stor-
age, most IO is going to be non-sequential. Apart from the
caching that is already taking place inside the VMs, there
is very little one can do to accelerate reads. Writes, how-
ever, can be accelerated through the use of log-structuring.
For this benchmark, we used three HP Proliant DL385 G2
hosts, each equipped with two dual-core 2.4GHz Opteron
processors, 4GB RAM, and a single physical 2.5”10K 148GB
SAS disk, attached to a RAID controller without battery
backed cache. We used these hosts, rather than the newer
Dells described below, because they had more local storage
available for VMs and replicas, and were more representa-

77

 0

 2000

 4000

 6000

 8000

 10000

1 2 3 4 5

T
ot

al
 o

pm
 p

er
 h

os
t

VMs on each host

2-way replication, 2 hosts total

8GB-Partitions
LFS

 0

 2000

 4000

 6000

 8000

 10000

1 2 3 4 5

T
ot

al
 o

pm
 p

er
 h

os
t

VMs on each host

3-way replication, 3 hosts total

8GB-Partitions
LFS

Figure 6: Performance of the DVD Store 2 OLTP
benchmark in two- and three-host fully replicated
scenarios.

 0

 50000

 100000

 150000

 200000

 0 1 2 3 4 5 6 7 8 9

C
om

bi
ne

d
op

m
 th

ro
ug

hp
ut

 a
ll

ho
st

s

Number of hosts

Fibre Channel SAN
Lithium 2-way
Lithium 3-way

Figure 7: DVDStore2 Scalability. This graph shows
the total orders per minute across all hosts, with
4 VMs per host for a varying number of hosts of
Lithium in 2-way and 3-way replicated scenarios,
and for a mid-range Fibre Channel storage array.

tive of commodity hardware. As a strawman, we modified
the Lithium code to use a direct-access disk format with an
8GB partition of the disk assigned to each volume, instead
of the normal case with a single shared log-structure. We
ran the DVDStore2 benchmark, and used the total orders-
per-minute number per host as the score. The results are
shown in Figure 6, and clearly demonstrate the advantage
of a write-optimized layout. Per-host throughput was 2–3
times higher when log-structuring was used instead of static
partitioning.

5.2 Scalability
To test Lithium’s scalability in larger clusters, we obtained
the use of eight Dell 2950 III servers, each with 16GB
RAM, two quad-core 3GHz Xeon processors, and with three
32GB local SAS drives in RAID-5 configuration, using a
Dell perc5/i controller with 256MB of battery backed cache.
Seven of the eight hosts were connected to a mid-range Fibre
Channel SAN, which provided a good reference for compar-
ison against finely tuned enterprise hardware. The SAN ar-
ray, an EMC Clariion CX3-40, was configured with 15 15k

 0

 10000

 20000

 30000

 40000

 50000

 0 1 2 3 4 5 6 7 8 9

C
om

bi
ne

d
tx

/s
 a

ll
ho

st
s

Number of hosts

Fibre Channel SAN
Lithium 2-way
Lithium 3-way

Figure 8: PostMark Scalability. Total transactions
per second across all hosts, with 4 VMs per host
for a varying number of hosts of Lithium in 2-way
and 3-way replicated scenarios, and for a mid-range
Fibre Channel storage array.

Fibre Channel disks in a RAID-5 configuration, presented
as single LUN mounted at each ESX host. The array was
equipped with 8GB of battery backed cache, and connected
to the hosts through 4GB/s Fibre Channel links. The SAN
was already running in production, and we did not attempt
to tune its performance for the benchmarks.

Lithium was configured for either 2- or 3-way replication
over single gigabit Ethernet links, in addition to the lo-
cal RAID-5 data protection. Replicas were mapped to
hosts probabilistically, using a simple distributed hash table
(DHT) constructed for the purpose. In this setup, Lithium
was able to tolerate three or five drive failures without data
loss, where the array could only tolerate a single failure.
Ideally, we would have reconfigured the local drives of the
servers as RAID-0 for maximum performance, as Lithium
provides its own redundancy. However, the hardware was
made available to us on a temporary basis, so we were un-
able to alter the configuration in any way.

We ran the DVDStore2 benchmark in 4 VMs per host, and
varied the number of hosts. As Figure 7 shows, a three-drive
RAID-5 per host is not enough to beat the high-performance
array, but as more hosts are added, per-VM throughput
remains constant for Lithium, whereas the array’s perfor-
mance is finite, resulting in degrading per-VM throughput
as the cluster grows.

We also ran the PostMark benchmark (see Figure 8) in the
same setting. PostMark is more IO intensive than DVD-
Store2, giving the SAN a larger initial advantage. However,
as the SAN throughput starts to tail off, Lithium’s through-
put continually improves. Unfortunately, only seven hosts
had working Fibre Channel links, but Lithium with double
replication is likely to be as fast or faster than the array for
a cluster of eight or more hosts.

Though our system introduces additional CPU overhead,
e.g., for update hashing, the benchmarks remained disk IO
rather than CPU-bound. When we first designed the sys-
tem, we measured the cost of hashing and found that a
hand-optimized SHA-1 implementation, running on a sin-

78

gle Intel Core-2 CPU core, could hash more than 270MB of
data per second, almost enough to saturate the full write
bandwidth of three SATA disk drives. In return for paying
a modest CPU overhead, we get simple integrity checking
and a scalable namespace that supports arbitrary branching
of volumes without central coordination.

In summary, the performance of the Lithium prototype is on
par with alternative approaches for local storage, and that
its write-optimized disk layout is faster than conceptually
simpler alternatives when used for for double and triple live
replication. In daily use, we expect Lithium do run without
local RAID protection, which is likely to be faster than the
RAID-5 configuration tested here. For small setups, the
Fibre Channel array is still faster, but Lithium keeps scaling,
does not have a single point of failure, and is able to tolerate
both host and multiple drive failures.

6. CONCLUSION
Cloud computing promises to drive down the cost of com-
puting by replacing few highly reliable, but costly, compute
hosts with many cheap, but less reliable, ones. More hosts
afford more redundancy, making individual hosts disposable,
and system maintenance consists mainly of lazily replacing
hardware when it fails. Virtual machines allow legacy soft-
ware to run unmodified in the cloud, but storage is often a
limiting scalability factor.

In this paper, we have described Lithium, a fork-consistent
replication system for virtual disks. Fork-consistency has
previously been proposed for storing data on untrusted
or Byzantine hosts, and forms the basis of popular dis-
tributed revision control systems. Our work shows that fork-
consistent storage is viable even for demanding virtualized
workloads such as file systems and online transaction pro-
cessing. We address important practical issues, such as how
to safely allow multiple outstanding IOs and how to aug-
ment the fork-consistency model with a novel cryptographic
locking primitive to handle volume migration and fail-over.
Furthermore, our system is able to emulate shared-storage
SCSI reservation semantics and is compatible with clustered
databases and file systems that use on-disk locks to coordi-
nate access.

Lithium achieves substantial robustness both to data cor-
ruption and protocol implementation errors, and potentially
unbounded scalability without bottlenecks or single points of
failure. Measurements of our prototype have yielded promis-
ing results; Lithium is able to compete with an expensive Fi-
bre Channel storage array on a small cluster of eight hosts,
and is faster than traditional disk layouts when doubly or
triply replicating writes between hosts.

7. ACKNOWLEDGEMENTS
The authors would like to thank Irfan Ahmad, Jørgen S.
Hansen, Orran Krieger, Eno Thereska, George Coulouris,
Eske Christiansen, Rene Schmidt, Steffen Grarup, Henning
Schild, and Sharon Weber for input and comments that
helped shape and improve this paper.

8. REFERENCES
[1] N. Agrawal, V. Prabhakaran, T. Wobber, J. D. Davis,

M. Manasse, and R. Panigrahy. Design tradeoffs for

ssd performance. In ATC’08: USENIX 2008 Annual
Technical Conference on Annual Technical
Conference, pages 57–70, Berkeley, CA, USA, 2008.
USENIX Association.

[2] L. N. Bairavasundaram, A. C. Arpaci-Dusseau, R. H.
Arpaci-Dusseau, G. R. Goodson, and B. Schroeder.
An analysis of data corruption in the storage stack.
Trans. Storage, 4(3):1–28, 2008.

[3] C. Clark, K. Fraser, S. Hand, J. G. Hansen, E. Jul,
C. Limpach, I. Pratt, and A. Warfield. Live Migration
of Virtual Machines. In Proceedings of the 2nd
Networked Systems Design and Implementation NSDI
’05, May 2005.

[4] W. de Jonge, M. F. Kaashoek, and W. C. Hsieh. The
logical disk: a new approach to improving file systems.
In SOSP ’93: Proceedings of the fourteenth ACM
symposium on Operating systems principles, pages
15–28, New York, NY, USA, 1993. ACM Press.

[5] J. G. Hansen and E. Jul. Lithium: virtual machine
storage for the cloud. In SoCC ’10: Proceedings of the
1st ACM symposium on Cloud computing, pages
15–26, New York, NY, USA, 2010. ACM.

[6] J. H. Howard, M. L. Kazar, S. G. Menees, D. A.
Nichols, M. Satyanarayanan, R. N. Sidebotham, and
M. J. West. Scale and performance in a distributed file
system. ACM Trans. Comput. Syst., 6(1):51–81, 1988.

[7] J. J. Kistler and M. Satyanarayanan. Disconnected
operation in the Coda file system. ACM Trans.
Comput. Syst., 10(1):3–25, 1992.

[8] L. Lamport. The part-time parliament. ACM Trans.
Comput. Syst., 16(2):133–169, 1998.

[9] E. K. Lee and C. A. Thekkath. Petal: distributed
virtual disks. SIGOPS Oper. Syst. Rev., 30(5):84–92,
1996.

[10] A. W. Leung, S. Pasupathy, G. Goodson, and E. L.
Miller. Measurement and analysis of large-scale
network file system workloads. In ATC’08: USENIX
2008 Annual Technical Conference, pages 213–226,
Berkeley, CA, USA, 2008. USENIX Association.

[11] M. Nelson, B.-H. Lim, and G. Hutchins. Fast
transparent migration for virtual machines. In
Proceedings of the 2005 Annual USENIX Technical
Conference, April 2005.

[12] B. M. Oki and B. H. Liskov. Viewstamped replication:
A new primary copy method to support
highly-available distributed systems. In PODC ’88:
Proceedings of the seventh annual ACM Symposium on
Principles of distributed computing, pages 8–17, New
York, NY, USA, 1988. ACM.

[13] M. Rosenblum and J. K. Ousterhout. The design and
implementation of a log-structured file system. ACM
Transactions on Computer Systems, 10(1):26–52, 1992.

[14] F. B. Schneider. Implementing fault-tolerant services
using the state machine approach: a tutorial. ACM
Comput. Surv., 22(4):299–319, 1990.

[15] D. B. Terry, M. M. Theimer, K. Petersen, A. J.
Demers, M. J. Spreitzer, and C. H. Hauser. Managing
update conflicts in Bayou, a weakly connected
replicated storage system. In SOSP ’95: Proceedings
of the fifteenth ACM symposium on Operating systems
principles, pages 172–182, New York, NY, USA, 1995.
ACM.

79

