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Abstract

Bosch Vivancos, Chossat and Melbourne showed that two types of steady-

state bifurcations are possible from trivial states when Euclidean equivariant

systems are restricted to a planar lattice—scalar and pseudoscalar—and began

the study of pseudoscalar bifurcations. The scalar bifurcations have been well

studied since they appear in planar reaction–diffusion systems and in plane

layer convection problems. Bressloff, Cowan, Golubitsky, Thomas and Wiener

showed that bifurcations in models of the visual cortex naturally contain both

scalar and pseudoscalar bifurcations, due to a different action of the Euclidean

group in that application.

In this paper, we review the symmetry discussion in Bressloff et al and we

continue the study of pseudoscalar bifurcations. Our analysis furthers the study

of pseudoscalar bifurcations in three ways.

(a) We complete the classification of axial subgroups on the hexagonal lattice in

the shortest wavevector case proving the existence of one new planform—a

solution with triangular D3 symmetry.

(b) We derive bifurcation diagrams for generic bifurcations giving, in

particular, the stability of solutions to perturbations in the hexagonal

lattice. For the simplest (codimension zero) bifurcations, these bifurcation

diagrams are identical to those derived by Golubitsky, Swift and Knobloch

in the case of Bénard convection when there is a midplane reflection—

though the details in the analysis are more complicated.

(c) We discuss the types of secondary states that can appear in codimension-

one bifurcations (one parameter in addition to the bifurcation parameter),

which include time periodic states from roll and hexagon solutions and

drifting solutions from triangles (though the drifting solutions are always

unstable near codimension-one bifurcations). The essential difference

between scalar and pseudoscalar bifurcations appears in this discussion.
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1. Introduction

Bifurcations to doubly periodic solutions in planar systems of Euclidean invariant partial

differential equations have been well studied in a number of contexts. Standard examples

include reaction–diffusion systems, the Boussinesq equations modelling convection (both with

and without midplane symmetry and with and without rotation), and two-dimensional Navier–

Stokes equations. Typically, these analyses are used to prove the existence of regular patterned

solutions or planforms. The types of patterns that occur in these examples and their stability

are different and the cause of these differences is symmetry.

Ermentrout and Cowan [6] showed that a bifurcation analysis based on finding doubly

periodic solutions can be used when studying pattern formation in the visual cortex, where

the patterns can be interpreted as visual hallucination patterns. More recently, Bressloff

et al [2] have shown that when additional structure in the visual cortex is taken into account

in the models, the symmetry properties of the equations change and, hence, the bifurcation

analysis and the type of patterns are again different. In this paper we provide the mathematical

description of the bifurcation analysis used in [2].

There is a common approach to all lattice bifurcation problems, which we now describe.

Let λ be a bifurcation parameter and assume that the equations have a spatially homogeneous

solution for all λ.

(a) A linear analysis of the homogeneous solution leads to a dispersion curve. More precisely,

translation symmetry implies that eigenfunctions have a plane wave wk(x) = e2π ik·x

factor where k ∈ R
2. Rotation symmetry implies that the linearized equations have

infinite-dimensional eigenspaces, that is, instability occurs simultaneously to all functions

wk(x) with constant k = |k|. The number k is called the wavenumber. Points (k, λ) on the

dispersion curve are the minimum values of λ for which an instability of the homogeneous

solution to an eigenfunction with wavenumber k occurs.

(b) Often, in these examples, the dispersion curve has a unique minimum, that is, there is a

critical wavenumber k∗ at which the first instability of the homogeneous solution occurs.

Bifurcation analyses near such points are difficult for two reasons: the kernel of the

linearization is infinite dimensional and there is a continuum of zero eigenvalues as k is

varied (as demonstrated by the dispersion curve).

(c) These difficulties can be side-stepped by considering a restricted class of possible

solutions: a planar lattice L is chosen and the differential operator is restricted to the

space FL of functions that are doubly periodic with respect to L.

(d) The symmetries of the restricted problem change from Euclidean symmetry in two ways.

First, only a finite number of rotations and reflections remain as symmetries. Let the

holohedry HL be the group of rotations and reflections that preserve the lattice (D2

for rhombic lattices, D4 for square lattices and D6 for hexagonal lattices). Second,

translations act on the restricted problem modulo L; that is, translations act as a torus

T 2. Therefore, the symmetry group of the lattice problem is (the compact group)

#L = HL +̇ T 2.

(e) It follows from double periodicity that the kernel of the restricted problem is typically finite

dimensional, since only those rotations in HL are symmetries of the restricted problem,

and they are finite in number.

(f) The restricted bifurcation problem must be further specialized. First, a lattice type needs

to be chosen (rhombic, square and hexagonal). Second, the size of the lattice must be

chosen so that a plane wave with critical wavenumber k∗ is an eigenfunction in the space

FL.
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(g) Those k for which the plane wave e2π ik·x is doubly periodic with respect to L (that is, the

plane wave is in FL) are called dual wavevectors. The set of dual wavevectors is a lattice,

called the dual lattice, and is denoted by L
∗. In this paper we consider only those lattice

sizes where the critical dual wavevector are vectors of shortest length in L
∗. Generically,

there is just one eigenfunction of the linearized operator L restricted to FL corresponding

to each shortest length dual wavevector. That is, we expect ker L = R
n where n is four,

four, and six on the rhombic, square and hexagonal lattices, respectively.

(h) Since ker L is finite dimensional, we can use Lyapunov–Schmidt or centre manifold

reduction to obtain implicitly a system of reduced bifurcation equations on R
n whose

zeros are in one-to-one correspondence with the steady states of the original equation.

Moreover, this reduction can be performed so that the reduced bifurcation equations are

#L-equivariant.

(i) Solving the reduced bifurcation equations is still a difficult problem. This problem can

be simplified as follows. A subgroup $ ⊂ #L is axial if dim Fix($) = 1 where

Fix($) = {x ∈ ker L : σx = x, ∀σ ∈ $}.

The equivariant branching lemma states that generically there exists a branch of solutions

corresponding to each axial subgroup. These solution types are then classified by finding

all axial subgroups. (To avoid redundant solution types this classification is only made up

to conjugacy and $ is assumed to be an isotropy subgroup.)

(j) The linearized stability of solutions obtained using the equivariant branching lemma is

not straightforward to determine. The stability question has several levels: stability to

all perturbations; stability to spatially doubly periodic perturbations of any lattice; and

stability to perturbations or the specific lattice on which the solution is found. The last

statement of stability is the easiest to carry out (it is still complicated, but representation

theory helps) and it is only this type of stability that we consider in this paper.

The classification of axial subgroups and their stabilities to lattice perturbations for

Euclidean group actions associated with reaction–diffusion equations and convection equations

has been repeated in a variety of contexts. For example, on the hexagonal lattice, this

classification leads to rolls and hexagons for reaction–diffusion equations and convection

equations without the midplane reflection [4, 5] and to rolls, hexagons, triangles and

rectangles in convection equations with the midplane reflection [9]. Bosch Vivancos et al [1]

showed that different actions of the Euclidean group E(2) lead to different types of solutions. In

particular, they called the standard action of E(2) that appears in reaction–diffusion equations

the scalar action. They then showed the existence of another action of E(2) on functions

on R
2, called the pseudoscalar action. This action occurs, for example, in the equations for

the stream function in the 2D Navier–Stokes equations and leads to solutions with symmetry

groups different from those that appear in the scalar action.

In this paper we study bifurcation of planforms for equations measuring activity levels

in the visual cortex. These equations possess a different action of the Euclidean group (on

R
2 × S1 rather than on R

2)—one that leads naturally to both the scalar and the pseudoscalar

actions of E(2) in one problem. We analyse these bifurcations, showing that on the hexagonal

lattice there are four types of axial subgroups (with symmetries similar but not identical to

those found in the Boussinesq equations with the midplane reflection). We shall also discuss

when these solutions are asymptotically stable (to perturbations by functions in FL).

Our analysis furthers the study of pseudoscalar bifurcations in three ways.

(a) We complete the classification of axial subgroups on the hexagonal lattice in the shortest

wavevector case proving the existence of one new planform—a solution with triangular

D3 symmetry.
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(b) We derive bifurcation diagrams for generic bifurcations giving, in particular, the stability

of solutions to perturbations in the hexagonal lattice. For the simplest (codimension-zero)

bifurcations, these bifurcation diagrams are identical to those derived in [9] in the case of

Bénard convection when there is a midplane reflection—though the details in the analysis

are more complicated.

(c) We discuss the types of secondary states that can appear in codimension-one bifurcations

(one parameter in addition to the bifurcation parameter), which includes time-periodic

states from roll and hexagon solutions and drifting solutions from triangles (though the

drifting solutions are always unstable near codimension-one bifurcations). The essential

difference between scalar and pseudoscalar bifurcations appears in this discussion.

Finally, in order to facilitate pattern formation studies in the visual cortex, we summarize

all of the lattice bifurcations in notation adapted to visual cortex models. The visual cortex

models studied in [2] provide the first example of pseudoscalar bifurcations that are relevant

in applications.

2. An E(2) action motivated by the visual cortex

Neurons in the primary visual cortex V1 are known to be sensitive to the orientation of

contours in the visual field. As discussed in [2], the pattern of interconnection of these

neurons has interesting symmetry properties and these symmetries seem to be responsible

in part for the types of geometric patterns that are reported in visual hallucinations. Using

microelectrodes, voltage sensitive dyes and optical imaging, scientists have accumulated much

information about the distribution of orientation selective cells in V1 and about their pattern

of interconnection. These studies can be interpreted to suggest that approximately every

millimetre there is an iso-orientation patch of a given orientation preference and that a set of

orientation patches covering the orientation domain [0, π) (for each eye) occurs (in humans) in

a millimetre square slab of V1. This slab was called a hypercolumn by Hubel and Wiesel [10].

Thus, there seem to be at least two length scales:

(a) local: cells less than a millimetre apart tend to make connections with most of their

neighbours in a roughly isotropic fashion; and

(b) lateral: cells make contacts only every millimetre or so along their axons with cells in

similar iso-orientation patches.

The experimental description of the local and lateral connections in V1 is illustrated in figure 1.

The neurons in each hypercolumn are all-to-all coupled, while the connections between

hypercolumns couple only those neurons that are sensitive to the same contour orientation.

Moreover, if two hypercolumns lie in a direction φ from each other in V1, then only those

neurons sensitive to contours oriented at angle φ are connected. Except for boundaries these

connections are the same at every hypercolumn in V1.

The lateral connections are important because they change the way symmetries act.

Observe that if the whole visual cortex is rotated so that hypercolumns are rotated to

hypercolumns, then the lateral connections will no longer be correct—the lateral connections

will not couple neurons sensitive to the direction of that connection. (The pattern of lateral

connections is one way in which directions in the outside world are encoded in the visual cortex.)

Note, however, that rotation symmetry can be recovered if the cells in each hypercolumn are

permuted to compensate for the rotation. This shift–twist symmetry of rotation appears in

(2.1).
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Figure 1. Illustration of isotropic local and anisotropic lateral connection patterns.

The pattern of connections illustrated in figure 1 suggests that a continuum model of the

visual cortex is defined on the space R
2 × S1. That is, each hypercolumn is idealized to a

circle—one for each point in the plane R
2 (at least when boundaries are ignored). Moreover,

the action of the Euclidean group on R
2 × S1 is generated by

y · (x, φ) = (x + y, φ) y ∈ R
2

θ · (x, φ) = (Rθx, φ + θ) θ ∈ S1

κ · (x, φ) = (κx, −φ)

(2.1)

where κ is the reflection (x1, x2) '→ (x1, −x2) and Rθ is the rotation

Rθ

(

x

y

)

=

(

cos θ − sin θ

sin θ cos θ

)

(

x

y

)

.

Finally, any state modelling the visual cortex has the form a(x, φ), where

a(x, φ + π) = a(x, φ)

since contours are not oriented. The action of γ ∈ E(2) on the function a is given by

γ a(x, φ) = a(γ −1(x, φ)).

For example, θ ∈ SO(2) acts by

θa(x, φ) = a(R−θx, φ − θ)).

Visual hallucinations are seen both by blind subjects and in sealed dark rooms, thus

suggesting that they are generated in the brain and not in the eyes. Following Ermentrout and
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Cowan [6], we assume that geometric visual hallucinations are generated ab initio mostly in

V1. That is, we presume that drugs act uniformly on activity levels in the visual cortex, thus

causing symmetry-breaking bifurcations to patterns on the visual cortex. In [2] we show that the

patterns that are formed through these bifurcations are (after a natural reinterpretation in retinal

coordinates) remarkably similar to those patterns recorded by those who have experienced

visual hallucinations. Since the patterns that form are directly related to the presumed coupling

architecture of V1 and the symmetries it generates, this analysis supports the abstracted view

of V1 described previously.

Bressloff et al [2] show that both scalar and pseudoscalar bifurcations occur in reasonable

visual cortex models (based on variants of the Wilson–Cowan equations [13] that include

lateral coupling and respect Euclidean symmetry) and hence that the bifurcations associated

with both representations need to be analysed. In the remainder of this paper we present the

details of the bifurcation analysis on doubly periodic domains described in section 1 using the

state space and Euclidean group action given in (2.1).

3. The actions of ΓL on kernels of linearizations

In (g) in section 1 we stated that we would only consider bifurcations on lattices corresponding

to dual wavevectors of the shortest length and we use that assumption here when discussing

the irreducible subspaces of #L. Without loss of generality we may assume that the shortest

length is 1; it follows (after a rotation of the lattice, if necessary) that k = (1, 0) is one of these

shortest-length dual wavevectors.

The irreducible subspaces

For each k ∈ L
∗ define the infinite-dimensional subspaces

Wk =
{

u(φ) e2π ik·x + c.c. : u : S1 → C is π -periodic
}

.

Note that W−k = Wk and that γWk = Wγk for any γ ∈ O(2). (Each subspace Wk is an

isotypic component for an irreducible representation of T 2; Wk is the sum of all T 2-irreducible

subspaces where the action of γ ∈ T 2 is isomorphic to γ z = e2π ik·xz. It follows that any

eigenfunction of a linear operator commuting with E(2) must lie in Wk for some wavevector

k.)

Now fix k = (1, 0). The space

W =
∑

γ∈HL

Wγk

consists of all functions in FL corresponding to wavevectors of shortest length.

We claim that the subspace Wk splits into two #L-invariant subspaces because

κu(φ) e2π ik·x = u(−φ) e2π ik·x .

It follows that

W +
k = {u(φ) e2π ik·x + c.c. ∈ Wk : u(−φ) = u(φ) ∈ C}

W−
k = {u(φ) e2π ik·x + c.c. ∈ Wk : u(−φ) = −u(φ) ∈ C}

are κ-invariant subspaces and Wk = W +
k ⊕ W−

k . We call functions in W +
k even and functions

in W−
k odd.
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Fix u(φ) e2π ik·x + c.c. ∈ Wk, where u(φ) is real-valued and let Zu be the two-dimensional

real subspace

Zu =
{

zu(φ) e2π ik·x + c.c. : z ∈ C
}

.

Note that Zu is T 2-irreducible and that

Z(u) =
∑

γ∈HL

γZu

is #L-invariant.

Lemma 3.1. The subspace Z(u), where u is real-valued and u(φ) e2π ik·x + c.c. is either even

or odd, is #L absolutely irreducible. Moreover, these subspaces are all of the #L-irreducible

subspaces of W .

Proof. We begin by showing that every #L-irreducible subspace Z ⊂ W has the form Z(u) for

some real-valued u that is either odd or even. Using T 2-invariance Z must contain a non-zero

function in Wγk for some γ ∈ HL. After applying γ −1, Z contains a non-zero function of the

form

u(φ) e2π ik·x + c.c. (3.1)

Rotating (3.1) by Rπ and using the fact that u(φ) is π -periodic shows that

u(φ) e2π ik·x + c.c.

is also in Z. Since one of Re(u) and Im(u) is non-zero, we can use linear combinations and

multiplication by i (which is a translation symmetry) to see that (3.1) is in Z where u is non-

zero and real-valued. Next, write u = u+ + u−, where u+ is even and u− is odd. Applying κ

shows that

(u+ − u−) e2π ik·x + c.c.

is in Z. Since one of u+ and u− is non-zero, we can use linear combinations to see that (3.1)

is in Z where u is non-zero, real-valued and either even or odd. It follows that Z(u) ⊂ Z is

non-zero and #L-invariant. Therefore, Z = Z(u).

Next we show that Z(u) is #L absolutely irreducible. We must show that the only linear

mappings M on Z(u) that commute with the action of #L are scalar multiples of the identity.

Choose elements γj ∈ HL so that

Z(u) = γ1Zu ⊕ · · · ⊕ γsZu

where γ1 = Id . Because γjZu are isotypic components for the T 2 action, M(γjZu) ⊂ γjZu.

Since T 2 acts as SO(2) on the two-dimensional subspace γjZu, M|γjZu is a scalar multiple of

a rotation matrix. Since Rπ acts as a reflection on γjZu (it is complex conjugation in complex

coordinates), M|γjZu is a scalar multiple of the identity. Because HL acts transitively on the

components of Z(u) that scalar must be the same for all components. Thus, M is a scalar

multiple of the identity. !
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Centre subspaces on lattices

Suppose that we consider a nonlinear differential equation whose associated differential

operator N has a domain consisting of functions U : R
2 × S1 → R. Suppose also that N

is equivariant with respect to the action of the Euclidean group in (2.1) and that N(0) = 0. Let

L be the linearization of N at 0. Then L is also Euclidean equivariant. We consider parameter

values where a bifurcation from U = 0 occurs; that is, parameter values where L has a

zero eigenvalue. Moreover, we consider bifurcations on lattices L where the eigenfunctions

correspond to dual wavevectors of shortest length.

Since ker L is #L-invariant, it contains a #L-irreducible subspace Z(u); moreover,

generically, ker L is irreducible. It follows that two types of bifurcation can occur on lattices

with the symmetries (2.1) of the cortex problem—those where u(φ) is even and those where

it is odd. The general approach is the same in both cases—but the resulting planforms are

different.

The generators of the planar lattices and their dual lattices that we use are given in table 1.

Table 1. Generators for the planar lattices and their dual lattices.

Lattice !1 !2 k1 k2

Square (1, 0) (0, 1) (1, 0) (0, 1)

Hexagonal

(

1,
1

√
3

) (

0,
2

√
3

)

(1, 0) 1
2
(−1,

√
3)

Rhombic (1, − cot η) (0, cosec η) (1, 0) (cos η, sin η)

Using lemma 3.1 and genericity we can write ker L = Z(u). Moreover, we can write

Z(u) as a direct sum of rotated images of Zu. Our explicit choices for this decomposition are

listed in table 2.

Table 2. Eigenfunctions corresponding to shortest dual wavevectors.

Lattice ker L

Square Zu ⊕ Rπ/2(Zu)

Hexagonal Zu ⊕ R2π/3(Zu) ⊕ R4π/3(Zu)

Rhombic Zu ⊕ Rη(Zu)

Coordinates on the irreducible subspace Z(u)

We fix the function u(φ), which is real-valued, π -periodic and either even or odd. For the

square and hexagonal lattices, we write the functions in Zu as z1u(φ) e2π ik1·x + c.c., where

z1 ∈ C. The action of a rotation Rθ on f (x, φ) = u(φ) e2π ik·x is

(Rθf )(x, φ) = f (R−θx, φ − θ) = u(φ − θ) e2π ik·R−θ x = u(φ − θ) e2π iRθ k·x.

On all lattices the action of rotation by Rη (where η = π
2

on the square lattice and η = 2π
3

on the hexagonal lattice) shows that functions in Rη(Zu) have the form

z2Rη

(

u(φ) e2π ik1·x + c.c.
)

= z2u(φ − η) e2π ik2·x + c.c.

For the rhombic and square lattices the vectors (z1, z2) ∈ C
2 span a real four-dimensional

space. On the hexagonal lattice functions in R4π/3(Zu) have the form

z3R4π/3

(

u(φ) e2π ik1·x
)

+ c.c. = z3u

(

φ +
2π

3

)

e2π ik3·x + c.c.
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Here the vectors (z1, z2, z3) ∈ C
3 span a real six-dimensional space.

The form of the eigenfunctions in an irreducible representation corresponding to the

shortest dual wavevectors in each lattice is given in table 3.

Table 3. Eigenfunctions corresponding to #L irreducible representation; u(φ) is π -periodic, real-

valued and either odd or even.

Lattice ker L

Square z1u(φ) e2π ik1·x + z2u
(

φ − 1
2
π

)

e2π ik2·x + c.c.

Hexagonal z1u(φ) e2π ik1·x + z2u
(

φ − 2
3
π

)

e2π ik2·x + z3u
(

φ + 2
3
π

)

e2π ik3·x + c.c.

Rhombic z1u(φ) e2π ik1·x + z2u(φ − η) e2π ik2·x + c.c.

Group actions on Z(u)

There are two types of irreducible representation for each lattice corresponding to the cases

u(φ) odd (pseudoscalars) and u(φ) even (scalars). We derive the explicit action of #L on these

subspaces.

The action of the torus T 2 is derived as follows. Write θ ∈ T 2 as

θ = θ1!1 + θ2!2
∼
= [θ1, θ2] (3.2)

where 0 " θj < 1. The T 2 action can be computed using the identity ki · !j = δij . In

particular,

θ
(

u(φ) e2π ik·x
)

= u(φ) e2π ik·(x−θ) = e−2π ik·θu(φ) e2π ik·x.

In coordinates on the square and rhombic lattices the torus action is

θ(z1, z2) = (e−2π iθ1z1, e−2π iθ2z2).

On the hexagonal lattice note that k3 = −(k1 + k2). Thus the torus action is

θ(z1, z2, z3) = (e−2π iθ1z1, e−2π iθ2z2, e2π i(θ1+θ2)z3).

The holohedries HL are D4, D6 and D2 for the square, hexagonal and rhombic lattices,

respectively. In each case the generators for these groups are a reflection and a rotation. For

the square and hexagonal lattices, the reflection is κ . For the rhombic lattice, the reflection is

κη, which interchanges k1 and k2. The counterclockwise rotation ξ , through angles π
2

, π
3

and

π , is the rotation generator for the three lattices. The actions of HL are given in table 4. Note

that the two types of irreducible representation on the rhombic lattice are isomorphic. Thus,

the solutions and their symmetries are identical. The patterns associated with these solutions,

however, need not be the same in the two cases and they are different.

On the square lattice, the action of ξ is

ξ(z1, z2)
∼
= Rπ/2

(

z1u(φ) e2π ik1·x + z2u

(

φ −
π

2

)

e2π ik2·x

)

+ c.c.

= z1u
(

φ −
π

2

)

e2π ik2·x + z2u(φ) e−2π ik1·x + c.c.

= z2u(φ) e2π ik1·x + z1u

(

φ −
π

2

)

e2π ik2·x + c.c.

∼
= (z2, z1)
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Table 4. Left, D2 +̇ T 2 action on rhombic lattice; centre, D4 +̇ T 2 action on square lattice; right,

D6 +̇ T 2 action on hexagonal lattice. For u(φ) even, ε = +1; for u(φ) odd, ε = −1.

D2 Action D4 Action D6 Action

1 (z1, z2) 1 (z1, z2) 1 (z1, z2, z3)

ξ (z1, z2) ξ (z2, z1) ξ (z2, z3, z1)

κη ε(z2, z1) ξ2 (z1, z2) ξ2 (z3, z1, z2)

κηξ ε(z2, z1) ξ3 (z2, z1) ξ3 (z1, z2, z3)

κ ε(z1, z2) ξ4 (z2, z3, z1)

κξ ε(z2, z1) ξ5 (z3, z1, z2)

κξ2 ε(z1, z2) κ ε(z1, z3, z2)

κξ3 ε(z2, z1) κξ ε(z2, z1, z3)

κξ2 ε(z3, z2, z1)

κξ3 ε(z1, z3, z2)

κξ4 ε(z2, z1, z3)

κξ5 ε(z3, z2, z1)

[θ1, θ2] (e−2π iθ1 z1, e−2π iθ2 z2) (e−2π iθ1 z1, e−2π iθ2 z2, e2π i(θ1+θ2)z3)

and the action of κ is

κ(z1, z2)
∼
= κ

(

z1u(φ) e2π ik1·x + z2u

(

φ −
π

2

)

e2π ik2·x

)

+ c.c.

= z1u(−φ) e2π ik1·x + z2u

(

π

2
− φ

)

e−2π ik2·x + c.c.

= ±

(

z1u(φ) e2π ik1·x + z2u

(

φ −
π

2

)

e2π ik2·x

)

+ c.c.

∼
= ±(z1, z2).

On the hexagonal lattice the action of ξ is

ξ(z1, z2, z3)
∼
= Rπ/3

(

z1u(φ) e2π ik1·x + z2u

(

φ −
2π

3

)

e2π ik2·x

+z3u

(

φ +
2π

3

)

e2π ik3·x

)

+ c.c.

= z1u
(

φ −
π

3

)

e−2π ik3·x + z2u(φ − π) e−2π ik1·x + z3u
(

φ +
π

3

)

e−2π ik2·x + c.c.

= z2u(φ) e2π ik1·x + z3u

(

φ −
2π

3

)

e2π ik2·x + z1u

(

φ +
2π

3

)

e2π ik3·x + c.c.

∼
= (z2, z3, z1)

using the π -periodicity of u. The action of κ is

κ(z1, z2, z3)
∼
= κ

(

z1u(φ) e2π ik1·x + z2u

(

φ −
2π

3

)

e2π ik2·x + z3u

(

φ +
2π

3

)

e2π ik3·x

)

+ c.c.

= z1u(−φ) e2π ik1·x + z2u

(

2π

3
− φ

)

e2π ik3·x + z3u

(

2π

3
− φ

)

e2π ik2·x + c.c.

∼
= ±(z1, z3, z2).
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On the rhombic lattice the action of ξ is

ξ(z1, z2)
∼
= Rπ (z1u(φ) e2π ik1·x + z2u(φ − η) e2π ik2·x) + c.c.

= z1u(φ − π) e−2π ik1·x + z2u(φ − η − π) e−2π ik2·x) + c.c.

∼
= (z1, z2).

The action of κη on R
2 × S1 is (x, φ) '→ (κηx, η − φ) and the lattice action is

κη(z1, z2)
∼
= κη

(

z1u(φ) e2π ik1·x + z2u(φ − η) e2π ik2·x
)

+ c.c.

= z1u(η − φ) e2π ik2·x + z2u(−φ) e2π ik1·x + c.c.

∼
= ±(z2, z1).

Remark 3.2. Note that the scalar and pseudoscalar actions are identical on the square and

rhombic lattices. This assertion is verified by noting that the torus element θ =
[

1
2
, 1

2

]

acts

by (z1, z2) '→ (−z1, −z2). It follows that θκ acts in the pseudoscalar representation exactly

as κ acts in the scalar representation. Thus the two representations are generated by the same

set of matrices on C
2. The planforms for the two actions will be different since the functions

u(φ) are different in the two cases. Moreover, as we shall see, the symmetry groups of the

planforms are different (though isomorphic as groups). The corresponding statement is false

for the hexagonal lattice where the scalar and pseudoscalar actions are not isomorphic.

4. The axial subgroups

For each of the six irreducible representations, we compute the axial subgroups, i.e. those

isotropy subgroups that have one-dimensional fixed-point subspaces. The computations for

the even (scalar) case are well known (see [5] for the hexagonal lattice). The odd (pseudoscalar)

case was introduced by Bosch Vivancos et al [1]. In each case it is an easy exercise to use

table 4 to verify that the listed subgroups are indeed axial subgroups.

Showing that the listed subgroups are, up to conjugacy, all of the axial subgroups is

straightforward for the square and rhombic lattices. Note that we can use the T 2-action to

assume, after conjugacy, that z1 and z2 are real and non-negative. The results are listed in

tables 5, 7, 8 and 10. The computations on the hexagonal lattice are more complicated; the

results are listed in tables 6 and 9. We present the details of the classification in the odd case

on the hexagonal lattice.

Table 5. Axial subgroups for square lattice: u(−φ) = u(φ) even, x = (x, y).

Axial Planform eigenfunction

Esquares u(φ) cos(2πx) + u
(

φ − 1
2
π

)

cos(2πy)

Erolls u(φ) cos(2πx)

Table 6. Axial subgroups for hexagonal lattice: u(−φ) = u(φ) even.

Axial Planform eigenfunction

EhexagonsP u(φ) cos(2πx) + u
(

φ − 2
3
π

)

cos(2πk2 · x) + u
(

φ + 2
3
π

)

cos(2πk3 · x)

EhexagonsM −u(φ) cos(2πx) − u
(

φ − 2
3
π

)

cos(2πk2 · x) − u
(

φ + 2
3
π

)

cos(2πk3 · x)

Erolls u(φ) cos(2πx)
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Table 7. Axial subgroups for rhombic lattice: u(−φ) = −u(φ) even.

Axial Planform eigenfunction

Erhombs u(φ) cos(2πx) + u(η − φ) cos(2πk2 · x)

Erolls u(φ) cos(2πx)

Table 8. Axial subgroups for square lattice: u(−φ) = −u(φ) odd.

Axial Planform eigenfunction

Osquares u(φ) cos(2πx) + u
(

φ − 1
2
π

)

cos(2πy)

Orolls u(φ) cos(2πx)

Table 9. Axial subgroups for hexagonal lattice: u(−φ) = −u(φ) odd.

Axial Planform eigenfunction

Ohexagons u(φ) cos(2πx) + u
(

φ − 2
3
π

)

cos(2πk2 · x) + u
(

φ + 2
3
π

)

cos(2πk3 · x)

Otriangles u(φ) sin(2πx) + u
(

φ − 2
3
π

)

sin(2πk2 · x) + u
(

φ + 2
3
π

)

sin(2πk3 · x)

Orectangles u
(

φ − 2
3
π

)

cos(2πk2 · x) − u
(

φ + 2
3
π

)

cos(2πk3 · x)

Orolls u(φ) cos(2πx)

Table 10. Axial subgroups for rhombic lattice: u(−φ) = −u(φ) odd.

Axial Planform eigenfunction

Orhombs u(φ) cos(2πx) + u(η − φ) cos(2πk2 · x)

Orolls u(φ) cos(2πx)

To summarize we list all of the planforms by name and isotropy subgroup in table 11. We

also include the element from the fixed-point subspace of the isotropy subgroup that generates

the eigenfunctions listed in tables 5–10.

4.1. The hexagonal lattice: odd case

The results for the odd case on the hexagonal lattice are reminiscent of the planform results

on the hexagonal lattice for the Boussinesq equations with the midplane reflection (see [8,9])

in that there are four axial subgroups in each case, but there are slight differences in the

symmetries of solutions in these two cases.

Lemma 4.1. On the hexagonal lattice in the odd case each of the four subgroups listed in

table 9 are axial subgroups. Up to conjugacy, these are the only axial subgroups.

Proof. We verify that up to conjugacy these are the only axial subgroups. Our method is

to conjugate elements in z = (z1, z2, z3) ∈ C
3 by elements in #L (conjugate points have

conjugate isotropy subgroups) in a way that allows us to enumerate all isotropy subgroups (up

to conjugacy) and thus list all axial subgroups.

After an application of ξ 2 and κ if necessary, we can assume that

|z1| " |z2| " |z3|.

We consider four cases:

|z1| < |z2| < |z3| |z1| < |z2| = |z3| |z1| = |z2| < |z3| |z1| = |z2| = |z3|.
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Table 11. A summary of the axial subgroups. O(2) is generated by [0, θ2] ∈ T 2 and rotation

by π (ξ on a rhombic lattice, ξ2 on a square lattice and ξ3 on a hexagonal lattice). On the even

hexagonal lattice the points (1, 1, 1) and (−1, −1, −1) have the same isotropy subgroup (D6), but

are not conjugate by a group element. Therefore, the associated eigenfunctions generate different

planforms.

Lattice Axial Isotropy subgroup Fixed vector

Square Esquares D4(κ, ξ) (1, 1)

Erolls O(2) ⊕ Z2(κ) (1, 0)

Hexagonal EhexagonsP D6 (1, 1, 1)

EhexagonsM D6 (−1, −1, −1)

Erolls O(2) ⊕ Z2(κ) (1, 0, 0)

Rhombic Erhombs D2(κη, ξ) (1, 1)

Erolls O(2) (1, 0)

Square Osquares D4

(

κ
[

1
2
, 1

2

]

, ξ
)

(1, 1)

Orolls O(2) ⊕ Z2

(

ξ2κ
[

1
2
, 0

])

(1, 0)

Hexagonal Ohexagons Z6 (1, 1, 1)

Otriangles D3(κξ, ξ2) (i, i, i)

Orectangles D2(κ, ξ3) (0, 1, −1)

Orolls O(2) ⊕ Z4

(

ξ3κ
[

1
2
, 0

])

(1, 0, 0)

Rhombic Orhombs D2

(

κη

[

1
2
, 1

2

]

, ξ
)

(1, 1)

Orolls O(2) (1, 0)

|z1| < |z2| < |z3|. Since elements in D6 permute the zj and elements of T 2 preserve

coordinates, it follows that symmetries of these points can only involve elements in D6 that

preserve coordinates; that is, 1 and ξ 3. After conjugacy by a translation, we can assume that

z2 = x2 > 0 and z3 = x3 > 0.

It follows from table 4 that if θ ∈ T 2 fixes z, then θ = 0. Therefore, there are two possible

isotropy subgroups: Z2(ξ
3) when z1 ∈ R and 1 when z1 ,∈ R.

|z1| < |z2| = |z3|. Conjugate z by an element of T 2 so that z2 = x > 0 and z3 = −x. The

previous calculation shows that no non-identity torus element fixes z. The collection of points

(z1, x, −x) is preserved only by ξ 3, κ and κξ 3. In particular,

ξ 3(z1, x, −x) = (z1, x, −x)

κ(z1, x, −x) = (−z1, x, −x).

Let z1 = x1 + iy1. Using ξ 3 and κ we can assume x1 # 0 and y1 # 0. If x1, y1 > 0,

the isotropy subgroup is 1. If x1 ,= 0, y1 = 0, then the isotropy subgroup is Z2(ξ
3). If

x1 = 0, y1 ,= 0, then the isotropy subgroup is Z2(ξ
3κ). If z1 = 0, then the isotropy subgroup

is D2(ξ
3, κ).

|z1| = |z2| < |z3|. When z1 > 0 this case is the same as the previous one. We consider the

possibility z1 = z2 = 0. In this case, z is conjugate to (0, 0, x), which in turn is conjugate to

(x, 0, 0). Note that

κ
[

1
2
, 0

]

(z1, z2, z3) = (z1, z3, −z2)

is an order four element. The isotropy subgroup of (x, 0, 0) is generated by

[0, θ2] ξ 3 κ
[

1
2
, 0

]

. (4.1)
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Table 12. Isotropy subgroups for pseudoscalar action of D6 +̇ T 2 up to conjugacy.

Name Isotropy subgroup $ Fix($) dim Fix($)

D6 +̇ T 2 0 0

Orolls O(2)([0, θ2], ξ3) × Z4(ρ) (x, 0, 0) 1

Otriangles D3(ξ
2, κξ) (yi, yi, yi) 1

Ohexagons Z6(ξ) (x, x, x) 1

Orectangles D2(ξ
3, κ) (0, x2, −x2) 1

Z2(ξ
3) (x1, x2, x3) 3

Z2(ξ
3κ) (y1i, z2, −z2) 3

1 (z1, z2, z3) 6

Together [0, θ2] and ξ 3 generate the group O(2) and

ρ = ξ 3κ
[

1
2
, 0

]

is an order four element that commutes with O(2). Therefore, the isotropy subgroup is

O(2) × Z4(ρ).

|z1| = |z2| = |z3|. If z = 0, then the isotropy subgroup is #L. If not, as above, we can use

T 2 to conjugate to z2 = 1 and z3 = −1. Also, as above, we can conjugate z1 = x1 + iy1

so that x1, y1 # 0. Since |z1| = 1, there are three cases z1 = 1, z1 = i and z1 neither real

nor imaginary. In the first case z = (1, 1, −1) is conjugate (by
[

0, − 1
4

]

) to (1, 1, 1), whose

isotropy subgroup is Z6(ξ). In the second case (i, 1, −1) is conjugate (by κ
[

1
2
, 1

2

]

) to (i, i, i),

whose isotropy subgroup is D3(ξ
2, κξ). Finally, points z = (z1, 1, −1) with |z1| = 1 and z1

neither real nor purely imaginary have a trivial isotropy subgroup. !

4.2. Pictures of the axial planforms

We picture the planforms by associating a line field to f (x, φ) as follows. For each x, choose

the direction φ that maximizes the function f (x, ·) on the circle S1. Note that this process leads

to a line field with discontinuities at points x where f has more than one absolute maximum.

In the figures, we graph a small line element in the direction φ for a grid of points x. Where

double maxima occur, we have attempted to draw all directions having this maximum value.

The raw pattern of activity in V1 described by a line field needs additional processing before it

can be interpreted as a hallucinatory visual image. Such processing involves a coarse-graining

of the cortical activity pattern followed by a mapping to visual field coordinates as detailed

in [2].

In the eigenfunctions choose the arbitrary π -periodic function u(φ) as follows. Expand u

as a Fourier series. In the odd case, it seems reasonable to choose just the first non-zero term

u(φ) = sin(2φ). This choice, however, is non-generic since equal maxima occur only when

the eigenfunction is identically zero. To verify this assertion observe, for example, that the

eigenfunction for odd hexagons

e2π ik1·x sin(2φ) + e2π ik2·x sin

(

2

(

φ −
2π

3

))

+ e2π ik3·x sin

(

2

(

φ +
2π

3

))

+ c.c.

can be transformed to

A(x) cos(2(φ − φ0(x))).
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In this form maxima can occur only when A(x) = 0 or φ = φ0(x). For a given x, the latter

value of φ is unique. So multiple maxima occur only when A(x) = 0, that is, when the

eigenfunction is identically zero.

To avoid this source of non-genericity, we perform our calculations using u(φ) =

sin(2φ) − 0.5 sin(4φ). In the even case, the first non-zero term is the constant term,

which has no effect when choosing maxima. So, in the even case, we choose the function

u(φ) = cos(2φ) − 0.5 cos(4φ). An explicit calculation of eigenfunctions for the Wilson–

Cowan equations is carried out in [2] using a perturbation expansion in the coupling strength

of lateral connections.

The structure of discontinuities in planform line fields

Let f (x, φ) be an eigenfunction and Xf be the points x where f (x, ·) has multiple absolute

maxima. The set Xf is the set of points where the line field planform has discontinuities.

Note that Xf is a codimension-one algebraic variety; that is, Xf is a collection of (perhaps

intersecting) curves that divides the plane into cells. On each cell, the line field varies smoothly

and, in the examples we consider, is, more or less, constant. Moreover, suppose that σ ∈ #L.

Then σ acts both on x and φ. We assert that if σ is a symmetry of an eigenfunction f (x, φ) then

σXf = Xf , that is, the set Xf is invariant under the isotropy subgroup of the eigenfunction.

For example, this remark allows us to see a difference in planforms between D6 hexagons on

the even hexagonal lattice and Z6 hexagons on the odd hexagonal lattice.

The symmetries of individual solutions give some hint about discontinuities in the

associated line fields. For example, suppose that f (x, φ) is invariant under the reflection κ .

Then, f (x1, −x2, −φ) = f (x1, x2, φ). It follows that f (x1, 0, −φ) = f (x1, 0, φ). Therefore,

the maximum value of f (x1, 0, ·) can be unique only when that maximum occurs at φ = 0 or

φ = π
2

. If f is an even roll solution, then whole stripes are forced to have multiple maxima,

as illustrated in figure 2.

These remarks are valid for solutions to the full nonlinear equations—not just for the

particular eigenfunctions that we have chosen for illustrative purposes.

5. Planform selection: a review of previous work

In section 4 we listed all axial subgroups on the rhombic, square and hexagonal lattices in

both the scalar and pseudoscalar cases corresponding to critical wavevectors of shortest length

in the dual lattice. We also illustrated our findings using line field pictures associated with

eigenfunctions of the visual cortex model. In this section we address the question of stability

of these planforms and, where relevant, secondary bifurcations. Stability is a difficult issue

and we address only one part of this complex problem.

Fix a planar lattice L. We answer the following question. Determine the stability of axial

solutions to perturbations that are doubly periodic with respect to L. As discussed in section 1

we can find solutions near bifurcation by reducing the original differential equations model to

a system of ordinary differential equations on a centre manifold. Moreover, centre manifold

reduction can be done in a way that preserves the symmetries of the system. Existence of

equilibria for the centre manifold equations is found using the equivariant branching lemma.

To determine stability, we need to discuss the structure of #L-equivariant vector fields and

isotypic decompositions of the associated Jacobian matrices at equilibrium points.

Except for the pseudoscalar representation on the hexagonal lattice, the information has

been computed in a number of different venues. For completeness, we begin by sketching the

previously known material. In each case we assume that f (z) is a #L-equivariant mapping.
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Figure 2. Rhombic lattice (η = π
2.8

): (a) even rhombs, (b) odd rhombs, (c) even rolls, (d) odd

rolls.

These bifurcation analyses are used in [2] where f has been computed to third order for both

scalar and pseudoscalar representations by perturbation expansions in models based on the

Wilson–Cowan equations [13].

The rhombic lattice

The scalar and pseudoscalar actions of #L on C
2 are identical in the sense that the two actions

generate precisely the same set of linear mappings on C
2 (see remark 3.2). Therefore, the two

actions produce the same set of equivariant mappings and the same abstract bifurcation theory.
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Figure 2. Continued.

Lemma 5.1. The general equivariant mapping on the rhombic lattice shortest wavevector

representation is

f (z1, z2) = (p(|z1|
2, |z2|

2)z1, p(|z2|
2, |z1|

2)z2) (5.1)

where p is real-valued and odd.

Proof. Let f : C
2 → C

2 be #L-equivariant. Commutativity with respect to the torus action

implies that

f (z1, z2) = (P (|z1|
2, |z2|

2)z1, Q(|z1|
2, |z2|

2)z2)
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Figure 3. Square lattice: (a) even squares and (b) odd squares.

for some complex-valued functions P and Q. Commutativity with respect to ξz = z implies

that P and Q are real-valued. Indeed, f is determined by the mapping g : R
2 → R

2 of the

form

g(x1, x2) = (p(x2
1 , x2

2 )x1, q(x2
1 , x2

2 )x2).

Moreover, g has D2 symmetry, since it commutes with (x1, x2) '→ (x2, x1) and x '→ −x.

Therefore,

g(x1, x2) = (p(x2
1 , x2

2 )x1, p(x2
2 , x2

1 )x2)

where p is an odd function. !
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Figure 4. Hexagonal lattice: (a) EhexagonsP and (b) EhexagonsM.

Suppose that f depends on a bifurcation parameter λ. Equilibria (solutions to f = 0)

appear in two-dimensional group orbits forced by the action of T 2. These orbits of solutions

have a unique representative of the form (x1, x2) ∈ R
2 with x1, x2 # 0. Therefore, we find all

equilibria by solving the restricted system of equations f : R
2 × R → R

2. These equilibria

are written up to conjugacy in terms of equations in p(x2
1 , x2

2 , λ) in table 13.

We can expand f to third order by writing

p(x2
1 , x2

2 , λ) = λ + Ax2
1 + Bx2

2 + · · ·
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Figure 5. Hexagonal lattice: (a) odd rectangles, (b) odd triangles and (c) odd hexagons.

where we have scaled the coefficient of λ to be 1. Note that when A ,= B, there are no

submaximal solutions near the origin.

The stability of solutions is found by determining the signs of eigenvalues of the 4 × 4

Jacobian matrix of f : C
2 × R → C

2. The torus action forces two of these eigenvalues to be

0; the other two eigenvalues are obtained from the 2×2 Jacobian matrix of f : R
2 ×R → R

2.
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Figure 5. Continued.

Table 13. Classification up to conjugacy of centre manifold equilibria on a rhombic lattice.

Solution type Bifurcation equations

Trivial x1 = x2 = 0

Rolls p(x2
1 , 0, λ) = 0; x1 > 0; x2 = 0

Rhombs p(x2
1 , x2

1 , λ) = 0; x1 = x2 > 0

Submaximal p(x2
1 , x2

2 , λ) = 0; p(x2
2 , x2

1 , λ) = 0; 0 < x1 < x2

That Jacobian matrix is (on suppressing the explicit dependence on λ)
(

p(x2
1 , x2

2 ) + 2x2
1p1(x

2
1 , x2

2 ) 2x1x2p2(x
2
1 , x2

2 )

2x1x2p2(x
2
2 , x2

1 ) p(x2
2 , x2

1 ) + 2x2
2p1(x

2
2 , x2

1 )

)

where pj indicates differentiation of p with respect to its j th variable. Using the entries in

table 13 we can compute these matrices in the case of trivial, roll and rhomb solutions. The

results are:

p(0, 0, λ)I2
(

2x2
1p1(x

2
1 , 0, λ) 0

0 p(0, x2
1 , λ)

)

2x2
1

(

p1(x
2
1 , x2

1 , λ) p2(x
2
1 , x2

1 , λ)

p2(x
2
1 , x2

1 , λ) p1(x
2
1 , x2

1 , λ)

)

.

Theorem 5.2. Assume that A ,= 0 and A ,= ±B, then near the origin the direction of branching

of solutions and their stability is determined by the entries in table 14.

The theorem is proved by elementary applications of the implicit function theorem and

direct calculations. Note that if the centre manifold equation depended on a second parameter
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Table 14. Stability of equilibria in generic bifurcations on a rhombic lattice.

Solution type Direction of branching Asymptotic stability

Trivial x1 = x2 = 0 λ < 0

Rolls λ = −Ax2
1 A < 0; B < A

Rhombs λ = −(A + B)x2
1 A + B < 0; A < B

ρ, then for special values of ρ these non-degeneracy conditions will fail, thus forcing changes

in stability of the axial solutions and the existence of submaximal equilibria.

The square lattice

As with rhombic lattices, the scalar and pseudoscalar actions of #L on C
2 on the square lattice

yield identical equivariants and bifurcation theories, see remark 3.2.

Lemma 5.3. The general equivariant mapping on the square lattice shortest wavevector

representation has the form (5.1).

Proof. Let f : C
2 → C

2 be a square lattice equivariant. As in the proof of lemma 5.1 the torus

symmetry and ξ 2(z) = z symmetry imply that f is determined by the mapping g : R
2 → R

2

of the form

g(x1, x2) = (p(x2
1 , x2

2 )x1, q(x2
1 , x2

2 )x2)

where p and q are real-valued. The effective action of #L on the real subspace (x1, x2) ∈ R
2

is identical with the action in the rhombic case, since κ acts trivially on R
2. !

It follows from lemma 5.3, and its proof, that the bifurcation theory for the square lattice is

identical to the bifurcation theory for the rhombic lattice (in the shortest wavevector case) with

the single exception that rhomb solutions are identified in the analysis with square solutions.

Indeed, the solutions on the square lattice have different symmetries and the discussion in

physical space (rather than centre manifold space) reflects these differences.

The hexagonal lattice: even case

Buzano and Golubitsky [5] made a detailed analysis of bifurcations corresponding to shortest

wavevectors on the hexagonal lattice. By examining the general #L-equivariant mapping they

proved that generically the only solutions that bifurcate from the trivial solution are rolls and

hexagons. A theorem due to Ihrig and Golubitsky [8, 11] states that whenever there is a non-

zero quadratic equivariant map, then generically all solutions obtained using the equivariant

branching lemma are unstable. In the case of the scalar representation on the hexagonal lattice

there is precisely one non-zero equivariant quadratic mapping.

As observed much earlier by Busse [4] when studying transitions in convection systems,

there is a way around this pattern selection conundrum. By varying a second parameter ρ, it

is possible to arrive at certain critical values of ρ where the equivariant quadratic vanishes at

the transition. Then, for small perturbations of ρ away from these critical values, the branches

of hexagons and rolls can undergo secondary bifurcations and become stable. For Rayleigh–

Bénard convection, the determination of such a critical value of ρ is straightforward, since the

quadratic term vanishes for an ideal Boussinesq fluid. In that case, ρ may be interpreted as a

deviation of a fluid from ideal Boussinesq. In general, it may be quite difficult to find such

critical values of ρ.
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Depending on cubic and higher-order terms, there are many bifurcation problems that are

possible at critical ρ values. Buzano and Golubitsky [5] used singularity theory methods to

classify all of the generic bifurcations at such critical values and their universal unfoldings.

They also showed precisely which cubic, fourth- and fifth-order terms need to be calculated

to prove that higher-order terms in the expansion of the centre manifold vector field f do not

matter—in the sense that the bifurcation diagrams and stability of equilibria are qualitatively

the same regardless of the exact values of coefficients in higher-order terms.

The secondary bifurcations from axial subgroups produce solutions with submaximal

symmetry. In this case, triangles and rectangles are produced. The triangle solutions can be

stable in certain cases, but then only depending on the sign of a fifth-order term. Triangle

solution eigenfunctions have the form (z1, z1, z1) with z1 ,∈ R. Rectangle solutions have the

form (x, y, y) with x, y ∈ R; x ,= y; y ,= 0. Planforms associated with these solution types

are shown in figure 6 with z1 = 1− i (triangles) and x = 2; y = 1 (rectangles). The planforms

will change with different choices of z1 and x, y.

The hexagonal lattice: odd case

So far, we have shown that there are four axial subgroups: hexagons, rolls, rectangles and

triangles. The complete discussion of stability and secondary bifurcations of axial solutions

differs drastically from any of the other cases. We will show, for example, that the variation

of one additional parameter ρ can lead to a variety of secondary time periodic solutions. In

the next section we show that there are no non-zero equivariant quadratics in the pseudoscalar

hexagonal lattice (though there is an equivariant quartic), see theorem 6.1. For the moment,

we consider the consequences of this fact.

There are two bifurcation variants in Bénard convection. In the idealized bifurcation

problem an infinite fluid layer is heated from below and the transition from pure conduction

to convection is modelled. The exact model depends on the boundary conditions. In the

simplest cases the lateral boundary conditions are assumed to be periodic with respect to

some planar lattice. The top and bottom conditions may either be different (no cover on top) or

identical. When they are identical a new symmetry is introduced into the model—the midplane

reflection. The midplane reflection happens to act on centre subspaces as z '→ −z. Note that

the midplane reflection forces equivariant quadratics to be zero; but in a way that is different

from the assumption of an ideal Boussinesq fluid.

Golubitsky et al [9] studied the scalar (even) bifurcation on the hexagonal lattice with

the midplane reflection in the shortest wavevector case. They found that four solutions

exist (hexagons, triangles, rectangles and rolls). Moreover, rectangles are never stable near

bifurcation; rolls can be determined to be stable at third order; and at third order either triangles

or hexagons can be stable—exactly which solution is stable depends on the sign of a fifth-order

coefficient.

Since there are no non-zero quadratics in the hexagonal lattice odd case, the cubic

truncation has z '→ −z as a symmetry; that is, the cubic truncation is identical in form to

the cubic truncation in the even hexagonal lattice with the midplane reflection. Therefore,

it can be determined whether rolls can be stable at third order and whether either hexagons

or triangles can be stable. For reasons that differ slightly from the midplane reflection case,

rectangles are generically not stable near bifurcation, and hexagons and triangles may be stable,

but that determination requires the computation of a fifth-order term. As mentioned previously,

an important difference between the even and odd hexagonal lattice calculations concerns the

type of secondary states obtained through ρ variation.



762 P C Bressloff et al

  

  

Figure 6. Hexagonal lattice: (a) even triangles and (b) even rectangles.

6. Branching of axials: hexagonal odd case

Next, we compute the direction of branching and stability of the four types of axial solutions

supported on a hexagonal lattice in the odd case. These computations require knowledge of the

#L-equivariant mappings on C
3 up to fifth order. (Only third order is needed for the direction

of branching.) We focus on the direction of branching in this section and on stability in the

next.

Let f : C
3 → C

3 be #L-equivariant. Write f as

f (z) = (f1(z), f2(z), f3(z))
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where fj : C
3 → C. Commutativity with respect to ξ 2 implies

f2(z) = f1(z2, z3, z1)

f3(z) = f1(z3, z1, z2).

Therefore,

f (z) = (P (z1, z2, z3), P (z2, z3, z1), P (z3, z1, z2)) (6.1)

where P : C
3 → C.

Theorem 6.1. Up to fifth order the function P(z) has the form

P(z) = Q(z)z1 + γ (|z2|
2 − |z3|

2)z2z3 + ηz1(z2z3)
2 (6.2)

where Q(z) is the real-valued function

Q(z) = λ + α|z1|
2 + β(|z2|

2 + |z3|
2)

+δ|z1|
4 + ε|z1|

2(|z2|
2 + |z3|

2) + ϕ(|z2|
2 + |z3|

2)2 + ψ(|z2|
2 − |z3|

2)2

and all coefficients are real.

We use theorem 6.1 to compute the direction of branching of the axial planforms up to

third order. Compute

hexagons: λ = −((α + 2β)x2 + (δ + 2ε + 4ϕ + η)x4)

triangles: λ = −((α + 2β)y2 + (δ + 2ε + 4ϕ − η)y4)

rectangles: λ = −((α + β)x2 + (δ + ε + ϕ + ψ)x4)

rolls: λ = −(αx2 + δx4).

(6.3)

Note that all of these branches are pitchfork bifurcations. Contrast this with the even

case where branches of hexagons are generically transcritical. Assuming that the trivial

homogeneous solution is stable for λ < 0 and loses stability at λ = 0, then axial solutions

can be stable only when they are supercritical. (Then the eigenvalue of the Jacobian in the

direction of the fixed-point subspace is negative or stable.)

Equivariant mappings: proof of theorem 6.1

We have used commutativity of an equivariant map f with respect to ξ 2 to write f in terms

of the coordinate function P . The form of P is restricted by the actions of ξ 3, κ and T 2 (see

table 4). These restrictions are:

P(z) = P(z) (6.4)

P(−z1, −z3, −z2) = −P(z) (6.5)

P(eiθz1, z2, e−iθz3) = eiθP(z) (6.6)

P(z1, eiθz2, e−iθz3) = P(z). (6.7)

The equivariance condition (6.6) implies that

P(z) = R(|z1|
2, z2, |z3|

2, z1z3, z1z3)z1 + S(|z1|
2, z2, |z3|

2, z1z3, z1z3)z3.

This presentation of P is not unique, since

(z1z3)z1 = |z1|
2z3 and (z1z3)z3 = |z3|

2z1.
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Using these relations we can write P uniquely as

P(z) = R(|z1|
2, z2, |z3|

2, z1z3)z1 + S(|z1|
2, z2, |z3|

2, z1z3)z3.

The invariance condition (6.7) implies that

R(|z1|
2, eiθz2, |z3|

2, e−iθz1z3) = R(|z1|
2, z2, |z3|

2, z1z3)

S(|z1|
2, eiθz2, |z3|

2, eiθz1z3) = S(|z1|
2, z2, |z3|

2, z1z3) eiθ .

Therefore,

R(|z1|
2, z2, |z3|

2, z1z3)z1 = T (|z1|
2, |z2|

2, |z3|
2, z1z2z3)z1

S(|z1|
2, z2, |z3|

2, z1z3)z3 = U(|z1|
2, |z2|

2, |z3|
2, z1z2z3)z2z3

+V (|z1|
2, |z2|

2, |z3|
2, z1z2z3)z1z3z3.

The function V is redundant; it can be included in the T term. Hence

P(z) = T (|z1|
2, |z2|

2 + |z3|
2, |z2|

2 − |z3|
2, z1z2z3)z1

+U(|z1|
2, |z2|

2 + |z3|
2, |z2|

2 − |z3|
2, z1z2z3)z2z3.

Next, let u1 = |z2|
2 − |z3|

2 and u2 = z1z2z3 and apply (6.5) to obtain

T (|z1|
2, |z2|

2 + |z3|
2, −u1, −u2) = T (|z1|

2, |z2|
2 + |z3|

2, u1, u2)

U(|z1|
2, |z2|

2 + |z3|
2, −u1, −u2) = −U(|z1|

2, |z2|
2 + |z3|

2, u1, u2).

It follows that

T (|z1|
2, |z2|

2 + |z3|
2, u1, u2) = V (|z1|

2, |z2|
2 + |z3|

2, u2
1, u1u2, u

2
2)

U(|z1|
2, |z2|

2 + |z3|
2, u1, u2) = W(|z1|

2, |z2|
2 + |z3|

2, u2
1, u1u2, u2

2)u1

+X(|z1|
2, |z2|

2 + |z3|
2, u2

1, u1u2, u2
2)u2.

Truncating P(z) at fifth order we obtain

P(z) = U(|z1|
2, |z2|

2 + |z3|
2, (|z2|

2 − |z3|
2)2)z1 + W(0)(|z2|

2 − |z3|
2)z2z3 + X(0)z1(z2z3)

2.

Therefore, we obtain the desired form for P(z) through fifth order, but all coefficients are

complex numbers. Using (6.4) we obtain the same form for P but the coefficients are now all

real. !

7. Stability of axial solutions

Suppose that x0 is an equilibrium. Then the form of the Jacobian matrix (df )x0
is restricted in

two ways by symmetry. First, (df )x0
commutes with the action of the isotropy subgroup $x0

of x0. Second, the continuous torus symmetry forces some of the eigenvalues of (df )x0
to be

zero.

More precisely, commutativity forces (df )x0
to be block diagonal with respect to the

isotypic components of the isotropy subgroup $x0
. An isotypic component of a group $ is

the sum of all irreducible subspaces isomorphic to a given irreducible representation. For

example, Fix($) is the isotypic component corresponding to the trivial representation of $.

Every representation V can be written uniquely as a direct sum of isotypic components

V = Fix($) ⊕ W1 ⊕ · · · ⊕ Ws .

Moreover, if A : V → V is linear and commutes with $, then A(Wj ) ⊂ Wj (see [8]).
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Table 15. The isotypic components.

$ Fix($) W1 W2 W3

Ohexagons (1, 1, 1) (−2, 1, 1), (1, 1, −2) (i, i, i) (−2i, i, i), (i, i, −2i)

Otriangles (i, i, i) z1 + z2 + z3 = 0 (1, 1, 1) —

Orectangles (0, 1, −1) (1, 0, 0), (0, 1, 1) (0, i, −i) (i, 0, 0), (0, i, i)

Orolls (1, 0, 0) z1 = 0 (i, 0, 0) —

Table 16. Kernels of actions on isotypic components.

$ Fix($) W1 W2 W3

Ohexagons Z6(ξ) Z2(ξ
3) Z3(ξ

2) 1

Otriangles D3(ξ
2, κξ) 1 Z3(ξ

2) —

Orectangles D2(ξ
3, κ) Z2(ξ

3) Z2(κ) Z2(κξ3)

Orolls O(2) × Z4(ρ) 1 [0, θ2] +̇ Z2

(

κ
[

1
2
, 0

])

—

There are two ways to compute the restriction forced by commutativity—explicitly and

abstractly. In fact, both are useful. The abstract approach tells us the eigenvalue structure

of (df )x0
whose byproduct is a classification of the secondary bifurcations that are possible.

The explicit calculations (which are often simplified by the abstract calculations) allow us to

compute the various combinations of solutions and their stability that are possible—the generic

bifurcation diagrams. We will perform both calculations beginning with the abstract and later

the specific.

The isotypic decompositions of the isotropy subgroups of the four axial solutions are listed

in table 15 and the nullvectors of (df )x0
that are forced by symmetry are listed in table 18.

The eigenvalue structure of (df )x0
is recorded in table 19.

Isotypic components

The isotypic components of the four axial subgroups are given in table 15. It is straightforward

to check that each subspace is invariant under the action of the relevant subgroup. Each

subspace is either irreducible or the sum of two isomorphic irreducible subspaces. The spaces

W1
∼
= C

2 for triangles and W1
∼
= R

2 and W3
∼
= R

2 for rectangles are sums of two isomorphic

irreducible subspaces; recall that D3 has only one two-dimensional irreducible representation.

Showing that the remaining isotypic components are irreducible is straightforward except,

perhaps, the subspace W1 for rolls. To show that this subspace is irreducible, note that the only

invariant subspace that contains (0, 1, 0) is C
2, since the symmetry κ

[

1
2
, 0

]

maps (0, 1, 0) to

(0, 0, 1) and the symmetry
[

0, 1
4

]

maps (0, 1, 0) to (0, i, 0) and (0, 0, 1) to (0, 0, i). To show

that the irreducible representations corresponding to each isotypic component are distinct it

suffices to show that the kernels of the actions of $x0
are different. The kernels of the actions

on these subspaces are listed in table 16 and they are all different.

Commuting linear mappings

Let A : C
3 → C

3 be linear and commute with one of the axial subgroups $, such as the

Jacobian matrix at an equilibrium with isotropy subgroup $. We know that A is block

diagonalized by the decomposition

C
3 = Fix($) ⊕ W1 ⊕ W2 or C

3 = Fix($) ⊕ W1 ⊕ W2 ⊕ W3.
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Table 17. Effective actions of axial subgroups on isotypic components.

$ Fix($) W1 W2 W3

Ohexagons 1 Z3 Z2 Z6

Otriangles 1 D3 Z2 —

Orectangles 1 Z2(κ) Z2(ξ
3) Z2(ξ

3)

Orolls 1 O(2) × Z4 Z2(ξ
3) —

Table 18. The null vectors for a commuting linear map.

$ θ1 θ2 Notes

Ohexagons (i, 0, −i) (0, i, −i)

Otriangles (1, 0, −1) (0, 1, −1)

Orectangles (0, 0, i) (0, i, i) (0, i, −i) = (0, i, i) − 2(0, 0, i)

Orolls (i, 0, 0) —

Table 19. Eigenvalues of Aj .

$ W1 W2 W3

Ohexagons a ± bi 0

a = 1
2

tr(A1)

Otriangles 0, a (twice) —

Orectangles No restrictions 0 0, tr(A3)

Orolls a ± ib (twice) 0 —

Let Aj = A|Wj . There are two symmetry restrictions placed on Aj : Aj commutes with the

action of $ on Wj and Aj may have symmetry forced nullvectors. We consider these in turn.

First, the effective actions of $ on Wj (that is, the action of $ modulo the kernel of the

action) are listed in table 17 and the Aj must commute with this action.

Second, the action of the continuous connected subgroup T 2 forces A to have zero

eigenvalues. The eigenvectors corresponding to the zero eigenvalues are given by those vectors

tangent to the group action at the identity. To find these eigenvectors just compute (using table 4)

−
1

2π

d

dθ1

[θ1, 0]z

∣

∣

∣

∣

θ1=0

= (iz1, 0, −iz3)

−
1

2π

d

dθ2

[0, θ2]z

∣

∣

∣

∣

θ2=0

= (0, iz2, −iz3).

Therefore, the nullvectors in the four cases are those listed in table 18. Note that for rectangles

(0, 0, i) = ((0, i, i) − (0, i, −i))/2. Hence A2 = 0.

Block decompositions

Next we discuss the eigenvalue structure of Aj for each of the three axial subgroups. The

results are listed in table 19.

We derive the results in table 19 as follows. In the case of Ohexagons, table 18 shows

that A3 = 0. Table 17 shows that A1 commutes with the action of Z3. It follows that A1 is a

multiple of a rotation matrix and that its eigenvalues are as listed.

In the case of rectangles the note in table 18 shows that A2 = 0 and that the 2 × 2 matrix

A3 has a zero eigenvalue. Therefore, the other eigenvalue is given by the trace. There are no
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restrictions placed on A1, since the effective action on W1 is by the two-element group ±I .

Thus A1 is just an arbitrary 2 × 2 matrix.

In the case of triangles, table 18 shows that two of the four eigenvalues of A1 are zero.

Since A1 commutes with the absolutely irreducible representation of D3 (table 17) A1 can be

written in block form with scalar multiples of the identity in each block. The zero eigenvalues

force two of these blocks to be zero. Indeed, use coordinates Re(z2), Re(z3), Im(z2), Im(z3)

on W1, then A1 has the form

A1 =

(

aI2 0

cI2 0

)

where a, c ∈ R. It follows that the eigenvalues of A1 are 0 and a—each repeated twice.

Finally, in the case of rolls, table 18 shows that A2 = 0. Observe that table 17 shows

that A1 commutes with O(2) × Z4. The representation on W1 is irreducible, but not absolute

irreducible; therefore, the eigenvalues of A1 are a ± ib with each eigenvalue occurring twice.

The form of df

Next, we discuss the explicit form df . Let zj = xj + iyj and f = fr + ifi . Write the real

coordinates in order as x1, x2, x3, y1, y2, y3. For each axial x0 we derive the form of the 6 × 6

matrix (df )x0
assuming that it commutes with $x0

and has the nullvectors listed in table 18.

Hexagons x0 = (x, x, x). The Jacobian commutes with ξ 3(z) = z and therefore has the

block form
(

B 0

0 C

)

where B and C are 3 × 3 matrices. The Jacobian also commutes with ξ 2(z1, z2, z3) =

(z3, z1, z2). Therefore, B and C both commute with the matrix






0 0 1

1 0 0

0 1 0







which implies that B and C each have the form






a b c

c a b

b c a






.

The nullvectors listed in table 18 imply that the three columns of C are identical; hence all

nine entries of C are equal. Therefore,

(df )x0
=





























a b c

c a b

b c a






0

0







d d d

d d d

d d d





























. (7.1)
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We now use table 15 to compute the eigenvalues of (df )x0
. The fact that (1, 1, 1) is an

eigenvector of C implies that 3d is an eigenvalue. The fact that (1, 1, 1) is an eigenvector

of B implies that a + b + c is an eigenvalue. The invariant subspace W1 has a basis

(−2, 1, 1), (1, 1, −2). In this basis, A1 = B|W1 has the form
(

a − c b − c

c − b a − b

)

the eigenvalues of which are complex conjugates. The trace of this matrix is

tr(A1) = 2a − b − c.

Therefore, the sign of the real part of these complex conjugate eigenvalues is 2a − b − c and

the complex part is ±(b − c).

Rectangles x0 = (0, x, −x). The Jacobian again commutes with ξ 3 and therefore has the

block form
(

B 0

0 C

)

where B and C are 3 × 3 matrices. The Jacobian also commutes with κ(z1, z2, z3) =

(−z1, −z3, −z2). Therefore, B and C both commute with the matrix






1 0 0

0 0 1

0 1 0







which implies that B and C each have the form






a b b

c d e

c e d






.

The nullvectors listed in table 18 imply that

C =







f 0 0

g 0 0

g 0 0







with eigenvalue f . Therefore,

(df )x0
=





























a b b

c d e

c e d






0

0







f 0 0

g 0 0

g 0 0





























. (7.2)

The eigenvector (0, 1, −1) of B has eigenvalue d − e. The invariant subspace W1 has a

basis (−2, 1, 1), (1, 1, −2). In this basis, (df )x0
has the form

(

a c

2b d + e

)

(7.3)

which is arbitrary.
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Rolls x0 = (x, 0, 0). The Jacobian again commutes with ξ 3 and therefore has the block form
(

B 0

0 C

)

where B and C are 3 × 3 matrices. The Jacobian also commutes with κ
[

1
2
, 0

]

(z1, z2, z3) =

(z1, −z3, z2). Therefore, B and C both commute with the matrix






1 0 0

0 0 −1

0 1 0







which implies that B and C each have the form







a 0 0

0 b c

0 −c b






.

It follows that the eigenvalues of B and C are a and b ± ic. The isotypic decomposition shows

that the eigenvalues b ± ic are identical on each block and that the eigenvalue a is zero in C.

Therefore,

(df )x0
=





























a 0 0

0 b c

0 −c b






0

0







0 0 0

0 b c

0 −c b





























. (7.4)

Triangles x0 = (iy, iy, iy). In this case we write the Jacobian in the block form

(df )x0
=

(

B C

D E

)

whereB, C, D, E are 3×3 matrices. The Jacobian commutes with ξ 2(z1, z2, z3) = (z3, z1, z2).

Therefore, each block commutes with the matrix






0 0 1

1 0 0

0 1 0







which implies that each block has the form







a b c

c a b

b c a






.

The nullvectors (1, 0, −1, 0, 0, 0) and (0, 1, −1, 0, 0, 0) of (df )x0
imply that the three columns

of A are identical, as are the three columns of C. Thus all nine entries of A are equal, as are all
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nine entries of C. The fact that (1, 1, 1, 0, 0, 0) is an eigenvector of (df )x0
(table 15) implies

that C = 0. Thus

(df )x0
=





























a a a

a a a

a a a






∗

0







b c d

d b c

c d b





























.

Finally, (df )x0
commutes with the other generator of D3, namely, κξ(z1, z2, z3) =

(−z2, −z1, −z3). Therefore, D commutes with






0 1 0

1 0 0

0 0 1







which implies that c = d . Thus

(df )x0
=





























a a a

a a a

a a a






∗

0







b c c

c b c

c c b





























. (7.5)

Therefore, the eigenvalues of (df )x0
are 3a, 0 (twice), b + 2c and b − c (twice).

Computation of eigenvalues of (df )x0

We have shown that at axial equilibria, the eigenvalues of df are determined by two 3 × 3

matrices

(df )x0
=

(

(dxfr)x0
∗

0 (dyfi)x0

)

.

Most choices of Wj lead to ∗ = 0.

Recall (6.1) and let P = P r + iP i . For a given point (z1, z2, z3) let

Z1 = (z1, z2, z3) Z2 = (z2, z3, z1) Z3 = (z3, z1, z2).

Then

(dxfr) =







P r
x1

(Z1) P r
x2

(Z1) P r
x3

(Z1)

P r
x3

(Z2) P r
x1

(Z2) P r
x2

(Z2)

P r
x2

(Z3) P r
x3

(Z3) P r
x1

(Z3)







(dyfi) =







P i
y1

(Z1) P i
y2

(Z1) P i
y3

(Z1)

P i
y3

(Z2) P i
y1

(Z2) P i
y2

(Z2)

P i
y2

(Z3) P i
y3

(Z3) P i
y1

(Z3)






.

(7.6)

Using the results of the previous subsection, we can find formulae for the eigenvalues of

(df )x0
. We do this for each axial in turn and summarize the results in table 20.
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Table 20. Signs of eigenvalues of Aj . Except where indicated, derivatives are evaluated at Z1.

$ Fix($) W1 W2 W3

Ohexagons P r
x1

+ P r
x2

+ P r
x3

1
2
(2P r

x1
− P r

x2
− P r

x3
) ± i(P r

x2
− P r

x3
) P i

y1
0, 0

Otriangles P i
y1

+ 2P i
y2

0, P i
y1

− P i
y2

(twice) P r
x1

—

Orectangles (P r
x1

− P r
x2

)(Z2) Equation (7.3) 0 0, P i
y1

Orolls P r
x1

(P r
x1

± iP r
x2

)(Z2) (twice) 0 —

Hexagons. Using (7.1) and (7.6) we see that the eigenvalues of df are determined by the

four coefficients:

a = P r
x1

(Z1) b = P r
x2

(Z1) c = P r
x3

(Z1) d = P i
y1

(Z1)

where Z1 = (x, x, x). The non-zero eigenvalues are 3d, a + b + c and a complex conjugate

pair whose real part is 1
2
(2a − b − c) and imaginary part is b − c. A short calculation verifies

the entries in table 20.

Rectangles. Using (7.2) and (7.6) we see that the eigenvalues of df are determined by the

six coefficients:

a = P r
x1

(Z1) b = P r
x2

(Z1) c = P r
x3

(Z2)

d = P r
x1

(Z2) e = P r
x2

(Z2) f = P i
y1

(Z1)

where Z1 = (0, x, −x) and Z2 = (x, −x, 0). The non-zero eigenvalues are f , d − e and the

eigenvalues of the 2 × 2 matrix (7.3).

Rolls. Using (7.4) and (7.6) we see that the eigenvalues of df are determined by the three

coefficients:

a = P r
x1

(Z1) b = P r
x1

(Z2) c = P r
x2

(Z2)

where Z1 = (x, 0, 0) and Z2 = (0, 0, x). The non-zero eigenvalues are a and a complex

conjugate pair b ± ic.

Triangles. Using (7.5) and (7.6) we see that the eigenvalues of df are determined by the

three coefficients

a = P r
x1

(Z1) b = P i
y1

(Z1) c = P i
y2

(Z1)

where Z1 = (iy, iy, iy). The non-zero eigenvalues are 3a, b + 2c and b − c (twice).

The bifurcation diagrams

Recall from theorem 6.1 that

P(z) = Q(z)z1 + γ (|z2|
2 − |z3|

2)z2z3 + ηz1(z2z3)
2

where

Q(z) = λ + α|z1|
2 + β(|z2|

2 + |z3|
2)

+δ|z1|
4 + ε|z1|

2(|z2|
2 + |z3|

2) + ϕ(|z2|
2 + |z3|

2)2 + ψ(|z2|
2 − |z3|

2)2
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Table 21. Signs of eigenvalues of Aj near bifurcation.

$ Fix($) W1 W2 W3

Ohexagons α + 2β (α − β) ± 2γ ix2 −η 0, 0

Otriangles α + 2β (α − β), 0 (twice) η —

Orectangles α + β det(A1) = η(α − β) − 2γ 2 0 −η, 0

tr(A1) = α − β

Orolls α (β − α) ± γ ix (twice) 0 —

is real-valued. Therefore,

P r(z) = Q(z)x1 + γ (|z2|
2 − |z3|

2)(x2x3 − y2y3) + η Re(z1(z2z3)
2)

P i(z) = Q(z)y1 − γ (|z2|
2 − |z3|

2)(x2y3 + x3y2) + η Im(z1(z2z3)
2).

We now compute the eigenvalues for each axial—through fifth order.

Hexagons (x, x, x)

a = 2αx2 + 4(δ + ε)x4 b = 2βx2 + (2ε + 8ϕ + 2γ + 2η)x4

d = −2ηx4 c = 2βx2 + (2ε + 8ϕ − 2γ + 2η)x4.

The signs of the eigenvalues near bifurcation are determined by the entries in table 21.

Rectangles (0, x, −x)

a = ηx4 d = 2αx2 + (4δ + 2ε)x4 c = γ x3

b = 2γ x3 e = −2βx2 − (2ε − 4ϕ − 4ψ)x4 f = −ηx4.

The matrix (7.3) is

(

a c

2b d + e

)

= x2

(

ηx2 γ x

4γ x 2(α − β) + 4(δ − ϕ − ψ)x2

)

. (7.7)

Near the origin

sgn(det(7.7)) = η(α − β) − 2γ 2 and sgn(tr(7.7)) = α − β.

For rectangles to be stable we need η > 0 and det(7.7) > 0. Hence, we need α − β > 0.

However, that implies tr(7.7) > 0 — and rectangles are unstable near bifurcation.

Rolls (x, 0, 0)

a = 2αx2 + 4δx4 b = (β − α)x2 + (ϕ + ψ − δ)x4 c = −γ x3.

The signs of the eigenvalues near bifurcation are determined by the entries in table 21.
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Triangles (iy, iy, iy)

a = ηy4 b = 2αy2 + (4δ + 4ε)y4 c = 2βy2 + (2ε + 8ϕ + 2η)y4.

The signs of the eigenvalues near bifurcation are determined by the entries in table 21.

These calculations may be summarized as follows:

Theorem 7.1. Suppose that the third-order coefficients α and β satisfy the non-degeneracy

conditions

α ,= ±β α ,= 0 α ,= −2β

and the fourth- and fifth-order coefficients satisfy

2γ 2 ,= η(α − β) and η ,= 0.

Then near the origin the direction of branching and the stability of the four branches of axial

solutions are determined by the data in table 21 and (6.3). Note that generically rectangles

are never stable near codimension-zero bifurcations.

8. Secondary bifurcations

Secondary bifurcations occur when eigenvalues of the Jacobian cross the imaginary axis. Such

eigenvalue crossings can happen even when the direction of branching does not change. For

example, when α = β < 0 both rolls and hexagons can undergo Hopf bifurcations as long as

the fourth-order coefficient γ ,= 0.

Secondary Hopf bifurcations

The roll bifurcation is an O(2) symmetry breaking Hopf bifurcation (with two complex

conjugate pairs of eigenvalues crossing the imaginary axis) which (typically) generates two

branches of solutions: a rotating wave and a standing wave [8]. The calculations to verify the

non-degeneracy assumptions on this Hopf bifurcation are complicated and we have not carried

them out. Assuming that they can be satisfied, the rotating wave will move along the direction

of symmetry of the roll solution while the standing wave will have a fixed symmetry axis for

all time.

The Hopf bifurcation from hexagons is caused by simple eigenvalues crossing the

imaginary axis and thus yields (generically) a single branch of time periodic solutions. Again,

we have not attempted to verify the non-degeneracy conditions. From tables 16 and 17 we see

(when referring to the W1 subspace) that this periodic solution will be a discrete rotating wave

with two distinct symmetries: spatial rotation by 2π/3 produces the same solution a third of

a period later and rotation by π is a symmetry for all time t .

Secondary steady-state bifurcations

Secondary steady-state bifurcations occur off hexagons, triangles and rectangles when η ≈ 0.

Another steady-state bifurcation can arise from triangles when α ≈ β. This bifurcation

is a symmetry-breaking D3 symmetric steady-state bifurcation. As discussed in [8] such

bifurcations (typically) produce an unstable transcritical branch of equilibria (generically

there is an equivariant quadratic in this bifurcation) having a reflectional symmetry κξ . The

normalizer of this reflection includes the one-parameter family of translations along the line

of reflection (which is the line tilted at −π/6). It follows from the general theory outlined

next that this new solution is only a relative equilibrium and, in fact, it drifts in the direction

indicated. As mentioned, this particular solution is unstable at bifurcation—but could regain

stability if the branch of solutions undergoes a saddle node bifurcation.
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A review of drifting solutions

The theory of bifurcation from group orbits of equilibria was developed by Field [7] and

Krupa [12]. There are three main theorems.

(a) The dynamics near a critical group orbit breaks up into a flow normal to the critical group

orbit and one that is tangent to nearby group orbits.

(b) Bifurcation is controlled by the normal vector field and that vector field is $ equivariant.

Generically, bifurcations in the normal directions are standard $-equivariant bifurcations.

(c) The complete bifurcation from the critical group orbit is a combination of the bifurcating

state in the normal direction and drift along group orbits. Let$0 be the isotropy subgroup of

points on the bifurcated solution in the normal direction and let N#($0) be the normalizer

of $0. Then generically, the drift is on a k-torus where

k = rank(N#($0)/$0).

If k = 0, then there is no drift.

If k = 1, then there is drift along a circle.

If k = 2, then there is quasiperiodic drift on a 2-torus.

It follows from this theory that generically the D3 symmetry-breaking secondary

bifurcation from triangles described in the previous subsection will be a drifting solution

with k = 1 since in this case the normalizer N#($0) contains all translations along the line

tilted at −π/6 while $0 = Z2(κξ) itself is finite.
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