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Scalable whole-exome sequencing of cell-free DNA
reveals high concordance with metastatic tumors
Viktor A. Adalsteinsson1,2, Gavin Ha1,3,4, Samuel S. Freeman1,4, Atish D. Choudhury3, Daniel G. Stover 3,4,

Heather A. Parsons3,4, Gregory Gydush1, Sarah C. Reed1, Denisse Rotem1, Justin Rhoades1, Denis Loginov1,2,

Dimitri Livitz 1, Daniel Rosebrock1,4, Ignaty Leshchiner 1, Jaegil Kim1, Chip Stewart1, Mara Rosenberg1,

Joshua M. Francis1,3, Cheng-Zhong Zhang1,3,4, Ofir Cohen1,3, Coyin Oh 1, Huiming Ding2, Paz Polak 1,4,5,

Max Lloyd3, Sairah Mahmud3, Karla Helvie3, Margaret S. Merrill3, Rebecca A. Santiago3, Edward P. O’Connor3,

Seong H. Jeong3, Rachel Leeson2, Rachel M. Barry2, Joseph F. Kramkowski3, Zhenwei Zhang3, Laura Polacek3,

Jens G. Lohr1,3, Molly Schleicher1, Emily Lipscomb1, Andrea Saltzman1, Nelly M. Oliver3, Lori Marini3,

Adrienne G. Waks3,6, Lauren C. Harshman3, Sara M. Tolaney3, Eliezer M. Van Allen1,3,4,6, Eric P. Winer3,

Nancy U. Lin3, Mari Nakabayashi3,4, Mary-Ellen Taplin3, Cory M. Johannessen1, Levi A. Garraway1,3,4,6,7,

Todd R. Golub 1,3,4,7, Jesse S. Boehm 1, Nikhil Wagle1,3,4, Gad Getz 1,4,5, J. Christopher Love1,2

& Matthew Meyerson 1,3,4,6

Whole-exome sequencing of cell-free DNA (cfDNA) could enable comprehensive profiling of

tumors from blood but the genome-wide concordance between cfDNA and tumor biopsies is

uncertain. Here we report ichorCNA, software that quantifies tumor content in cfDNA from

0.1× coverage whole-genome sequencing data without prior knowledge of tumor mutations.

We apply ichorCNA to 1439 blood samples from 520 patients with metastatic prostate or

breast cancers. In the earliest tested sample for each patient, 34% of patients have ≥10%

tumor-derived cfDNA, sufficient for standard coverage whole-exome sequencing. Using

whole-exome sequencing, we validate the concordance of clonal somatic mutations (88%),

copy number alterations (80%), mutational signatures, and neoantigens between cfDNA and

matched tumor biopsies from 41 patients with ≥10% cfDNA tumor content. In summary, we

provide methods to identify patients eligible for comprehensive cfDNA profiling, revealing its

applicability to many patients, and demonstrate high concordance of cfDNA and metastatic

tumor whole-exome sequencing.
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T
o enable precision medicine, it must be possible to routi-
nely sample and sequence patients’ tumors. A major
challenge, however, is that repeated tumor biopsies are

often intractable, particularly for patients with metastatic cancer.
Significant progress has been made for tracking previously
identified tumor mutations in cell-free DNA (cfDNA)1–7, but
whether cfDNA can capture the genetic diversity of cancer has
not been systematically explored. Whole-exome sequencing
(WES) of cfDNA has demonstrated potential to detect clinically
relevant alterations8–10, but its broader application has been
challenging because the yield and fraction of tumor-derived
cfDNA (“tumor fraction”) vary substantially. Furthermore,
genome-wide comparisons of cfDNA and tumor biopsies are
limited in both quantity and comprehensiveness. For these rea-
sons, it remains unknown to what degree WES of cfDNA would
be applicable to patients with metastatic cancer and whether WES
of cfDNA may complement or replace WES of a surgical tumor
biopsy.

Previous benchmarking has shown that somatic alterations can
be detected with reasonable sensitivity using standard depths of
WES (~150× coverage) from tumor samples harboring at least
~5–10% tumor content11. Given the variability in cfDNA tumor
fractions, we reasoned that advanced screening for tumor content
would be needed to make WES of cfDNA possible at scale. Many
previous approaches to screening for cancer-derived cfDNA have
focused on targeted detection of somatic single nucleotide var-
iants (SSNVs) in recurrently mutated cancer genes6, 7. However,
somatic copy number alterations (SCNAs) may be more generally
applicable as the vast majority of metastatic cancers harbor arm-
level somatic SCNAs12. Groups have demonstrated that it is
feasible to detect SCNAs using 0.1× whole-genome sequencing of
cfDNA13–15, but methods to estimate tumor fraction require
~100-fold greater coverage16, 17. We hypothesized that being able
to estimate tumor fraction from 0.1× sequencing coverage (ultra-
low-pass whole-genome sequencing, ULP-WGS) could enable
cost-effective screening for the existence of a significant amount
of tumor-derived cfDNA in a substantial fraction of patients with
metastatic cancer and thus, calibrate the application of WES.

Here we develop an analytical approach, ichorCNA, to quantify
tumor fraction in cfDNA without prior knowledge of SSNVs or
SCNAs in patients’ tumors from ULP-WGS (Fig. 1a, “Methods”).
We apply ichorCNA to determine which cfDNA samples have
sufficient tumor content (>10%) for WES. Subsequent analysis of
WES of cfDNA and matched tumor biopsies from 41 patients
demonstrates that cfDNA provides a suitable proxy for a tumor
biopsy. Further examination of 1439 blood samples from 520
patients with metastatic breast or prostate cancer using ichorCNA
reveals >30% of blood samples and >40% of patients to have
sufficient tumor fraction for standard depths of WES of cfDNA.

Results
ichorCNA provides accurate measure of cfDNA tumor frac-
tion. Our process begins with patient blood collection, separation
of plasma from blood, extraction of cfDNA from plasma and
germline DNA (gDNA) from blood, and construction of cfDNA
libraries (Fig. 1a, “Methods”). We found that the size distribution
(Supplementary Fig. 1) and yields of cfDNA from metastatic
cancer patients (median= 7.01, range= 0.00–547.82 ng/mL
plasma, n= 1684) and healthy donors (HD) (median = 2.34,
range= 0.55–21.27 ng/mL plasma, n= 27) were consistent with
previous reports18, 19 (Supplementary Data 1). We optimized our
library construction protocol for 5 ng of cfDNA input; 92.2% of
cancer patients and 77.8% of healthy donors had ≥5 ng of cfDNA
per 4 mL of plasma. Only 1% of each cfDNA sequencing library
was then used for ULP-WGS to screen for tumor content.

ichorCNA simultaneously predicts segments of SCNA and
estimates of tumor fraction while accounting for subclonality and
tumor ploidy (“Methods”). To evaluate the performance of
ichorCNA, we used ULP-WGS of cfDNA (Fig. 1b, c) and whole-
genome sequencing of cfDNA (10×–48×, n= 7) and matched
tumor biopsies (1×, n= 22) from metastatic breast and prostate
cancer patients and healthy donors as benchmark data sets
(Fig. 1c, Supplementary Fig. 2). We found highly concordant
megabase-scale copy number (sensitivity> 0.92, Fig. 1d, Supple-
mentary Figs. 3–5), including identification of chromothripsis
(Supplementary Fig. 6). Tumor fraction estimates from ULP-
WGS of cfDNA were also concordant with WGS of the same
sample (Supplementary Fig. 3).

To further evaluate how ULP-WGS of cfDNA compares
with the metastatic tumor, we performed standard WES of
matched tumor biopsies (average mean target coverage 173×)
from 41 patients with metastatic breast and prostate cancers who
had a cfDNA sample with ≥0.1 tumor fraction (Supplementary
Data 2). The cfDNA of the 41 selected cases had a median tumor
fraction of 30.8% as estimated by ichorCNA. We observed
that the majority of large, megabase-scale SCNAs detected by
ULP-WGS of cfDNA was present in the metastatic tumors
(median sensitivity 0.82, Spearman ρ= 0.66, Fig. 1d, Supplemen-
tary Figs. 5 and 7).

Using in silico mixing of up to 50 cancer patient and 22 healthy
donor cfDNA samples to generate 2400 mixtures across a series
of benchmarking data sets (“Methods”), we demonstrated the
accurate estimation of tumor fraction (median deviation from
expected ≤ 0.014) and detection of SCNAs at 0.1× coverage
(Supplementary Figs. 8–13, Supplementary Data 3). ichorCNA
has a sensitivity of 0.91 (Clopper–Pearson 95% confidence
interval [0.88–0.93]) for classifying the in silico mixing samples
with a tumor fraction >0.10, and has a specificity of 1.00
[0.85–1.00] for predicting a tumor fraction of <0.10 in 22 healthy
donor (Supplementary Figs. 12 and 13). We also determined a
lower limit of 0.03 tumor fraction for detecting the presence of
tumor by using arm-level (>100Mb) events from as few as one
copy gain plus one copy loss (Supplementary Fig. 14). When
using this 0.03 tumor fraction estimate cut-off, ichorCNA
achieves a sensitivity of 0.95 [0.94–0.96] for detecting presence
of tumor and a specificity of 0.91 [0.71–0.99] for correctly
classifying a healthy donor (Supplementary Figs. 12 and 13). Our
results suggest that the application of ichorCNA to ULP-WGS of
cfDNA offers an accurate approach to detect SCNAs that are
reflective of tumor biopsies and provides accurate estimates of
tumor fractions, potentially even in cancer types with few SCNAs.

Tumor and cfDNA exomes exhibit high concordance. We next
performed WES of cfDNA (average mean target coverage 191×)
from the same 41 patients with matched metastatic breast and
prostate tumor biopsies (Supplementary Data 2) and detected
somatic alterations (SSNVs and SCNAs, Supplementary Data 4
and 5). First, we compared ULP-WGS and WES of cfDNA and
found high concordance of tumor fraction estimates (Pearson’s r
= 0.94, Fig. 1e, Supplementary Figs. 15 and 16, Supplementary
Data 6) and predicted SCNAs (median F-measure= 0.95, Sup-
plementary Fig. 5). Furthermore, the predicted number of
alterations in cfDNA and metastatic biopsies for non-silent
SSNVs (median 50 vs. 63) and the fraction of genome altered
by SCNA (47% vs. 44%) were consistent (Wilcoxon rank-sum test
p> 0.5, Supplementary Fig. 17), which are similar to previous
reports for these tumor types20, 21. We also performed
WES of cfDNA from 12 healthy donors (average mean target
coverage 126×) and observed a low false positive rate of SSNVs
(median 0.03 non-silent SNVs/Mb, “Methods”) and SCNAs
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(median 4.25 × 10−5 fraction of genome altered), confirming high
specificity of our algorithms (Supplementary Fig. 17). Our data
suggest that WES of cfDNA provide similar SCNA results as
ULP-WGS of cfDNA, exhibits very low false positive rates for
SSNVs and SCNAs, and uncovers similar mutation rates com-
pared to tumor biopsies.

We then examined the overlap of SSNVs and SCNAs between
WES of cfDNA and matched tumor biopsies. We distinguished

clonal and subclonal events by estimating the proportion of an
observed somatic event out of the total tumor-derived DNA
(cancer cell fraction, hereafter CCF) using ABSOLUTE16. We
found, on average, 88% of the clonal (CCF ≥ 0.9; range 29–100%)
and 47% of the subclonal (CCF< 0.9; range 9–100%) SSNVs that
were detected in the tumor were confirmed to be present in
cfDNA (i.e., supported by ≥3 variant reads, “Methods”) (Fig. 2a).
Similarly, for SSNVs detected in the cfDNA, we found, on

1) Cell-free DNA library construction Healthy donor

Chromosome

cfDNA - WGS (25×)

cfDNA - ULP-WGS (0.1×)

Tumor - WGS (1×)

Tumor - WES (142×)

Copy neutral Deletion Gain Amplification

MBC_315

1

1

1

1

1

0

0

0

0

0

–1

–1

–1

–1

–1

1

2

a b

c

d e

3 4 5 6 7 8 9 10 11 12 13 14 15 1617 19
22

Tumor fraction 0.27

Tumor fraction 0.27

Tumor fraction 0.69

Tumor fraction 0.70

2018
X21

Chromosome

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 19
222018

X21

Tumor fraction 0.00

cfDNA - ULP-WGS (0.1×)

C
o
p
y
 r

a
ti
o
 (

lo
g

2
)

C
o
p
y
 r

a
ti
o
 (

lo
g

2
)

2) Ultra low-pass whole-genome sequencing (0.1×)

3)Whole-exome sequencing

ichorCNA

Tumor fraction

Cell-free DNA

Germline DNA

vs.

Application to large cohorts

Tumor

fraction

>10%?

Genome-wide

Gain

Neutral

Deletion

1.0

0.5

0.0

Copy number alterations

Spearman � = 0.870

CNA F1 = 0.991

Spearman � = 0.763

CNA recall = 0.927

Spearman � = 0.658

CNA recall = 0.817

r = 0.9442

Median absolute error = 0.032

2

1

c
fD

N
A

 U
L
P

-W
G

S
 c

o
p
y
 r

a
ti
o
 (

lo
g

2
)

c
fD

N
A

 U
L
P

-W
G

S
 c

o
p
y
 r

a
ti
o
 (

lo
g
2
)

1 2

cfDNA WGS (>10×) copy ratio (log
2
)

0

0

–1

–1

–2

2

1

0

–1

–2 c
fD

N
A

 U
L
P

-W
G

S
 c

o
p
y
 r

a
ti
o
 (

lo
g
2
)

2

1

0

–1

–2

–2 1 20

Tumor WGS (1×) copy ratio (log
2
) Tumor WES copy ratio (log

2
) cfDNA ULP-WGS tumor fraction

c
fD

N
A

 W
E

S
 t
u
m

o
r 

fr
a
c
ti
o
n

0.00

n = 35n = 41n = 22n = 7 0.00

0.25

0.25

0.50

0.50

0.75

0.75

1.00

1.00

–1–2 1 20–1–2

Fig. 1 Copy number and tumor fractions from ULP-WGS. a cfDNA workflow. b Genome-wide copy number from 0.1× ULP-WGS of cfDNA from a healthy

donor. c Genome-wide copy number from 25× WGS and 0.1× WGS of cell-free DNA from a metastatic breast cancer patient (MBC_315), and 1× WGS

and WES of matched tumors from this patient. SCNA for tumor WES and cfDNA 25× coverage WGS were predicted using TITAN17 (“Methods”).

d Comparison of copy ratios between ULP-WGS of cfDNA with deep (>10×) WGS of the same cfDNA sample, WGS (1×) of matched tumors from 22

metastatic breast cancer (MBC) patients, and WES (average mean target coverage 173×) of matched tumors from 41 MBC and prostate cancer (CRPC)

patients. Log2 copy ratios were computed as normalized read coverage for each 1Mb (WGS/ULP-WGS) and the mean of overlapping 50 kb bins (WES)

after adjustment for tumor fraction/purity. The correlation of copy ratios between tumor and cfDNA was computed using Spearman rank correlation

(coefficient ρ). F-measure (F1) is the harmonic mean of the CNA positive predictive value (precision) and sensitivity (recall) performance. Recall is defined

as the proportion of SCNA gain/loss in tumor biopsy also observed in ULP-WGS of cfDNA (“Methods”). e Comparison of tumor fractions estimated from

ULP-WGS and WES of cfDNA. Samples (n= 35) with similar tumor ploidy (difference< 0.75 and ploidy ≥1.5) estimated in both ULP-WGS and tumor WES

are shown. The correlation between the two data types was calculated using Pearson correlation (coefficient r). Red line denotes y= x. WES tumor

fractions were estimated using ABSOLUTE16 (shown) and TITAN (Supplementary Fig. 15, Supplementary Data 6)

NATURE COMMUNICATIONS | DOI: 10.1038/s41467-017-00965-y ARTICLE

NATURE COMMUNICATIONS |8:  1324 |DOI: 10.1038/s41467-017-00965-y |www.nature.com/naturecommunications 3

www.nature.com/naturecommunications
www.nature.com/naturecommunications


average, 88% of the clonal (range 33–100%) and 45% of the
subclonal (range 14–88%) SSNVs were confirmed in the tumor
(Fig. 2b). For 18 patients, we collected blood at a second time
point (t2, 2–6 weeks later, Supplementary Data 7) and performed
WES of cfDNA. We confirmed, on average, 56% of the subclonal
SSNVs that were also detected in the earlier cfDNA sample (t1)
but were not confirmed in the tumor biopsy (Fig. 2b). The
confirmation of these cfDNA-exclusive events supports the
possibility that these alterations may be derived from unprofiled
tumor clones that were not captured by the core biopsy of a single
lesion. We observed similar results for SCNA events of various
sizes detected in the tumor (average 80% clonal, 77% subclonal
confirmed in cfDNA) and detected in cfDNA (average 76%
clonal, 70% subclonal confirmed in tumor) (Supplementary
Fig. 18, Supplementary Data 4). Our findings suggest that cfDNA
offers a suitable proxy for comprehensive genomic characteriza-
tion of a tumor biopsy and may not derive solely from the single
biopsied lesion.

Next, between cfDNA and the metastatic lesions (Supplemen-
tary Data 7), we observed a median of 46% (range 12–100%) of
SSNVs (Supplementary Fig. 19, Supplementary Data 5) and 78%
(range 25–95%) of genes altered by SCNAs (Supplementary
Fig. 20, Supplementary Data 4) to be clonal (CCF≥ 0.9) in both
samples. For 17 of the patients with a second cfDNA sample, we
observed clonal stability, with the majority (>50%) of SSNVs
having similar clonality (±0.1 CCF) between time points

(Supplementary Fig. 21, Supplementary Data 5). We also
observed distinct subclonal patterns of SSNVs, including evolving
clonal dynamics. For instance, in a metastatic breast cancer
(MBC) patient (MBC_284) previously treated with an aromatase
inhibitor, we detected multiple mutations in ESR1 (D538G and
L536P) in cfDNA at t1 (0.12 and 0.45 CCF) (Fig. 2c).
Interestingly, the clonal fractions of these mutations were
inverted at t2 (0.73 and 0.12, respectively) after 51 days of
treatment with a selective estrogen receptor degrader (SERD),
suggesting that these ESR1 mutations may have different
sensitivities to SERDs. We also detected an ESR1 mutation
(E380Q) in the tumor biopsy that was confirmed at low clonal
fractions in cfDNA. These clonal shifts in resistance-associated
mutations suggest that longitudinal analysis of WES of cfDNA
may nominate potential mechanisms of resistance to therapy.

We then assessed whether WES of cfDNA can serve as a proxy
for tumor biopsies in multiple applications of cancer exome
analyses. First, we compared known cancer-associated somatic
alterations22 between cfDNA and tumor biopsies for 27
metastatic breast and 14 metastatic prostate cancer patients
(Supplementary Data 8). In breast cancer, we observed similar
frequencies of altered genes (Pearson’s r= 0.97) in both cfDNA
and tumor biopsies, including mutations in TP53, ESR1, and
PIK3CA, amplifications of MYC, CCND1, ERBB2, PIK3CA, and
losses of ATM and RB1 (Fig. 3a). Similarly, in prostate cancer, we
observed frequent amplifications of AR as well as mutations and
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LOH of TP53 (Supplementary Fig. 22). Next, to discover
statistically significant genes recurrently mutated above back-
ground rates, we applied MutSig2CV23, 24 independently to
cfDNA and tumor biopsies and identified ESR1, TP53, PIK3CA,
ARID1A (Fig. 3a, Supplementary Data 8). Among these mutated
genes, we found a statistically significant enrichment of non-silent

mutations in ESR1 and ARID1A for both cfDNA and tumor
biopsies in 20 ER+/HER2− metastatic cancer patients when
compared to 279 primary ER+/HER2− breast carcinomas
published previously by The Cancer Genome Atlas (TCGA)25

(Bonferroni-corrected Fisher’s exact test, p= 1.46 × 10−8 and
2.58 × 10−2 respectively). The metastatic breast cancer biopsies in
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this study are derived from a larger cohort in which ARID1A was
found to be significantly mutated and enriched with respect to
TCGA26. The mutational enrichment was significant in both
metastatic biopsies and cfDNA, suggesting that cfDNA exome
sequencing can lead to similar biological insights as tumor
biopsies and may enable genomic discovery from larger cohorts.

Mutation signatures and neoantigens can be detected in
cfDNA. As mutational processes operating in tumors have been
associated with potential sensitivity to specific therapies27 and
their detection in cfDNA could be clinically significant, we ana-
lyzed the mutational signatures28, 29 present in cfDNA and tumor
biopsy. We identified three previously30 described mutational
signatures associated with aging (C>T mutations at CpG dinu-
cleotides), APOBEC activity (C>T or C>G at a TC[A/T]
context), and DNA homologous recombination deficiency
(BRCA-like27) (Fig. 3c, Supplementary Fig. 23, “Methods”). We
found that the predicted fraction of mutations belonging to each
signature was highly concordant between cfDNA and tumor
biopsies (adjusted R2= 0.92, p< 1 × 10−16, Fig. 3c). We also
observed that patients with predicted biallelic inactivation of
BRCA1 or BRCA2 had higher BRCA-like signature activity in
both cfDNA and tumor biopsies (Wilcoxon rank-sum test, one-
tailed, p< 0.01). These results suggest that analysis of cfDNA may
be a complementary approach to predict homologous recombi-
nation deficiency and could provide information regarding
potential sensitivity to drugs, such as PARP inhibitors31 that
target this pathway.

Furthermore, as cancer immunotherapies have been effective in
clinical trials and analysis of neoantigens may influence treatment
strategies32, we compared the number of somatic mutations that
were predicted to be neoantigens in cfDNA and matched tumor
biopsies. We predicted the binding affinity of missense SNVs to
patient-specific MHC Class I alleles inferred from germline WES
data33, 34, 35, and considered any mutation with an IC50< 500
nM to be a predicted neoantigen (“Methods”). We found that the
number of predicted neoantigens was strongly correlated between
cfDNA and tumor biopsies (adjusted R2= 0.90, p< 1 × 10−16),
suggesting that WES of cfDNA could lead to similar prediction of
potential tumor immunogenicity as would sequencing of tumor
biopsies (Fig. 3d).

cfDNA exome sequencing is feasible in advanced cancer
patients. Finally, our results indicate that many patients with
metastatic cancer will have sufficient tumor-derived cfDNA for
WES. We analyzed ULP-WGS of cfDNA from 903 blood samples
from 391 patients with metastatic breast cancer and 536 blood
samples from 129 patients with metastatic prostate cancer
(Fig. 3e, Supplementary Fig. 24, Supplementary Data 1). Overall,
we found 73% of patients with metastatic breast and prostate
cancer, had detectable (≥0.03) tumor-derived cfDNA.

Considering only the earliest blood draw from each patient,
34.5% and 33.3% of breast and prostate cancer patients, respec-
tively, had sufficient tumor fraction (≥0.1)11, 16 for standard WES
(Fig. 3e). Additionally, when considering all blood samples, 43
and 49% of breast and prostate cancer patients had at least one
sample with ≥0.1 tumor fraction (Supplementary Fig. 24). Sub-
sequent analysis of SCNAs detected from ULP-WGS of these
samples revealed SCNA landscapes that closely reflected those
reported36, including biopsies of metastatic tumors from 150
patients with castration-resistant prostate cancer (CRPC)20

(Supplementary Fig. 24, Supplementary Data 4). We also iden-
tified frequent alterations of known tumor suppressor genes
(e.g., ATM, RB1, TP53, CDKN2A/B, PTEN, and PPP2R2A)
and oncogenes (e.g., CCND1, AKT1, GATA3, ERBB2, PIK3CA,
and AR)20, 36, 37. Our results demonstrate that WES is possible in
a substantial fraction of patients with metastatic breast and
prostate cancers. Furthermore, using the estimated tumor fraction
can help to calibrate the required sequencing depths for lower
tumor content samples (Supplementary Fig. 25).

Discussion
Our study has overcome three major hurdles for making WES of
cfDNA a routine possibility for patients with metastatic cancer: (1)
efficient screening for tumor content prior to WES; (2) compre-
hensive benchmarking of cfDNA and conventional biopsies; (3)
applicability to many patients with metastatic cancer. While many
studies have emphasized targeted sequencing of cfDNA, we have
established feasibility for reproducible and scalable profiling of
whole cancer exomes from cfDNA. Our characterization of 41
pairs of cfDNA and tumor whole-exomes constitutes by far the
most comprehensive comparisons reported to date; the first to
examine clonal relationships in SSNVs and SCNAs between
cfDNA and tumor biopsies using WES; and the first to analyze
significantly mutated genes, mutational signatures, and neoanti-
gens among cohorts of patients using WES of cfDNA.

The differences in SSNVs and SCNAs between cfDNA and
tumor biopsies may be attributable to location and timing of
biopsy, differential release of cfDNA among lesions, and extent of
tumor heterogeneity38, 39 within a patient. It is also possible that
nucleosome positioning18 or epigenetic modifications40 may
affect the ability to detect certain somatic alterations in cfDNA.
Further, the assessment of clonality in cfDNA may be con-
founded by the contribution of cfDNA derived from multiple
metastases. Nonetheless, WES enables comprehensive clonal
analysis of cfDNA to track tumor evolution and identify
mechanisms of resistance to targeted therapy. While further
investigation is required to determine the feasibility of profiling
cfDNA from patients with earlier stages of disease, the ability to
detect SCNAs and estimate tumor content from ULP-WGS alone
may have roles in broader efforts to study aneuploidy and routine
clinical monitoring of metastatic disease.

Fig. 3 Genomic alterations of known significance and applicability to large cohorts. a, b The alteration status of significantly mutated genes predicted by

MutSig2CV23, 24 (a), focal SCNAs (b), and known cancer-associated genes22 are shown for cfDNA and tumor biopsies from 27 metastatic breast cancer

(MBC) patients. Mutated genes with MutSig2CV q-value< 0.1 are statistically significant. Mutations that were exclusively detected in one sample may be

present at low CCF in the other matched sample but were excluded from the frequency calculation. SCNA frequencies were computed for oncogenes (MYC

to ERBB2) and tumor suppressors (BRCA1 to ATM) using only amplification and deletion status, respectively. Mutations were predicted using MuTect and

SCNAs were predicted using ReCapSeg and ABSOLUTE. Red dot indicates distinct mutations in tumor and cfDNA. cMutational signatures in whole-exome

sequencing of cfDNA and tumor biopsies were predicted using a Bayesian non-negative matrix factorization (NMF) approach29 (“Methods”). Samples with

predicted biallelic inactivation of BRCA1/2 are indicated in red and blue. Black line denotes y= x; blue line denotes model fit using linear least squares

regression. d Neoantigen burden, defined as the number of predicted neoantigen SSNVs, was calculated using NetMHCpan33 (“Methods”). Black line

denotes y= x; blue line denotes model fit using linear least squares regression. e Applicability to many patients with metastatic cancer. Tumor fractions

estimated from ULP-WGS of cfDNA from 903 blood samples from 391 patients with metastatic breast cancer and 536 blood samples from 129 patients

with metastatic prostate cancers. The earliest blood drawn for each patient is shown. Samples with coverage <0.05× were excluded
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We had previously demonstrated feasibility for whole-exome
sequencing of circulating tumor cells41. Here we established an
analogous approach for whole-exome sequencing of cfDNA.
Together, these two approaches may unlock routine and com-
prehensive genomic characterization of types and stages of cancer
that are infrequently biopsied in clinical practice.

Methods
Human subjects. Patients with metastatic breast cancer (MBC) were prospectively
identified for enrollment into tissue analysis and banking cohorts (Dana-Farber
Cancer Institute IRB protocol identifiers 05-246, 09-204, 12-431 [NCT01738438;
Closure effective date 6/30/2014]). Eligible patients included those with known
metastatic breast cancer as well as those with newly diagnosed breast cancer (de
novo metastatic disease). After obtaining informed consent for genomic analysis of
their blood and/or tumor tissue, an initial blood draw was collected. Accessible
metastatic, non-bone sites (e.g., breast, skin, and lymph node) were preferentially
identified for biopsy. When feasible, a corresponding blood draw for plasma was
performed within 7 days of a metastatic tumor biopsy. A subset of patients
underwent subsequent blood draws at the time of treatment switch, 4–6 weeks after
treatment switch, and every 3 months if on stable treatment.

Eligible metastatic CRPC patients were identified through the Prostate
Clinical Research Information System (CRIS) database at Dana-Farber
Cancer Institute42. The CRIS system comprises data-entry software, a central
data repository, collection of patient data including comprehensive follow-up of all
patients, and tightly integrated security measures, as previously described42.
All patients provided written informed consent to allow the collection of tissue
and blood and analysis of clinical and genetic data for research purposes (DFCI
Protocol # 01-045, IRB expiration date 01/13/2017). The cohorts accrued to
this study were patients who either (1) were identified based on prospective
chart review to have PSA >20 ng/mL, progressive disease based on rising PSA,
and scan progression; (2) were participants in a Phase I study of crizotinib in
combination with enzalutamide (DFCI Protocol # 14-230, IRB expiration date
05/05/2017, NCT02207504) or a Phase Ib study of abiraterone in combination
with ARN-509 (DFCI Protocol # 12-338, IRB expiration date 08/20/2016,
NCT01792687); or (3) were eligible for metastasis biopsy after progression
on enzalutamide or abiraterone through the Stand Up 2 Cancer/PCF Dream
Team Effort based on participation in one of the following protocols: a Phase II
study of abiraterone in combination with dutasteride (DFCI Protocol # 10-448,
IRB expiration date 12/30/2016, NCT01393730), a Phase II trial of enzalutamide
with correlative assessment of AR signaling (DFCI Protocol # 13-301, IRB
expiration date 07/30/2016, NCT01942837), a Phase II trial of abiraterone
without exogenous glucocorticoids (DFCI Protocol # 13-449, IRB expiration
date 10/01/2016, NCT02025010), and a tumor biopsy protocol to assess
tissue correlates of therapeutic response (DFCI Protocol # 09-171, IRB expiration
date 09/14/2016). Blood specimens were prospectively collected from eligible
patients.

Fresh whole blood (10–20 cc) from appropriately consented healthy donors was
obtained through Research Blood Components (http://researchbloodcomponents.
com/services.html). The donor cohort was comprised of healthy males and females
between 18 and 65 years of age. Additional plasma samples were obtained from
appropriately consented healthy individuals under DFCI Protocol # 03-022, IRB
expiration date 12/28/2017).

Clinical specimens. Venous blood samples (10 cc) were collected in EDTA (BD)
or CellSave Preservative (Cell Search) tubes. Tubes were processed within 4 h of
collection by freezing of a small aliquot (610 µL) of whole blood at −80 °C and
centrifuging the remaining whole blood at 1000–1900 × g for 10 min at room
temperature. After discarding the red blood cells and buffy coat, plasma was
centrifuged a second time at 15,000 × g for 10 min at room temperature in low-bind
tubes to remove residual cells from plasma. Supernatants were then frozen at −80 °
C until ready for further processing.

Matched tumor biopsies were processed and sequenced through the Broad
Institute Genomics Platform’s Research Whole Exome Sequencing deep coverage
pipeline (http://genomics.broadinstitute.org/data-sheets/DTS_WES_1Page_5-
2016_0.pdf). For 1× whole-genome sequencing of 22 patient tumor biopsies, 25 ng
genomic DNA was subjected to the library construction steps of the Nextera Rapid
Capture Exome Kit (Illumina) at half volume but not to hybrid selection.
Sequencing to generate 100 bp paired-end reads was performed on the Illumina
HiSeq2500 in rapid-run mode.

Extraction and quantification of cfDNA. Frozen aliquots of plasma were thawed
at room temperature. cfDNA was extracted from 1 to 7 mL of plasma and eluted
into 40–80 µL of re-suspension buffer using the Qiagen Circulating DNA kit on the
QIAsymphony liquid handling system. Extracted cfDNA was frozen at −20 °C until
ready for further processing. Quantification of extracted cfDNA was performed
using the PicoGreen (Life Technologies) assay on a Hamilton STAR-line liquid
handling system.

Extraction and quantification of germline DNA. Whole blood was thawed at
room temperature. Germline DNA was extracted from 400 µL of blood and eluted
into 200 µL of re-suspension buffer using the Qiasymphony DSP DNA midi
kit on the QIAsymphony liquid handling system. Samples were then frozen at
−20 °C until ready for further processing. Extracted gDNA was quantified using the
PicoGreen (Life Technologies) assay on a Hamilton STAR-line liquid handling
system.

Library construction and sequencing of cfDNA. Library construction of cfDNA
was performed using the Kapa Hyper Prep kit with custom adapters (IDT and
Broad Institute). A total of 5–20 ng of cfDNA input was used for ULP-WGS.
A Hamilton STAR-line liquid handling system was used to automate and perform
this method. Constructed sequencing libraries were pooled (2 µL of each × 96 per
pool) and sequenced using 100 bp paired-end runs over 1× lane on a HiSeq2500
(Illumina) for ULP-WGS.

When possible, 20 ng of cfDNA input was used to construct another cfDNA
library for WES, which afforded greater library complexity and reduced the depth
of sequencing required to achieve the desired mean target coverage. Library
construction was performed using the Kapa Hyper Prep kit with custom adapters
(IDT and Broad Institute) on a Hamilton STAR-line liquid handling system.
Libraries were then quantified using the PicoGreen (Life Technologies) assay on a
Hamilton STAR-line liquid handling system and pooled up to 12-plex. Hybrid
selection of cfDNA libraries was performed using the Nextera Rapid Capture
Exome kit (Illumina) with custom blocking oligos (IDT and Broad Institute).
Sequencing to generate 100/101 bp paired-end reads was performed on the
Illumina HiSeq2500/HiSeq4000 in high-output mode with two to four libraries per
lane. Out of the 1684 cancer patient cfDNA samples collected, we successful
constructed libraries and sequenced 1596 samples.

For deeper whole-genome sequencing, we used the best possible libraries
constructed with 5–20 ng of cfDNA input. Re-sequencing to greater depths
(10×–48×) with 100/101 bp paired-end reads was performed on Illumina
HiSeq2500/HiSeq4000 in high-output mode.

Extraction and sequencing of genomic DNA. For whole-exome sequencing,
DNA Library construction and hybrid selection of gDNA was performed
using the Nextera Rapid Capture Exome kit (Illumina) at half volume with
25 ng of DNA input. Sequencing was performed on the Illumina HiSeq2500 in
high-output mode with 100 bp paired-end reads. Four to six libraries were
pooled per lane.

Analysis of ULP-WGS of cfDNA using ichorCNA. In order to assess the presence
of detectable tumor DNA, we performed ULP-WGS of cfDNA to an average
genome-wide fold coverage of ∼0.1×. We analyzed the depth of coverage in a ULP
sample to evaluate large-scale copy number alterations (CNAs) and aneuploidies.
We developed a probabilistic model and implemented a software package called
ichorCNA, which uses concepts from existing algorithms17, 43 designed for deep
coverage WGS/WES data to simultaneously predict regions of CNAs and estimate
the fraction of tumor in ULP-WGS. We applied ichorCNA to analyze 1596
metastatic breast (974) and prostate (622) cancer cfDNA samples, and 27 healthy
donor cfDNA samples. Samples with genome-wide coverage <0.05 × were exclu-
ded (71 MBC, 86 CRPC, 0 HD). The workflow consists of three steps: (1) Com-
puting read coverage, (2) data normalization, and (3) CNA prediction and
estimation of tumor fraction. Below, we describe the challenges, model assump-
tions, analysis workflow, and the probabilistic model. The ichorCNA software can
be obtained at https://github.com/broadinstitute/ichorCNA.

Challenges of ULP-WGS of cfDNA and ichorCNA assumptions. ULP-WGS of
cfDNA presents several analytical challenges including (a) very low coverage of
sequencing; (b) absence of matched normal germline DNA; and (c) low tumor
content of many cfDNA samples. Therefore, we implemented a solution that
accounts for these challenges using several assumptions that will help with the
analysis and interpretation. (1) Large-scale CNA can be detected by evaluating
read coverage in large, equal-sized genomic windows (or bins). (2) Homozygous
deletions are typically at smaller scales than the large bin sizes used here and
are not considered. (3) Clonal copy number states should be discrete integers.
(4) This bin size is large enough to overcome any biases related to nucleosome
positioning which is at the scales of 166 bp and 332 bp. (5) Due to the low coverage
and absence of allelic information, only one subclone is assumed to be detectable.
The last assumption is a consequence of a limitation of the algorithm to reliably
and explicitly distinguish large numbers of subclones, given the low coverage and
low tumor content.

ichorCNA: analysis workflow. The genome is divided into T non-overlapping
windows, or bins, of 1 Mb. Aligned reads are counted based on overlap within each
bin. This was done using the tools in HMMcopy Suite43 (http://compbio.bccrc.ca/
software/hmmcopy/). Centromeres are filtered based on chromosome gap coor-
dinates obtained from UCSC for hg19, including one 1Mb bin up- and down-
stream of the gap.
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The short fragment sizes of cfDNA (e.g., 166 bp) often contain overlapping
paired reads for 100 bp read lengths and can lead to two overlapping
reads representing a single fragment. Abundance of cfDNA fragments has
been shown to exhibit tissue-specific differences along local ~200 bp scale
regions of the genome18. For this analysis, because read counts are computed
for large bins, the double-counting at ~200 bp scale is not likely to have a
major effect.

The read counts are then normalized to correct for GC-content and
mappability biases using HMMcopy R package43. Briefly, two LOESS regression
curve-fitting are performed to the bin-wise (1) GC-fraction and read counts,
followed by (2) mappability uniqueness score and read counts. The curve-fitting
was only applied to autosomes. This generates corrected read counts rt for each bin
t 2 1; ¼ ;Tf g.

Next, the gender of the patient is determined by inspecting the corrected read
counts in chromosome X and Y. We used two criteria to determine if the sample is
a male (otherwise the sample is a female): (1) the proportion of uncorrected chrY
read counts out of the total number of reads is >0.001 and (2) the median corrected
log ratio of chrX is <−0.5. If the sample is a male, then the bins in chrX are re-
scaled, rt2chrX=median rt2chrXð Þ.

We also performed ULP-WGS on cfDNA from 27 healthy donors using the
same protocol in order to create a reference data set. These data help to further
normalize the cancer patient cfDNA to correct for systematic biases arising from
library construction, sequencing platform, and cfDNA-specific artifacts. We
computed the median at each bin across the 27 samples to generate a reference data
set, h1:T . For a given cancer patient cfDNA sample and each bin t, the log2 copy

ratios are computed as lt ¼ log2
rt
ht

� �

.

ichorCNA: copy number prediction and tumor fraction estimation. The cancer
patient cfDNA CNA signal can be represented as an admixture between DNA
fragments derived from tumor and non-tumor cells. We use a two-component
mixture to model this explicitly16, 17, 43–45

observed CNA / 2nþ 1� nð Þc ð1Þ

where n is the non-tumor proportion, (1−n) is the tumor proportion, and c is the
copy number for a specific alteration (e.g., one for deletion, three for gain, etc.). For
subclonal events, a third component is used to represent DNA fragments derived
from tumor cells not harboring the CNA event16, 17, 45.

observed subclonal CNA / 2nþ 2s 1� nð Þ þ 1� sð Þ 1� nð Þc ð2Þ

where s is the proportion of tumor not containing the event with c copy number.
Thus, (1−s) is similar to the definitions of tumor-cellular-prevalence17 or cancer-
cell-fraction16 for tissue tumors.

State model. The copy number states are mapped to hemizygous deletions
(HETD, 1), copy neutral (NEUT, 2), copy gain (GAIN, 3), amplification (AMP, 4),
and high-level amplification (HLAMP, 5–7 copies). The homozygous deletions
state (HOMD, 0 copies) is excluded because the analysis is focused on large-scale
multiple mega-bases per event. For the analysis performed in this study, we fixed
the copy number to be Kclonal ¼ 1; 2; 3; 4; 5f g For subclonal events, two additional
states are included: subclonal hemizygous deletion (HETDsc) and subclonal copy
gain (GAINsc),

K ¼ Kclonal; 1; 3f gsubclonal
� �

:

A copy number state is assigned to Gt for each bin t and the initial distribution
of these copy number states is given by G0 � Mult πð Þ.

ichorCNA uses a hidden Markov model (HMM) to predict segments of CNAs
and to estimate the tumor fraction from ULP-WGS of cfDNA. Details of the
Bayesian statistical framework of the hidden Markov model and its inference using
the expectation–maximization (EM) algorithm are described next.

Emission model. The input log copy ratios l1:T is modeled using a Student’s
t-distribution with μg, λg, and vg as the mean, precision, and degrees of freedom,
conditional on copy number state g 2 K at bin t,

p lt jGt ¼ gð Þ ¼ St lt jμg ; λg ; νg
� �

Mean μg is defined by the three-component mixture (Eq. (2))17, 45 for copy
number state g with unknown global parameters n and average tumor ploidy ϕ,

μg ¼ log
2nþ 2s 1� nð Þ þ 1� sð Þ 1� nð Þcg

2nþ 1� nð Þϕ

� �

For clonal copy number states, since s= 0 then μg is defined by the two-
component mixture (Eq. (1)),

μg ¼ log
2nþ 1� nð Þcg
2nþ 1� nð Þϕ

� �

Precision λg for each g 2 K are also model parameters. The degrees of freedom
vg is a constant (2.1) and is not estimated.

Transition model. A stationary (homogeneous) transition model is used in the
HMM. Because all bins have equal-sized intervals, with the exception of
centromere regions, a non-stationary transition model to account for varying

genomic distances17 between data points was not used. The transition matrix
containing the transition probabilities is given by

p Gt ¼ j Gt�1j ¼ ið Þ ¼ Aij

Aij ¼
e i ¼ j
1�e
Kj j�1

otherwise

(

where e is set to 0.99999.
Prior model. The HMM is implemented as a Bayesian framework with priors

for each model parameter: Student’s t parameters μg, λg for each g 2 K ,
transition probabilities A, initial state distribution π, and global parameters
n, s, and ϕ,

n � Beta αn; βnð Þ
s � Beta αs; βsð Þ
ϕ � Gamma αϕ; βϕ

� 	

λg � Gamma αg ; βg

� �

A � Dir δAð Þ
π � Dir δpi

� 	

where ψ ¼ δA; δπ ; αg ; βg ; αn; βn; αs; βs; αϕ; βϕ

n o

for all g 2 K are the hyper-
parameters.

Hyperparameter values are set to represent uniform priors. However, for the

prior of the Student’s t precision, αg= 3 and βg ¼ sd l1:Tð Þ
ffiffiffiffiffi

Kj j
p

� ��1

where sd l1:Tð Þ is the
standard deviation of log ratio data to reflect the variance in the specific sample.

Learning and inference. The model parameters θ ¼ μ1: Kj j; λ1: Kj j;A; π; n;ϕ
n o

are
estimated using the EM algorithm given the data D ¼ l1:Tf g. In the E-step, we
applied the forwards–backwards algorithm to compute the posterior probabilities,
p Gt ¼ g D; θjð Þ. In the M-step, the parameters θ(n) at EM iteration n are estimated
using the maximum a posteriori (MAP) estimate,

θ nð Þ ¼ argmaxθ p GjD; θ n�1ð Þ
� �

p D;Gjθ nð Þ
� �n o

The converged parameters θ̂ are determined by the EM convergence criteria
such that the complete-data log-likelihood (including priors)

F nð Þ ¼ log p D;Z θ n�1ð Þ�

�

� �

þ log p θðnÞ ψj
� �

changes <0.1% F nð Þ � F n�1ð Þ
<0:001

� 	

. The complete-data log-likelihood at
convergence is denoted F̂.

We then apply the Viterbi algorithm to find the optimal copy number state path
for all bins,

Ĝ1:T ¼ argmaxG p G1:T D; θ̂
�

�

� 	� �

Chromosome 19 shows systematic decrease in log2 copy ratio values across
majority of samples for bins within chr19 after GC-content correction, including
cancer patient and healthy donor cfDNA. Because the healthy donor samples were
used for genome-wide normalization, the chromosome 19 bias, along with other
systematic large-scale biases are accounted for. Regardless, we still excluded
chromosome 19 during parameter estimation (i.e., EM) since it is negligible
number of data points in the learning. However, chromosome 19 is still included in
the Viterbi algorithm as part of generating a genome-wide solution.

In order to avoid the local optimal limitation of EM, we perform multiple
restarts by performing EM over a range of initializations for normal fraction
(n 0ð Þ 2 0:35; 0:45; 0:50; 0:65; 0:75; 0:85; 0:95f g) and tumor ploidy
(ϕ 0ð Þ 2 2; 3; 4f g) parameters. The solution with the maximum complete-data log-
likelihood, F̂, over each initialization pair, n 0ð Þ;ϕ 0ð Þ� 	

is chosen.
Due to the problem of identifiability between clonal and subclonal events, which

is especially challenging in ULP sequencing and the absence of allelic information,
solutions with >50% of the genome harboring subclonal CNA or >70% of CNA
calls being subclonal are not selected. Further, solutions with a total alteration
fraction (based on bins) <0.05 and having the largest CNA event be <50 bins are
assigned a tumor fraction of zero.

ichorCNA: code availability and run-time. ichorCNA is implemented as
an R package and can be obtained at https://github.com/broadinstitute/ichorCNA.

The ichorCNA HMM component has complexity O KTð Þ in memory
and O K2Tð Þ in time. The run-time of the algorithm for 0.1× coverage is on the
order of 1 min for read coverage computation and 1 min for analysis using the
HMM.

ichorCNA benchmarking and performance evaluation. In order to determine
the performance of the algorithm for predicting CNA and estimating tumor
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fractions for ULP-WGS, we generated four benchmarking data sets from
real cancer patient cfDNA sequencing to evaluate ichorCNA in a controlled
manner.

1. “Serial”mixtures at varying tumor fraction and coverage (0.01×–1×) using the
whole genome of a breast cancer patient cfDNA sample (MBC_288).

2. “Merged” mixtures at 0.1× coverage generated using 44 breast/prostate and 18
healthy donor cfDNA ULP-WGS samples with ≥0.05×.

3. “Exact tumor fraction” mixtures at 0.1× coverage ranging from 0.1 to 1.0 (0.1
increments) tumor fraction using 50 breast/prostate cfDNA ULP-WGS samples.

4. “Spike-in” analysis to determine the minimum number of CNAs, size, and
magnitude to detect tumor-derived DNA using a subset of 10 cancer patient
cfDNA samples.

For copy number prediction evaluation, binary classification metrics
of precision (positive predictive value; TP

TPþFP
), recall (sensitivity; TP

TPþFN
), and

F-measure (F1-score; 2´ precision ´ recall
precisionþrecall

), were computed separately for
copy number gains and deletions. True positives (TP) are defined as the
number of bins in which the copy number is < 2 or >2 for deletion and
amplifications, respectively, observed in both the admixture sample and the
ground truth.

Serial mixtures at varying coverage (0.01×–1×). First, we sequenced the whole
genome of a breast cancer patient cfDNA sample (MBC_288) to ~10× coverage.
We analyzed this sample using the same algorithm for ULP-WGS data and
determined the CNA events and tumor fraction to be 0.78 (Supplementary Fig. 2).
Both the CNA events and tumor fraction estimate were further confirmed in
analysis of the WES of the same sample using TITAN17 and ABSOLUTE

16

(Supplementary Fig. 15, Supplementary Data 4). Based on these results, we used the
10× WGS data for down-sampling and admixing experiments, and using the 10×
ULP-WGS results as ground truth. We also performed WGS on cfDNA of a
healthy donor (HD_2) to 10× coverage to use as the normal sample to admix in the
experiment.

We generated tumor-normal admixtures ranging from 0.01 to 0.21 (0.02
increments) and 0.25 to 0.45 (0.05 increments) of sample MBC_288 and 0.99 to
0.79 (0.02 increments) and 0.75 to 0.55 (0.05 increments) of sample HD_2 such
that the two proportions summed to one. For each admixture, we also down-
sampled to coverages of 0.01×, 0.05×, 0.10×, 0.20×, 0.30×, 0.40×, 0.50×, 0.60×,
0.70×, 0.80×, 0.9×, 1.0×. The down-sampling and mixing was done using Picard
DownsampleSam and using the PROBABILITY argument. In the end, a total of 192
down sampled admixture samples were generated.

We applied the ULP-WGS analysis to call copy number and estimate tumor
fraction on each sample independently. We used the same procedure as
described above, including using 1Mb bins, with the exception that we did not use
the ϕ= {3,4} for initializations during EM restarts.

Merged ×0.1 mixtures. For 44 breast/prostate cfDNA (CT) ULP-WGS samples
with ≥0.05× coverage (1.5 million reads) and matching WES samples, we
downsampled to ~0.05× coverage. We also down-sampled 18 healthy donor ULP-
WGS samples to ~0.05× coverage (Supplementary Fig. 12). Next, we merged each
of the 44 downsampled cfDNA CT samples with each of the 18 healthy donor
samples to generate 792 mixtures at ~0.1× coverage with an expected tumor

fraction, expTF ¼ # reads CT
# reads CTþ# readsHD

´WES purity, where WES purity is the

estimated tumor purity of the CT sample from WES using ABSOLUTE/TITAN. The
rounded ploidy estimate from ABSOLUTE/TITAN was used for the ploidy initialization
in the analysis on the mixtures. Duplicates have been removed prior to down-
sampling as to not skew the expected tumor fraction. Only autosomes 1–22 were
considered.

Exact tumor fraction (0.01 to 0.1) mixtures at 0.1× coverage. For 50 breast/
prostate cfDNA (CT) ULP-WGS samples with a matching WES sample, we
down-sampled to the number of reads required to reach exactly 0.01, 0.02, …, 0.09,
0.10 tumor fraction at 0.1× coverage (Supplementary Fig. 13). We used a
deeper sequenced healthy donor (HD_2) to dilute these mixtures. The number
of reads required for a CT sample S at a specific tumor fraction TF 2
0:01; 0:02; :::; 0:09; 0:10f g was computed as CT reads S;TFð Þ ¼ 1:5´ 106 reads �TF

WES purity
.

The number of reads required for HD_2 were computed as HD reads S;TFð Þ ¼
1:5 ´ 106 � CT reads S;TFð Þ. WES purity is the estimated tumor purity of the CT
sample from WES using ABSOLUTE/TITAN. The rounded ploidy estimate from
ABSOLUTE/TITAN was used for the ploidy initialization in the analysis on the mixtures.
The total number of mixtures generated was 496 (instead of 500) because one CT
sample did not have sufficient coverage for mixtures >0.6×. Duplicates have been
removed prior to downsampling as to not skew the expected tumor fraction. Only
autosomes 1–22 were considered.

Spike-in analysis to determine the minimum CNA event number, size, and
magnitude to detect tumor-derived DNA. For 10 of the cancer patients from the
“exact tumor fraction mixture” experiment, we took each of the ten mixtures
(0.01–0.1 tumor fraction) for each of the patients and simulated a copy neutral
genome with (a) a single loss, (b) a single gain, or (c) a loss and a gain of varying
lengths. Using 10 different patient samples allows for analysis of the variance in the
experiment. The simulation of copy neutral data was sampled from the data of true
copy neutral of the patient’s original profile. Likewise, the spike-in of gains and/or
losses was generated using data from the patient’s original profile so that the
inherent sample-specific variance is maintained. An example of these spike-in data
sets is shown in Supplementary Fig. 14.

ichorCNA lower limit of tumor detection in cfDNA. The lower limit of detection
of 0.03 was determined using several analyses. First, the maximum absolute error
across all coverages ≥0.10× and all admixture proportions was ≤0.03. Next, using
the “merged” 0.1× mixtures (792 samples; Supplementary Fig. 12) and “exact
tumor fraction” 0.1× mixtures (496 samples; Supplementary Fig. 13), we assessed
the sensitivity and specificity for correctly classifying the presence or absence of
tumor DNA. At a threshold 0.03 tumor fraction, the sensitivity of correctly pre-
dicting the presence of tumor is 95% (out of 1288 positives) while the specificity for
correctly predicting the absence of tumor is 91% (out of 22 healthy donors)
(Supplementary Data 3). A similar analysis was performed to evaluate the decision
threshold of 0.1 tumor fraction, achieving 91% sensitivity (presence of tumor) and
100% specificity (absence of tumor).

Comparison of cfDNA ULP-WGS to other data types. Comparison with deeper
coverage WGS (>10× coverage). Having established the performance from con-
trolled benchmarking comparisons, we performed deeper coverage (>10×, range
10–48×) WGS for seven of the cfDNA samples. We compared the log2 copy ratios
and copy number between the datatypes, using CNA predicted from the deeper
WGS using TITAN as ground truth. For the log2 copy ratio comparison, we com-
puted the Spearman correlation at 1Mb bins for both datatypes (Supplementary
Fig. 3). For the CNA performance, we used TITAN CNA predictions, which were
generated using 1 Mb genome-wide log2 copy ratios and exonic heterozygous SNPs
determined from the WES matched normal sample (since WGS for matched
normals were not available, Supplementary Fig. 5a).

Comparison between cfDNA ULP-WGS to matched tumor biopsy (WES and 1×
WGS). We next performed a technical and biological comparison in 41 patients for
which there was ULP-WGS of cfDNA and WES of the matched metastatic tumor
biopsy (Supplementary Fig. 7). For 22 MBC patients, we also performed WGS
sequencing of the biopsy sample to 1× coverage and compared these to the ULP-
WGS (Supplementary Fig. 4). These analyses serve as a technical comparison of the
normalized log2 copy ratios between the two sample types. In addition, this analysis
will highlight the similarities and differences in the CNAs between cfDNA and the
tumor biopsy.

For the biopsy WES log2 comparison, we assessed log2 copy ratio at each 1Mb
bin in the cfDNA analysis but excluded bins that did not overlap at least one 50 kb
bin in the tumor biopsy sample. The tumor biopsy CNA status, which was
generated by TITAN17, was defined as the mean log2 copy ratio across all 50 kb
bins overlapping the 1Mb bin of interest. For the biopsy WGS (1×) comparison,
we assessed the log2 copy ratio at each 1Mb bin in both cfDNA and biopsy
samples. We assessed the similarity between each cfDNA sample and the matching
tumor biopsy by computing the Spearman correlation. Because the tumor fraction
estimate from cfDNA may differ from the biopsy, the linear regression fit of these
data may have varying slopes.

For the biopsy WES CNA comparison, we assessed CNA status at each 1Mb
bin in the cfDNA analysis but excluded bins that did not contain at least one SNP
overlapping a WES target interval from the TITAN analysis. The CNA status at
each SNP predicted by TITAN in the tumor biopsy served as the ground truth. To
generate this ground truth data, each 1Mb bin was assigned the TITAN CNA
status of the overlapping SNP; for bins with more than 1 overlapping SNP, the
most frequent CNA call was used. For the biopsy WGS (1×) comparison, we used
ICHORCNA to generate the CNA truth set for each 1Mb bin from the WGS (1×) data
and compared these to the CNA status at each 1Mb bin in the cfDNA (ULP-
WGS). The biopsy WGS (1×) and WES comparisons are presented in
Supplementary Fig. 5c, d, respectively.

Comparison of cfDNA tumor fractions between ULP and WES. We compared
the cfDNA tumor fraction estimates from ULP-WGS with the WES of the same
matching sample analyzed by more established tools, ABSOLUTE and TITAN

(Supplementary Fig. 15). Estimates of tumor content (i.e., tumor purity) and tumor
cellular prevalence (i.e., cancer cellular fraction) from WES are estimated from
deeper coverage data, which provides allelic information, using these more
established approaches. Because the cfDNA sample may contain multiple
subclones, the ULP tumor fraction may be an underestimate compared to the
tumor content as estimated in WES. Ploidy estimation from ULP-WGS is less
informed because of the absence of allelic information from low-coverage data.
Discordant ploidy estimates from ULP-WGS when compared to WES leads to an
underestimation of tumor fraction. Therefore, we identified samples with ploidy
discordance as having differences >0.75. The Pearson correlation was then
computed between ULP-WGS and WES across all cfDNA samples from
concordant and discordant ploidy, separately (Supplementary Data 6).

Theoretical power to determine WES coverage using ULP-WGS. In order to
calibrate the amount of coverage for WES of cfDNA, one can determine the
required sequencing depth based on theoretical power estimates computed using
the tumor fraction estimation (Supplementary Fig. 25). This computation requires
the ULP-WGS estimate of tumor fraction α, SNV multiplicity M (i.e., the number
of chromosomes containing the variant), and the reference bias skewing of the
sequencing library w. Let p be the expected allelic fraction of observing a hetero-
zygous clonal (CCF = 1) SSNV. Let M= 1 by assuming a tumor ploidy of 2. Higher
ploidy will increase the likelihood of observing the variant if the variant allele is
amplified. The reference bias skew can be set w= 1, which assumes that there is

NATURE COMMUNICATIONS | DOI: 10.1038/s41467-017-00965-y ARTICLE

NATURE COMMUNICATIONS |8:  1324 |DOI: 10.1038/s41467-017-00965-y |www.nature.com/naturecommunications 9

www.nature.com/naturecommunications
www.nature.com/naturecommunications


skew and the variant allele is evenly represented relative to the reference allele.

p ¼ αMw

αϕþ 2 1� αð Þ
To compute the theoretical power, we use the binomial test for observing 3 or

more variant reads based on a given coverage N for the locus,

p X � 3ð Þ ¼ 1� Bin 0;N; pð Þ þ Bin 1;N; pð Þ þ Bin 2;N; pð Þ½ �

Mutation calling and filtering in whole-exome sequencing data. Illumina
output was analyzed by the Broad Picard pipeline with bwa 0.5.9, resulting in BAM
files aligned to hg19 with calibrated quality scores46, 47. To call somatic mutations
in tumor biopsies and cfDNA, we used MuTect11. We used tools within the
Firehose framework developed at the Broad Institute, which has been described
previously46, 48. We assessed cross-sample contamination levels using ContEst49

and used these estimates as input for MuTect in order to set the lower bound of
allele fraction accepted for mutation calling.

We called somatic SNVs using MuTect11 for cfDNA and tumor biopsy samples.
Subsequently we filtered out potential artifactual OxoG mutations using the OxoG3
filter50 (https://www.broadinstitute.org/cancer/cga/dtoxog) and annotated
mutation consequences with Oncotator51. We realigned reads around mutated sites
with Novoalign (www.novocraft.com/products/novoalign/) to hg19 including
decoy sequences and re-ran MuTect in order to filter out mutations in problematic
regions. Finally, we filtered out SNVs using two panels of normal samples, the first
with 8334 normal samples sequenced using Agilent exome capture, and the second
with 140 normal samples using Illumina capture in order to filter out potential
germline sites or recurrent artifactual sites. In both cases, we filtered out mutations
called in 0.5% or more of the panel of normals samples that were seen in at least
five samples. Additionally, we removed sites where at least 20% of samples across
the panel of normals had reads supporting the mutation. Finally, we required that
the site be covered by eight or more reads in at least 50% of samples and that, at
most, 30% of samples had less than eight reads covering the site. For cfDNA
samples, we applied an additional filter described below.

To call somatic insertions and deletion (indels), we used Strelka52 and
annotated the mutation consequences using Oncotator51. To filter out potential
false positives, we filtered indels against panels of normal samples, as described
above for SNVs.

cfDNA-specific mutation filtering in whole-exome sequencing data. Previous
work has identified potential 8-oxoguanine artifacts in cfDNA at C>A bases7. This
previous study identified a reference bias with G>T substitutions being more
frequent than C>A substitutions, which suggests that oxidative damage is occur-
ring during hybrid capture, as capture targets are designed with respect to the
reference genome. We observe a clear reference bias in low allele fraction C>A
mutations in cfDNA, whereas in the tumor biopsies, we do not observe a reference
bias (Supplementary Fig. 26). Additionally, we observe a reference bias with more
C>A than G>T mutations, which may be due to a difference in the reference
genome strand used for capture bait design. This reference bias artifact is also
distinct from previously identified 8-oxoguanine artifacts in exome sequencing
data50. While there is a clear reference bias for low allele fraction mutations, the
bias does not appear to be as strong for mutations at allele fraction >0.1. In order
to filter out the potentially problematic sites, we decided to raise the tumor LOD
score threshold11 LODT from 6.3 for C>A mutations at reference C bases. In order
to choose an appropriate threshold, we evaluated the reference bias for C>A
mutations in the 41 tumor biopsy samples and we raised the LODT threshold for
C>A mutations at reference C bases in cfDNA until the reference bias for C>A
mutations in the 59 cfDNA samples was equal to the reference bias for C>A
mutations in the 41 tumor biopsies. This corresponded to a threshold of LODT>

11.72 for C>A mutations at reference C sites. We applied this filter to all cfDNA
samples, and the mutational contexts following filtering are displayed for cfDNA
and tumor biopsies in Supplementary Fig. 27.

We performed SSNV and indel analysis of cfDNA from 12 healthy donors to
determine the false positive rate in our somatic mutation-calling pipeline. We
applied the pipeline to WES of each healthy donor cfDNA, paired with its matched
germline DNA. We calculated the false positive rate in each sample by dividing the
number of non-synonymous SSNVs called by the total number of bases eligible for
mutation calling, based on the coverage in the tumor and normal (i.e., sites with at
least 14 reads in the cfDNA sample and 8 reads in the germline sample).

We also analyzed SCNA in the cfDNA of healthy donors using TITAN. The false
positive rate was estimated as the percent of the genome altered: the total length of
predicted SCNA segments per total genome length (3 × 109).

Copy number alteration analysis in whole-exome sequencing data. Both TITAN

and ABSOLUTE tools were used to perform copy number analysis for cfDNA and
tumor biopsy samples. We used results from both methods to help gain better
confidence in the solutions produced. We found that the estimated global para-
meters of tumor purity and ploidy were very consistent between both approaches.
Therefore, we decided to use ABSOLUTE results for most downstream analyses, but
also used TITAN results for comparisons, particularly to ULP-WGS.

Analysis using TITAN. We used the same pipeline described previously17 for
TITAN. Briefly, the steps are as follows:

1. Identify heterozygous SNPs from the matched germline blood normal sample
using Samtools mpileup. The set of T number of SNPs S1:T contained within
HapMap3.37 variants were retained.

2. The reference at and non-reference bt read counts at each site t 2 S were
extracted from the tumor biopsy or cancer patient cfDNA sample.
Chromosome X in male patients were excluded.

3. Read counts were computed at 50 kb bins using the HMMcopy Suite43.
Centromeres are filtered based on chromosome gap coordinates obtained
from UCSC for hg19, including bins that are 100 kb flanking up- and
downstream of the gap. For WES analysis, only 50 kb bins overlapping the
Illumina exome bait set intervals were retained.

4. The read coverage at 50 kb bins across the genome was corrected for GC-
content and mappability biases independently for tumor/cfDNA and germline
samples. The normalization approach is the same as described for ULP-WGS.
Chromosome X was included for male patients; this is the only stage at which
copy number is analyzed for chrX in males as allelic copy number was not
performed on this chromosome. To compute the log2 copy ratios lt at bin t,
we first used the corrected read coverage of the matched germline normal gt to
normalize the corrected tumor/cfDNA coverage rt,

lt ¼ log2
rt

gt

� �

For ten healthy donor cfDNA samples with WES, we corrected for GC-
content/mappability biases and computed the median at each bin across the
five samples to generate a reference data set ht. Then, we further normalized
the coverage using this reference, l̂t ¼ lt � log2 htð Þ

5. The data l1:T , a1:T , b1:T is input into the TitanCNA R package v1.10.1.
Solutions were generated for 1 to 3 number of clonal clusters and ploidy
initializations for 2 to 4. Optimal solutions were first selected by determining
the optimal ploidy initialization. This was done by finding the consistently
larger log-likelihood between the different ploidy initializations when
comparing the solutions with the same number of clonal clusters. Then,
when the optimal ploidy initialization is determined, the solution with the
optimal number of clonal cluster is selected using the minimum S_Dbw
validity index (using both log ratio and allele ratio). Additional comparisons
of purity and ploidy estimates with ABSOLUTE results led to re-selection of
solutions for some samples. The specific arguments used in TitanCNA:
maxCN = 8, alphaK= 1000, txn_exp_len = 1e15, txn_z_strength= 1, minD-
epth=10, maxDepth=1000. Default values were used for remaining
arguments.

6. Output SCNA state definitions: HET—heterozygous diploid, two copies;
DLOH—deletion LOH, one copy; NLOH—copy neutral LOH, two copies;
GAIN—copy number gain, three copies; ALOH—amplified LOH; three or
more copies, ASCNA—allele-specific copy number amplification; four or
more copies; BCNA—balanced copy number amplification; four or eight
copies; UBCNA—unbalanced copy number amplification; five or more copies.

The parameters for the optimal solutions are listed in Supplementary Data 6
and the segments are found in Supplementary Data 4. The TitanCNA package was
obtained from https://github.com/gavinha/TitanCNA.

Analysis using ABSOLUTE. To evaluate SNVs in paired samples, we needed to
consider the union of mutations called in the two samples. In order to evaluate the
sites that were not initially called, we used forced calling to quantify the number of
alternate reads at each mutant site. We considered reads that were not duplicates,
had a recalibrated base score at the mutant site ≥20 and had a mapping quality ≥5,
and calculated the number of alternate and reference reads. For tumor biopsy to
cfDNA comparisons, we used forced calling for the union of mutations called in
the tumor and cfDNA. Separately, for the evaluation of patients with two cfDNA
samples, we used forced calling for the union of mutations called in the two cfDNA
samples (not including mutations called in the tumor biopsy). We then filtered out
noncoding (e.g., intronic or UTR sites) and used these force called mutations in
paired samples as input for ABSOLUTE.

To estimate somatic copy number from WES, we used ReCapSeg (http://
gatkforums.broadinstitute.org/categories/recapseg-documentation), which
calculates proportional coverage for each target region (i.e., reads in the target/total
reads) and then normalizes each segment using the median proportional coverage
in a panel of normal samples. Then, the sample is projected to a hyperplane defined
by the panel of normals in order to reduce noise and estimate the tumor copy-ratio.
For tumor biopsies, we used a panel of normals samples sequenced with the same
capture technology used to sequence the tumor (i.e., Agilent or Illumina capture).
For cfDNA samples, we used a panel of normals that also included the healthy
donor cfDNA samples in order to reduce noise specific to cfDNA samples. WES
copy-ratio profiles were then segmented with CBS53, 54. To estimate allelic copy
number, we called germline heterozygous sites in the germline normal sample
using GATK Haplotype Caller47, 55 and then evaluated the reference and alternate
read counts at the germline heterozygous sites in order to assess the contribution of
each homologous chromosome. Finally, we segmented the allele specific copy ratios
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using PSCBS54 and used the resulting copy ratios (and the force called SNVs and
indels) as input for ABSOLUTE

16, 56 to estimate the sample purity and ploidy and
estimate absolute allelic copy number as well as the CCF of SCNAs and SNVs. We
filtered out recurrent artifactual segments that overlapped the centromere of
chromosome 1 before input to ABSOLUTE. ABSOLUTE solutions were manually
reviewed, and we selected purity/ploidy solutions. As we expected that cfDNA
would be derived from tumor cells related to those in the tumor biopsies, we
expected that the ploidy of tumor biopsies and cfDNA samples would be
consistent. Thus, we selected solutions that maintained consistent genome
doubling status between cfDNA and tumor biopsies. Since we did not estimate
allelic copy number for the X chromosome, and we did not assess the clonality of
mutation on the X chromosome with the exception of three AR hotspot mutations
for which we manually assigned the mutations a CCF of 1 based on their allele
fractions (Supplementary Fig. 22).

Copy number alteration and gene overlap analysis. For both ULP-WGS and
WES SCNA analysis, gene-level alterations were determined using the list of 19,378
known coding genes from GENCODE57 v19. The copy number status was assigned
based on the largest overlap with the predicted SCNA segment from the algorithms.

Comparison between WES of cfDNA and metastatic tumor biopsy. First, we
considered the clonal and subclonal coding SSNVs that had initially been detected
(i.e., called by MuTect and passing MuTect filters) in the tumor biopsy. We then
evaluated the loci of these mutations in the matched cfDNA sample to look for any
evidence of the mutation in cfDNA. We also considered the mutations initially
detected in the cfDNA sample and assessed their detection in the tumor. We also
assessed the overlap of cfDNA mutations that were also detected in a later cfDNA
time point. We used cfDNA-exclusive mutations (i.e., mutations that were detected
in cfDNA and powered but not confirmed in tumor biopsies), and evaluated the
loci of these mutations in the cfDNA sample taken at a later time point (t2). Details
of the comparison are described next.

First, we considered the clonal and subclonal coding SSNVs that had initially
been detected (i.e., called by MuTect and passing MuTect filters) in the tumor
biopsy. We used the predicted ABSOLUTE CCF to assignments clonal (≥0.9 CCF) and
subclonal (<0.9 CCF) in the tumor biopsy. We then evaluated the loci of these
mutations in the matched cfDNA sample to look for any evidence of the mutation
in cfDNA. For each locus,

1. If there were ≥3 reads supporting the mutant allele, then considered
confirmed to be mutated in cfDNA. Let c be the set of confirmed mutations.

2. If a locus had <3 reads of the mutant allele in cfDNA, then it fell into one of
two categories:

i) If the site had <0.9 power (based on power to observe ≥3 mutant allele reads
for a mutation with CCF= 1 and multiplicity = 1; see section “Theoretical
power estimation”), then we considered the mutation unpowered, and these
were excluded in the overlap comparison.

ii) If the mutation had power ≥ 0.9 but had < 3 alternate reads, then the
mutation was powered by not confirmed in cfDNA. Let c′ be the set of
unconfirmed (powered) mutations.

Them we computed the overlap as fraction overlap ¼ c
cþc′

. The overlap was
computed separately for clonal and subclonal tumor biopsy mutations.

Similar to the above approach, but swapping the two samples in the
comparison, we used the mutations initially detected in the cfDNA sample and
assessed their detection in the tumor. We performed the same power analysis as
described above.

We assessed the overlap of cfDNA mutations that were also detected in a later
cfDNA time point. We used cfDNA-exclusive mutations (i.e., mutations that were
detected in cfDNA and powered but not confirmed in tumor biopsies), and
evaluated the loci of these mutations in the cfDNA sample taken at a later time
point (t2). We assessed whether these SSNVs were confirmed in t2, again using the
same power calculation described above. The confirmed cfDNA-exclusive
mutations are annotated in Fig. 2b in black. The overlap fraction was computed as
described above.

Analysis of clonal dynamics using PHYLOGIC. To assess mutation clonality in
paired samples, we used PHYLOGIC39, 58 to perform clustering of ABSOLUTE
CCFs, as described previously. For comparisons of tumor biopsies and cfDNA
samples (Supplementary Fig. 19), we evaluated mutations force called using
biopsies and cfDNA samples. For evaluation of clonal dynamics between multiple
cfDNA samples from the same patient (Supplementary Fig. 21), we evaluated
mutations force called using the two cfDNA samples (and not the tumor biopsy).
In all cases, we used 2500 MCMC iterations with half discarded as burn-in and a
negative binomial (r = 10, mu= 10) prior for the number of mutation clusters. For
patient MBC_284 (Fig. 2), we assessed clonal shifts in pairs of samples using
mutations force called in tumor biopsy and both cfDNA samples together, and we
used a negative binomial (r = 16, mu= 16, 250 iterations) prior. In PHYLOGIC
clustering with all pairs of samples for this patient, we discarded mutations that
had zero supporting reads in both samples during clustering (e.g., if a mutation was
called in the second cfDNA sample but had zero supporting reads in either the
tumor biopsy or the first cfDNA sample). Additionally, when performing clustering

analysis, we filtered out mutations from a list of sites determined to be problematic
based on previous PHYLOGIC analyses39, 58. The software used for this analysis can be
obtained from http://www.broadinstitute.org/cancer/cga/acsbeta.

Mutation significance analysis. We used MutSig2CV23, 24 to identify genes
mutated significantly above the background rate. In order to compare results
between cfDNA and tumor biopsies, we performed significance analysis separately
for cfDNA WES samples and tumor biopsy samples for the 27 patients with MBC
and the 14 patients with metastatic prostate cancer. As there is limited power to
discover novel genes in such small cohorts, we focused on comparing the genes
identified by the cfDNA and tumor biopsy significance analyses, and we used a q <
0.1 threshold. We report MutSig2CV q values in Supplementary Data 8.

To assess whether any of the significantly mutated genes were enriched for non-
synonymous mutations in the 20 ER+/Her2− MBC cases as compared to primary
ER+/Her2− breast cancer, we compared these samples to tumors the from TCGA
breast cancer cohort25. We used the TCGA mutational data (http://cbio.mskcc.org/
cancergenomics/tcga/brca_tcga) from 279 ER+, Her2−, non-metastatic cancers.
We only considered non-synonymous mutations for this analysis. We evaluated
the enrichment of each of the four significantly mutated genes in the metastatic
cases as compared to the non-metastatic cases in TCGA using Fisher’s exact test
and we performed a Bonferroni correction within the cfDNA vs. TCGA and tumor
biopsy vs. TCGA analysis.

Mutation signature analysis. We used a previously described Bayesian NMF
framework to discover mutational signatures in cfDNA and tumor biopsies29, 59, 60.
For the purposes of mutation signature analysis, we excluded the tumor biopsy and
two cfDNA time points from patient CRPC_468 which had an extremely high
mutation rate and displayed evidence for microsatellite instability (MSI). Both the
tumor biopsy and cfDNA supported a homozygous deletion of MSH2, which is the
likely cause of the MSI signature present in these samples. We performed muta-
tional signature discovery using all called coding mutations (annotated with their
tri-nucleotide sequence context) in the remaining 40 tumor biopsy samples, the
matched 40 cfDNA samples as well as the 17 cfDNA samples taken at later time
points. In order to identify the number of mutational signatures k and their activity
in all samples, we used 50 iterations starting with random initial conditions. We
found that 45 iterations converged to k= 3 and five iterations converged to k= 4,
so we selected the solution with k= 3 that had the maximum posterior probability.
We compared the three discovered signatures to COSMIC signatures30, 61 using
cosine similarity. We then assigned each mutation to the signature with the
maximum probability of association59 and calculated the fraction of mutations
assigned to each of the three signatures in every sample. To assess enrichment of
the homologous recombination deficiency-associated signature in samples with
BRCA-deficiency, we compared the signature fraction between samples with
homozygous BRCA1 or BRCA2 alteration (through a combination of germline loss
of function mutation and somatic LOH or somatic homozygous deletion) and
those samples without homozygous BRCA1/2 alterations.

Neoantigen analysis. In order to compare neoantigen prediction between cfDNA
and tumor biopsies, we first called germline MHC Class I alleles (HLA − A, HLA −

B, HLA − C) from normal tumor exome sequencing data with POLYSOLVER
62. We

considered missense SNVs, and used NetMHCpan 2.435, 63 to predict the binding
affinity of all potential 9-mers overlapping the mutated peptide with respect to all
six germline MHC Class I alleles. We considered a site a predicted neoantigen if it’s
predicted IC50 was below 500 nM for any HLA allele.

Data availability. Sequencing data have been deposited into dbGaP under
accession code phs001417.v1.p1.
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