
University of Nebraska - Lincoln University of Nebraska - Lincoln

DigitalCommons@University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln

CSE Journal Articles Computer Science and Engineering, Department
of

6-2000

Scalable Web Server Clustering Technologies Scalable Web Server Clustering Technologies

Trevor Schroeder
University of Nebraska-Lincoln

Steve Goddard
University of Nebraska-Lincoln, goddard@cse.unl.edu

Byrav Ramamurthy
University of Nebraska-Lincoln, bramamurthy2@unl.edu

Follow this and additional works at: https://digitalcommons.unl.edu/csearticles

 Part of the Computer Sciences Commons

Schroeder, Trevor; Goddard, Steve; and Ramamurthy, Byrav, "Scalable Web Server Clustering

Technologies" (2000). CSE Journal Articles. 79.

https://digitalcommons.unl.edu/csearticles/79

This Article is brought to you for free and open access by the Computer Science and Engineering, Department of at
DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in CSE Journal Articles by an
authorized administrator of DigitalCommons@University of Nebraska - Lincoln.

https://digitalcommons.unl.edu/
https://digitalcommons.unl.edu/csearticles
https://digitalcommons.unl.edu/computerscienceandengineering
https://digitalcommons.unl.edu/computerscienceandengineering
https://digitalcommons.unl.edu/csearticles?utm_source=digitalcommons.unl.edu%2Fcsearticles%2F79&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.unl.edu%2Fcsearticles%2F79&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.unl.edu/csearticles/79?utm_source=digitalcommons.unl.edu%2Fcsearticles%2F79&utm_medium=PDF&utm_campaign=PDFCoverPages

Scalable Web Server

CIusterina Tech noloa ies
U U zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Trevor Schroeder, Steve Goddard, and Byrav Ramamurthy
University of Nebraska-Lincoln

Abstract zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
The exponential growth of the Internet, cou led with the increasing populari of
dynamically generated content on the WorlJWide Web, has created the nee2 for
more and faster Web servers capable of serving the over 100 million Internet
users. Server clustering has emerged as a promising technique to build scalable
Web servers. In this article we examine the seminal work, early products, and a
sample of contemporary commercial offerings in the field of transparent Web server
clustering. We broadly classify transparent server clustering into three categories. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

he exponential growth of the Internet, coupled with the
increasing popularity of dynamically generated content
on the World Wide Web, has created the need for
more and faster Web servers capable of serving the

over 100 million Internet users.
The only solution for scaling server capacity in the past has

been to completely replace the old server with a new one.
Organizations must discard their investment in the old server
and purchase a new one - an expensive, short-term solution. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
A long-term solution requires incremental scalability, which
provides the ability to grow gradually with demand.

A pool of servers tied together to act as a single unit, or zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
server clustering, provides such incremental scalability. Service
providers may gradually add additional low-cost computers to
augment the performance of existing servers. As Internet
usage has grown, so has investigation into Web server cluster-
ing. The past four years have seen the emergence of several
promising experimental server clustering approaches as well
as a number of commercial solutions.

All Web server clustering technologies are transparent to
client browsers (i.e., the client browsers are unaware of the
existence of the server cluster). However, not all clustering
technologies are transparent to the Web server software.
Early commercial cluster-based Web servers such as Zeus and
Inktomi [l] are, in many respects, continuations of the tradi-
tional approach to cluster-based computing: treat the cluster
as an indissoluble whole rather than the layered architecture
assumed by (fully) transparent clustering. Thus, while trans-
parent to clients, these systems are not transparent to the
server nodes and require specialized software throughout the
system.

For example, Inktomi has a central point of entry and exit
for requests, but nodes in the cluster are specialized to per-
form certain operations such as image manipulation and doc-

ument caching. There is a coordinator that coordinates all the
nodes to service client requests. In a similar vein, the Zeus
Web server provides server clustering for scalability and avail-
ability, but each server node in the cluster must be running
the Zeus Web server, a specialized server software developed
for this environment.

The cost and complexity of developing such proprietary sys-
tems is such that while they provide improved performance over
a single-server solution, they cannot provide the flexibility and
low cost service providers have come to expect with the wide
array of Web servers and server extensions available. For this
reason, our emphasis is on solutions that allow service providers
to utilize commodity hardware and software. This implies that
the clustering technique must be transparent to both the Web
client and the Web server since the overwhelming majority of
Web servers do not have any built-in clustering capabilities.

While the emphasis of this article is on clustering in a Web
server context, the technology is more generally applicable.
Any server application may be clustered as long as it fulfills
the following two properties:

The application must maintain no state on the server. Any
state information that is maintained must be maintained by
the client. This prevents the cluster from having to deal
with distributed state consistency issues. Note that some
clustering agents do provide the capacity for some stateful
services, but this is done on a service-by-service basis and is
very protocol-specific.
Clientherver transactions should be relatively short and
high in frequency. As we are interested in commodity sys-
tems (hardware and software), we cannot decompose trans-
actions into any smaller operations. Therefore, it is required
that the transactions themselves be relatively small so that
we can employ stochastic distribution policies to share the
load more or less equally among all servers.

38 0890-8044/00/$10.00 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 2000 IEEE IEEE Network May/June 2000

Digital Object Identifier: 10.1109/65.844499

Terminology zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
The terminology used to describe scrvcr clustering mecha-
nisms varies widely. Some refcr to i t as zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAapplication-layer
switching or layer zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4-7 switcliiiig (c.g., Altcon Web Systems
product literature); others refer to i t as server load balancing zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
[2]; still othcrs rcfer to it as, simply, clusteritig. The term appli-
cation-layer switching is inadequate in that i t is not clear
exactly how application-layer switching actually takcs place.
The term server load balancing encompasscs a widc range of
technologies (not neccssarily rclatcd to networks). Moreover,
the solutions we consider provide load sharing rather than
load balancing. That is, they attempt to ensure that the load is
more evenly distributed, but do not attempt a completely even
distribution. This arises duc to the fact that the load sharing is
on the granularity of a single client request. Finally, the term
clustering by itself is too general.

Instead of these terms, we use the terms layer four switching
with layer two packet forwarding (L4/2), layer four switching with
layer three packet forwarding (L4/3), and layer seven (L7)
switching with either layer two packet forwarding (L7/2) or layer
three packet forwarding (L7/3) clustering. These terms refer to
the techniques by which the systems in the cluster are tied
together. In an L4/2 cluster, the systems are identical above
open systems integration (OSI) layer two (data link). That is,
each system has a unique layer two (i.e., medium access con-
trol, MAC) address, but identical layer three (network)
addresses, and identical services are provided. In an L4/3 clus-
ter, each system has a unique network address but still offers
the same services. L7 clusters may zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- but do not have to -
employ L4/2 or L4/3 clustering in addition to potentially dif-
ferent offerings among the back-end servers. The clustering
agent uses information contained in the client/server transac-
tion to perform load sharing.

An Overview of Transparent Clustering

In each of the network clustering technologies discussed in
this article, one entity sits on the network and acts as a proxy
for incoming connections, as shown in Fig. 1. We call this
entity the dispatcher. The dispatcher is configured with a par-

Alteon Web Systems zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAhttp://www.aIteonwebsystems,com

Arrowpoint Communications http://www.arrowpoint.com

Cabletron Systems http://w.ctron.com

Cisco Systems http://www.cisco.com

Intel http://www.intel.com/network

Zeus Technology http://www.zeus.co.uk

1

ticular network address, called the cluster address. The servers
appear as a single host to clients because of the dispatcher
(client-side transparency). The dispatcher receives scrvice
requests from clients and selects a server from the server pool
to process the request. Depending on the clustering technolo-
gy, the dispatcher appears as either a switch (processing
incoming data only) or a network gateway (processing incom-
ing and outgoing data) to the servers in the pool. In either
case, we assume each server is executing standard Web server
software designed for a standalone server (server-side trans-
parency). Incoming client requests are distributed more or
less evenly to the pool of servers. This is made possible by
protocols such as HTTP which typically have small requests
(thus allowing load sharing at the request level to achieve rel-
atively even loading of the servers) and save no state informa-
tion (thus allowing a client to utilize multiple servers to
service a set of requests without having to manage consistency
between the servers).

Performance Comparisons

Server clustering is an area of technology that is expanding
rapidly, with new commercial products appearing on the
scene with regular frequency. It is our intent to present the
seminal work in the field, early products, and a sampling of
contemporary commercial offerings. Table 1 lists the ven-
dors offering server clustering products discussed in this
article. We report the performance of various clustering
technologies, when possible, using the broad classification
metrics of connections per second or throughput in bits per
second. In some of the seminal research projects, perfor-
mance numbers are either not available or outdated. We
have not personally evaluated each product, let alone per-
formed head-to-head comparisons of similar products.
Rather, this article summarizes performance results report-
ed by the product’s developers, which (in most cases) have
not been independently verified.

It should be noted that performance of clustering technolo-
gies can vary significantly depending on server configurations,
client mix, test duration, content, and so on. Thus, perfor-
mance metrics such as connections per second or throughput
represent a broad classification of performance and provide
only a relative measure of performance.

The rest of our presentation is organized as follows. We
present clustering techniques which operate at OS1 layer two
(data link layer). We also present OS1 layer three (network
layer) approaches. We present solutions operating at OS1
layer seven (application layer), and then present our conclu-
sions.

Server 1

Requests - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0

L4/2 Clustering

Figure 1 . A high-level view of a basic server cluster showing the
dispatcher arid n servers in the server pool.

Some of the earliest research in transparent clustering was
based on L4/2, which provides excellent performance and a
high degree of scalability [3]. In L4/2 clustering, the cluster

IEEE Nctwork May/Junc 2000 39

http://www.aIteonwebsystems,com
http://www.arrowpoint.com
http://w.ctron.com
http://www.cisco.com
http://www.intel.com/network
http://www.zeus.co.uk

- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Replies zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAServer 1

W Figure 2. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAhigh-leiel view of tra,flicflow in on L4/2 cluster. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
network-layer address is actually sharcd by the dispatcher and
all of the servers in the pool through the use o f primary and
secondary Internet Protocol (IP) addresses. That is, while the
primary address of the dispatcher is the same as the clustcr
address, each server is configurcd with the cluster address as a
secondary address. This may be done through the use of inter-
face aliasing or by changing the address of thc loopback device
on the servcrs in the server pool. The nearest gateway is then
configured such that al l packcts arriving for the cluster
address are addressed to the dispatcher at layer two. This is
typically done with a static Address Rcsolution Protocol
(ARP) cache entry.

If the packet reccived corresponds to a TCPIIP connection
initiation, the dispatcher selects one of the servers in the serv-
e r pool to service the request (Fig. 2). Server selection is
based on some load sharing algorithm, which may be as sim-
ple as round-robin. The dispatcher then makes an entry in a
connection map, noting the origin of the connection, the cho-
sen server, and other information (e.g., time) that may be rel-
evant. The layer two destination address is then rewritten to
the hardware address of the chosen server, and the frame is
placed back on the network.

If the incoming packct is not fo r connection initiation, the
dispatcher examines its connection map to determine i f it
belongs to a currently established connection. If it does, i t
rewrites the layer two destination address to be the address of
the server previously selccted and forwards thc packet as
before. In the event that the packet does not correspond to an
established connection but is not a connection initiation pack-
et itself, it is dropped.

Note that these are general guidelines, and actual opcra-
tion may vary. For example, the dispatcher may simply estab-
lish a new entry in the map for all packets that do not map to
established connections, regardless of whether or not they arc
connection initiations.

The traffic flow in an L4/2 clustered cnvironment is illus-
trated in Fig. 3 and summarized as follows:

A client sends an HTTP packct with A as the destination IP

The immediate router sends the packet to the dispatcher at A.
Based on the load sharing algorithm and the session table,
the dispatchcr dccidcs that this packet should be handled

address.

hy thc hack-cnd scrvcr, scrvcr 2, and scnds thc packct to
scrvcr 2 by changing the MAC addrcss o f thc packct t o
scrvcr 2’s MAC addrcss and forwarding it.
Scrvcr 2 acccpts thc packct and rcplics dircctly t o thc clicni.
L4/2 cl us tcri ng rca 1 izcs zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa t rc mc n d ous pc r lo r ni a iicc adva n -

tagc ovcr L4/3 clustcring (t o bc discusscd latcr) bccausc o f thc
downstream bias o f Wcb transactions. Sincc thc nctwork
address o f the scrvcr to which thc packct is dclivercd is idcnti-
cal to thc one thc clicnt uscd originally i n thc rcqucst packct.
thc scrvcr handling that connection may respond directly to
thc client rather than through the dispatcher. Thus, the dis-
patcher processes only thc incoming data strcani, a small frac-
tion of the entire transaction. Moreover, the dispatcher does
not nced to rccompute expensive intcgrity codes (e.g., IP
chccksums) in software since only layer two parametcrs are
modified. Thus, the scalability of the server is primarily limit-
ed by network bandwidth and the dispatcher’s sustainablc
request rate, which is the only portion of the transaction actu-
ally processed by thc dispatchcr.

A restriction on L4/2 clustering is that the dispatcher must
have a direct physical connection to all network segments
which house servers (due to layer two frame addressing). This
contrasts with zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAL4/3 clustering (as we show in the next section),
where the scrver may be anywherc on any network with the
sole constraint that all client-to-server and server-to-client
traffic must pass through the dispatcher. In practicc, this
restriction on L4/2 clustering has little appreciable impact
since servers in a cluster are likely to be connected via a single
high-speed LAN anyway.

Among research and commercial products implcmenting
layer two clustering are ONE-IP developed at Bell Laborato-
ries, IBM’s eNetwork Dispatcher, LSMAC from the Universi-
ty of Nebraska-Lincoln, and ACEdirector from Alteon. We
describe these in detail below. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
ONE-IP
One of the first implementations of layer two clustering was
ONE-IP developed at Bell Laboratories (circa 1996) [4].
ONE-IP uses a modified NetBSD kernel to support two dif-
ferent dispatching methods. With the first method, when a
packet is received by the dispatcher, the client’s address is
hashed to obtain a value indicating which server in the serv-
e r pool will scrvicc the request. Thc second dispatching
method broadcasts packets destined for the cluster on the
LAN that connects the dispatcher with the pool of servers.
Each server in the pool implements a filter on the clicnt
address such that a server only responds to a fixed and dis-
joint portion of thc address space. Neither of these algo-
r i thms is able to adapt to conditions when cl ients
disproportionately load the server.

ONE-IP supports fault tolerance for both the dispatcher
and the servers through the use of a watchdog daemon. When
a server fails, the dispatcher does one of two things. If it is
using the first dispatching method, it modifies the hash table
to take into account the reduced server pool. If the dispatcher
is using the second (broadcast-based) method, it informs the
ent i re server pool of the failed server. Each server then
changes its filter accordingly. In the event of a dispatcher fail-
ure, a backup dispatcher will notice the missing dispatcher
heartbeat messages and take over. Since there is no state
information, none needs be replicated or rebuilt, and the
failover is simple and fast.

eNetwork Dispatcher
A commercial product based on L4/2 clustering is IBM’s
eNetwork Dispatcher, unveiled in 1996. The cNetwork Dis-
patcher successfully powered the 1998 Olympic Games Web

40 IEEE Network May/Junc 2000

site. I t scrviccd up to 2000
requests/s in this rolc, although
experimental results show i t capa-
ble of serving up to 2200 requests/s
[SI. The eNetwork Dispatcher runs
on a single node of an IBM SP-2
parallel computer. I t uscs a weight-
ed round-robin algorithm to dis-
tribute connections to the servers in
the server pool. Periodically, i t
recomputes the weights based on
load metrics collected from the
servers.

servers in the pool. Server fault tolerance is achicved through
IBM’s High Availability Cluster Multi-Processing for AIX
(HACMP) on an SP-2 server. Additionally, the dispatcher may
have a hot spare that functions as a backup dispatcher. The
primary dispatcher runs a cache consistency protocol with the
backup. In the event that the backup no longer receives heart-
beat messages from the primary, it takes over.

Through a mechanism IBM calls zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAclient affinity, the eNet-
work Dispatcher is able to support services such as FTP and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
SSL. With client affinity, multiple connections from the same
client within a given period are directed to the same server.
This allows servers and clients to share state information such
as SSL session keys during the timeout period. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
LSMAC
LSMAC, from the University of Nebraska-Lincoln, imple-
ments L4/2 clustering as a portable user-space application
running on commodity systems [6]. Utilizing zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAlibpcap [7] and
libnet [SI, LSMAC achieves performance comparable to the
eNetwork Dispatcher. Experimental results demonstrate that
three server nodes plus LSMAC, all running on Pentium II-
266s in a switched Fast Ethernet environment, achieve about
1800 connectionsls [6].

Telco/LAN router

Dispatcher Server 1 Server 2 Server 3 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
IP address zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= A IP alias = A IP alias = A IP alias = A

a

\ *
I

Dispatcher

Server zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAn

Figure 4. A high-level view zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof truficflow zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAin an L4/3 cluster.

Like other dispatchers, LSMAC provides fault detection
and masking for the server pool. Periodically, the dispatcher
sends ARP queries to determine which servers are currently
active, thus allowing for automatic detection of dynamically
added or removed systems. In addition, i t watches for TCP
reset messages corresponding to the service being clustered
and removes the nonperforming system from the pool.

Alteon ACEdirector
ACEdirector from Alteon is another L4/2 clustering product.
ACEdirector is implemented as an Ethernet switch (both lay-
ers two and three) based on a 2.5 Gb/s switch fabric. Howev-
er , it has the added ability to operate as an L4/2 cluster
dispatcher. While Alteon was the first to offer in-switch clus-
tering, o thers have followed suit (e.g., Arrow Point,
Cabletron, and Intel, which also support L7 dispatching, dis-
cussed later).

ACEdirector provides round-robin and least-connections
load sharing policies, and allows for some statcful services
such as SSL. Moreover, i t provides fault detection and mask-
ing for the server pool and hot-standby with another ACEdi-
rector switch. According to Alteon’s product literature, the
ACEdirector is capable of 25,000 connections/s at full “wire
speed.” This high connection rate is due to their extensive use
of specialized application-specific integrated circuits (ASICs)
that do most of the session processing.

L4/3 clustering technologies slightly predate L4/2 methods.
L4/3 cluster-based servers provide reasonable performance
while simultaneously providing the flexibility service providers
expect by leveraging commodity products. Unlike L4/2 clus-
ters, each constituent server is configured with a unique IP
address in L4/3 clusters. The IP address may be globally
unique or merely locally unique.

An L4/3 dispatcher appears as a single host to a client. To
the machines in the server pool, however, an L4/3 dispatcher
appears as a gateway. When traffic is sent from the client to
the clustered Web server, it is addressed to the cluster
address. Utilizing normal network routing rules, this traffic is
delivered to the cluster dispatcher.

If a packet received corresponds to a TCP/IP connection
initiation, the dispatcher selects one of the servers in the serv-
er pool to service the request (Fig. 4). Similar to that in L4/2
clustering, server selection is based on some load sharing
algorithm, which may be as simple as round-robin. The dis-
patcher also then makes an entry in a connection map, noting
the origin of the connection, the chosen server, and other
information (e.g., time) that may be relevant. However, unlike
in the earlier approach, the destination (IP) address of the

IEEE Network May/Junc 2000 41

packcl is thcn rcwritten as the address of thc scrver sclcctcd
to service this requcst. Morcovcr, any intcgrity codes affccted zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
- such zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa s packct chccksums, cyclic redundancy checks
(CRCs), or crror correction chccks (ECCs) - arc rccomput-
ed. The modified packet is then sent to the server correspond-
ing to the new dcstination addrcss of thc packct.

If incoming clicnt traffic is not a conncction initiation, the
dispatcher cxamincs its conncction map to determine i f i t
belongs to a currcntly establishcd connection. If i t does, the
dispatcher rewrites the destination address as the server previ-
ously selected, recomputes the checksums, and forwards as
before. In the event that the packet does not correspond to an
established connection but is not a connection initiation pack-
et itself, the packet is dropped. Of course, as with L4/2 dis-
patching, approaches may vary slightly.

Traffic sent from the servers in the server pool to clients
must also travel through the dispatcher since the source
address on the response packets is the address of the particu-
lar server that serviced the request, not the cluster address.
The dispatcher rewrites the source address to the cluster
address, recomputes the integrity codes, and forwards the
packet to the client.

The traffic flow in an L4/3 clustered environment is illus-
trated in Fig. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 and summarized as follows:

A client sends an HTTP packet with A as the destination IP
address.
The immediate router sends the packet to the dispatcher on
A, since the dispatcher machine is assigned the IP address A.
Based on the load sharing algorithm and session table, the
dispatcher decides that this packet should be handled by
the back-end server, server 2. It then rewrites the destina-
tion IP address as B2, recalculates the IP and TCP check-
sums, and sends the packet to B2.
Server 2 accepts the packet and replies to the client via the
dispatcher, which the back-end server sees as a gateway.
The dispatcher rewrites the source IP address of the reply-
ing packet as A, recalculates the IP and TCP checksums,
and sends the packet to the client.
The basic L4/3 clustering approach is detailed in RFC

2391, “Load Sharing Using Network Address Translation
(LSNAT)” zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[9]. Magicrouter from Berkeley was an early
implementation of this concept based on kernel modifications
[lo]. Cisco’s LocalDirector product is a proprietary commer-
cial implementation, while LSNAT from the University of
Nebraska-Lincoln provides an example of a nonkernel space
implementation [6].

In hindsight (recall that LA/3 clustering predates L4/2 clus-
tering), it is obvious that L4/2 clustering will always outper- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Server 1 Server 2 Server 3
IP address = 61 IP address = 62 IP address = 63

form L4/3 clustering due to thc ovcrhead imposed by L4/3
clustering (the nccessary integrity code recalculation couplcd
with the fact that all traffic must flow through the dispatcher).
Even if hardwarc support is provided for integrity code rccal-
culation (as with Gigabit Ethcrnet), an L4/3 dispatcher must
process much more traffic than an L4/2 dispatcher. Thus, total
data throughput of the dispatcher limits thc scalability of thc
system morc than thc sustainable request rate.

We dcscribe the above-mentioned implementations of L4/3
clustering in detail below. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Magicrouter

Magicrouter, developed at the University of California at
Berkeley, provided an early implementation of LA/3 clustering
[lo]. Using a kernel modification called “fast packet interpos-
ing,’’ Magicrouter provided load sharing and fault tolerance.
Magicrouter offered three load sharing algorithms: round-
robin, random, and incremental load. As the names suggest,
round-robin and random used round-robin and random con-
nection dispatching policies. Incremental load used a per-serv-
er load estimate plus an additional adjustment based on the
number of connections active at the server in question. Dur-
ing connection initiation, Magicrouter selects the least loaded
server.

To provide fault detection, Magicrouter utilizes ARP as
well as TCP reset detection. Periodically, ARP requests are
sent out to map server IP addresses to MAC addresses. In the
event that a server does not respond, it is declared dead.
Additionally, if any server responds to a packet with a TCP
reset message, i t is declared dead. For fault tolerance on the
part of the dispatcher, Magicrouter employs a primarybackup
model. A primary Magicrouter replicates state information to
one or more backup units over the network. In the event that
a backup Magicrouter does not receive a heartbeat message
from the primary for three time units, it declares itself the pri-
mary. Numerical order on Ethernet addresses is utilized to
resolve conflicts in the event that two Magicrouters declare
themselves as the primary unit.

established connections.
Weighted Percentage: This policy
is similar to the least connection
policy but with the addition that
weights may be assigned to each of
the servers in the server pool. This
allows the user to manually tune
the dispatching policy to take into
account varying server capacities.
Fastest Response: This policy
attempts to dispatch the connec-
tion to the server that responds to
the connection request first.
Round-Robin: This is a strictly
round-robin policy.
An additional LocalDirector unit

provides hot standby operation when

LocalDirector

The LocalDirector product from Cisco Systems was an early
commercial implementation of L4/3 clustering. According to
Cisco documentation, LocalDirector provides over 45 Mb/s
throughput and supports a combined total of 8000 cluster
addresses and actual servers, LocalDirector provides the abili-
ty to support up to 1 million simultaneous connections, and
offers the following load sharing policies:

Least Connections: This policy directs incoming connects to
the server with the fewest currently

42 IEEE Network - May/June 2000

failovcr cable. The second u n i t is a
dedicated spare and may not be used
for other tasks. LocalDirector also
provides failure detection and rccon-
figuration with regard to the server
pool. In the event that a scrvcr stops
responding to requests, LocalDirec-
tor removes i t from its list of active
servers and marks i t as being in a
testing phase. It then periodically
attempts to contact the server. As
soon as it is capable of contacting the
server, i t is brought back into active
duty.

Through the use of its zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAsticky flag,
LocalDirector can be made to sup-
port some stateful services, such as zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
SSL I l l] (IBM’s client affinity).
When the sticky flag is set, multiple
connections from the same client 6 . h Overview
within a given period zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- five minutes
by default - are directed to the same
server. This allows servers and clients to share state informa-
tion, such as SSL session keys, during the timeout period.

lSNAT
LSNAT 161 from the University of Nebraska-Lincoln is a
user-space implementation of the key points of RFC 2391,
“Load Sharing Using Network Address Translation” [9].
LSNAT runs on standard hardware under the Linux operat-
ing system or any other modern UNIX system supporting zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Libpcap (71 and POSIX threads. Operating entirely in user
space, LSNAT achieves a throughput of 30 Mb/s [6]. While
this is generally lower than LocalDirector, it may have more
to do with poor packet capture performance on the test plat-
form rather than the choice of a user-space or kernel-space
implementation [12].

LSNAT also provides failure detection and reconfigures
itself accordingly. In the event of dispatcher failure, unlike
LocalDirector, LSNAT does not fail over to a dedicated hot
spare. Rather, one of the servers in the server pool detects its
failure and reconfigures itself as the dispatcher. It then uses a
distributed state reconstruction mechanism to rebuild the map
of existing connections. If one of the servers fails, LSNAT
detects this and removes it from its list of active servers. Upon
restarting, the server announces its presence and is placed
back in the active server pool. This functionality is achieved
with the aid of a small daemon. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
17 Clustering
While strictly L4/2 o r L4/3 clustering may be considered
solved problems, a great deal of research is currently ongoing
in the area of L7 clustering. These approaches use informa-
tion contained in OS1 layer seven (application layer), typically
to augment L4/2 o r L413 dispatching. This is also known as
content-based dispatching since it operates based on the con-
tents of the client request. We examine LARD from Rice
University [13], a Web Accelerator from IBM T. J. Watson
Research Center [141, and a commercial hardware product
from ArrowPoint Communications.

lARD
Researchers at Rice University have developed a Locality-
Aware Request Distribution (LARD) dispatcher for a pool of
Web servers. Since servers are selected based on the content
of the protocol request, we classify LARD as an L7 dispatch-

er. LARD partitions a Web document tree into disjoint sub-
trees. Each server in the pool is then allocated one of these
subtrees to serve. In this way, LARD provides content-based
dispatching as requests are received. Figure 6 presents an
overview of this processing. The first server is capable of han-
dling requests of type zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA; the second can handle requests of
types LBJ and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0. We see the dispatcher decomposing the
stream of requests into a stream of requests for the first serv-
er and one for the second server, based on the content of the
requests (i.e., type A, m, or 0).

As requests arrive from clients for the clustered Web
server, the LARD dispatcher accepts the connection as well
as the request itself. T h e dispatcher then classifies the
requested document and dispatches the request to the
appropriate server. The dispatching is done with the aid of a
modified kernel that supports a connection handoff proto-
col: after the connection has been established, the request
known, and the server chosen, the LARD dispatcher informs
the chosen back-end server of the status of the network con-
nection, and the backend serve: takes over that connection
(communicating directly with the client). In this way, LARD
allows each server’s file system cache to cache a separate
part of the Web tree rather than having to cache the entire
tree, as “ordinary” L4/2 and L4/3 clustering require. Addi-
tionally, it is possible to have specialized server nodes. For
example, dynamically generated content could be offloaded
to special compute servers while other requests are dis-
patched to servers with less processing power. While LARD
requires a noncommodity operating system on the servers
(they must be able to support the TCP handoff protocol), it
does allow service providers to choose from commodity
Web servers.

In experiments, LARD has achieved 2200 connectionsls
with an aggregate throughput of 280 Mbls and a utilization of
60 percent on the dispatcher [13]. This suggests that with
enough servers in the pool, the dispatcher would be capable
of handling nearly 4000 requestsls on a Pentium 11-300.

IBMj Web Accelerator
IBM’s Web Accelerator, developed at T. J. Watson Research
Center, combines content-based dispatching, based on layer
seven and four switching with layer two packet forwarding
(L7/2), with Web page caching zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[14]. However, page caching
comes at the cost of reduced parallelism in the cluster.

The Web Accelerator runs on the same node as the IBM

IEEE Network May/June 2000 43

Server zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
f

Requests

\ * zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAc-----)

Replies

x
Cache + dispatcher

Server zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAn

Figure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA7. A n ovetview of I B M s Web Accelerator.

eNetwork Dispatcher. When a client attempts to connect to
the clustered Web server, the Accelerator accepts the connec-
tion and the client request. If possible, this request will be
served out of an in-memory cache on the dispatcher. In the
event that there is a cache miss, the dispatcher contacts a
server node and performs the same request as the client. It
then caches this response and issues the response back to the
client.

The Accelerator can serve 5000 pagesls on a PowerPC
604-200, but this performance metric decreases rapidly as
response size increases [14]. For example, with a 10-kbyte
response, the Accelerator is capable of serving 3200
requests/s. With a 100-kbyte response, the requests per sec-
ond handled drops to about 500. This is due to the fact that
unlike LARD, all outgoing traffic is issued from the Acceler-
ator. Thus, service providers cannot fully exploit the latent
parallelism in the cluster since all responses must now travel
through the dispatcher, as shown in Fig. 7. Note that the
traffic flow through the system zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAlooks similar to L4/3 cluster-
ing, rather than L4/2 clustering (as
is the case for the IBM eNetwork

Conclusion

Web server clustcring has receivcd much attcntion in reccnt
years from both industry and acadcmia. In addition to tradi-
tional custom-built solutions to clustering, transparcnt server
clustering technologies have emerged that allow the use of
commodity systems in server rolcs. We broadly classified
transparcnt servcr clustcring into thrcc categories: L4/2, L4/3,
and L7. Tablc 2 summarizcs these tcclinologies as well as
their advantages and disadvantagcs.

Each approach discussed has bottlenccks that limit scalabili-
ty. For L4/2 dispatchers, system performance is constrained by
the ability of the dispatchcr to set up, look up, and tear down
entries. Thus, the most telling pcrformance metric is the sus-
tainable request rate. L4/3 dispatchers are more immediately
limited by their ability to rewrite and rccalculate the checksums
for the massive numbers of packets they must process. Thus, in
the absence of dedicated checksumming hardware, the most
telling performance metric is the throughput of the dispatch-
er. Finally, L7 solutions are limited by the complexity of their
content-based routing algorithm and the size of their cache
(for those that support caching). However, by localizing the
request space each server must service and caching the
results, L7 dispatching should provide higher performance for
a given number of back-end servers than L4/2 or L4/3 dis-
patching alone.

It seems clear that in thc future, L7 hardware solutions
such as the ArrowPoint switches will continue to dominate
software products in terms of performance. The question
one must ask is, how much performance is needed from the
Web server for a given application and network configura-
tion? As we have seen, even the L412 switch LSMAC - a
software application running in user-space on COTS hard-
ware and software - is capable of saturating an OC-3 (155
Mb/s) link. Apart from the Internet backbone itself, few sites
have wide-area connectivity at or above this level. In boost-
ing server performance to the levels supported by L7 hard-
ware solutions (e.g., ArrowPoint switches), the bottleneck is
no longer the ability of the server to generate data, but
rather the ability of the network to get that data from the
server to the client.

New research on scalable Web servers must take into
account wide area network bandwidth as well as server perfor-

~- _.

Dispatcher executing without the
Accelerator).

ArrowPoint
Web Switches In one of the first
hardware devices to incorporate
content-based routing, Arrow-
Point’s Web switches employ a
caching mechanism similar to
IBM’s Web Accelerator. Arrow-
Point’s Web switches also provide
sticky connections in order to sup-
port some stateful services.

ArrowPoint’s CS-800 specification
sheet claims a maximum connection hundreds of Mb/s
rate of 20,000 connections/s (HITP)
with zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3 maximum throughput o f 20
Gb/s. Moreover, the CS-800 switch
supports a hot standby unit and fault
masking on the server nodes.

Cabletron, Intel, and others pro-
vide similar products. = Table 2. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA summaty of transparent clustering techniques.

44 IEEE Network May/Junc 2000

mance. Industry and academic researchers have just begun to
examine this problem. Cisco's DistributedDirector is an early
example of a product that exploits geographic distribution of
servers to achieve high aggregate bandwidth with low latency
over the wide area in addition to a greater degree of fault tol-
erance. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
References zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
[I] zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA. Fox et al., "Cluster-Based ScalableNetwork Services," Proc. 16th ACM

[2] L. Harbaugh, "A Delicate Balance," fnb. Week Online, Jan. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA25, 1999.
[3] D. Dias et al., "A Scalable and Highly Available Sewer," CAFCON 1996, 1996.
[4] 0. Damani et al., "Techniques for Hosting a Service on a Cluster of

Machines," Proc. 6th Int'l. WWW Conf., Apr. 1997. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
[5] G. Hunt et al., "Network Dispatcher: A Connection Router for Scalable Inter-

net Services," Comp. Networks and f5DN Sys., Sept. 1999.
[6] X. Gan et al., "LSMAC vs. LSNAT: Scalable Cluster-based Web Servers," to

appear in Cluster Comp.: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAJ. Networks, software Tools and A ps 2000
(71 Lawrence Berkeley Lab. Packet Capture Library, ftp://'?tp:ie.lbl.gov/

1ibcap.tar.Z
(81 DAEMON9, Libnet: Network Routing Library, Aug. 1999; http://www.pack-

etfactoly.net/li bnet
191 P. Srisuresh and D. Gan, "Load Sharing Using Network Address Transla-

tion," The fnternet Society, Aug. 1998.
[lo] E. Anderson, D. Patterson, and E. Brewer, "The Magicrouter, an A plica-

tion of Fast Packet Interposing," Submitted for publication in the 2nxSymp.
Op. Sys. Design and Implementation, May 17, 1 996.

[l 1 1 A. Frier, P., Karlton, and P. Kocher, "The SSL 3.0 Protocol," Tech. rep.,
Netscape, Nov. 18, 1996.

[1 2] D. Song and M. Undy, "NFR Performance Testing," Feb. 1999,
http://www.anzen.com/research/research-perform. html

[13] V. Poi ef al., "E. Locality-Aware Request Distribution in Cluster-based Net-
work Servers," Proc. ACM 8th Int'l. Conf. Architectural Supporf for Prog.
longs. and Op. Sys., Oct. 1998.

Symp. Op. Sys. Principles, Oct. 1997.

[141 E. Levy-Abegnoli et al., "Design and Performance of a Web Server Acceler-
ator," fEEE fNFOCOM zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA'99, 1999.

Biographies
TREVOR SCHROEDER (tschroed@cse.unl.edu) received his B.S. in computer science
from Wayne State College in 1998. He is currently an M.S. student in computer
science at the University of Nebraska-Lincoln while working at the MIT Media
Lab with the Network+Computing Systems (NeCSys) staff where he is responsible
for network security and the care of UNlX machines. His research interests
include distributed systems and especially security in such environments. He i s a
member of the ACM (S).

STEVE GODDARD (goddard@cse.unl.edu) received a B.A. degree in computer sci-
ence and mathematics from the University of Minnesota (1 985). He received
M.S. and Ph.D. degrees in computer science from the University of North Caroli-
na at Chapel Hill (1 995, 1998). He worked as a systems engineer with Unisys
Corporation for four years and as a real-time distributed systems consultant with
S.M. Goddard & Co. Inc. for nine years before ioinin the Computer Science &
Engineering faculty at the University of Nebraska-Lincdn (UNL) in 1998. He i s a
founding co-director of the Advanced Networkin and Distributed Experimental
Systems (ANDES) Laborato at UNL. His resear2 and teaching interests are in
real-time systems, distributecrsystems, operating systems, computer networks, and
software engineering.

BYRAV RAMAMURTHY (byrav@cse.unl.edu) received his B.Tech. de ree in computer
science and engineering from the Indian Institute of Technorogy, Madras in
1993. He received his M.S. and Ph.D. degrees in computer science from the
University of California at Davis in 1995 and 1998, respectively. Since August
1998 he has been an assistant professor in the Department of Computer Science
and Engineering at the University of Nebraska-Lincoln (UNL). He is a founding
co-director of the Advanced Networking and Distributed Ex erimental Systems
(ANDES) Laboratory at UNL. He serves as a co-guest editor oran upcoming spe-
cial issue of IEEE Network. His research areas include optical networks, distribut-
ed systems, and telecommunications.

IEEE Network May/June 2000 45

ftp://'?tp:ie.lbl.gov
http://www.pack
http://www.anzen.com/research/research-perform

	Scalable Web Server Clustering Technologies
	

	Scalable web server clustering technologies - IEEE Network

