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SCALAR CURVATURE AND WARPED PRODUCTS
OF RIEMANN MANIFOLDS

F. DOBARRO AND E. LAMÍ DOZO

ABSTRACT. We establish the relationship between the scalar curvature of a

warped product M x ¡ N of Riemann manifolds and those ones of M and N.

Then we search for weights / to obtain constant scalar curvature on M Xj N

when M is compact.

1. Introduction. Let M = (Mm,g) and N = (Nn,h) be two Riemann

manifolds. For / G C°°(M), f > 0 on M, we consider the warped product

M Xj N = ((M x N)m+n,g + f2h) and show the relationship between the scalar

curvatures R on M, H on N and R on M Xf N. This relationship is a nonlinear

partial differential equation satisfied by a power of the weight f. In the case M

is compact and connected, we obtain a geometric interpretation of the principal

eigenfunction and eigenvalue of the canonical elliptic operator —A + R/2, where A

denotes the laplacian on M. Finally we consider the question of finding a weight

/ such that M Xf N has constant scalar curvature. This question is equivalent to

find a positive solution to a nonlinear eigenvalue problem.

The notion of warped product MxjN generalizes that of a surface of revolution.

It was introduced in [B-O] for studying manifolds of negative curvature (cf. [Z] for

other applications). The Riemann metric g = g + f2h on M Xf N is defined for

pairs of vector fields X, Y on M x N by

g(X, Y) = g(ntX, ir,Y) + f2(rc(-))h(u*X, w.Y)

where -it and ui are the canonical projections over M and N respectively.

We denote by Ag or A the laplacian (or Laplace-Beltrami) operator on (Mm, g)

with local expression Agu = V'VjU = \g\~1/2di(gi3\g\1/2dju), for u E C2(M) (cf.

[Aul, B-G-M]). Thus Au = u" for a real valued function u on M = R.

2. The equation. Given a metric g' = kg with k E C°°(M), k > 0 on M, g' is

said to be conformai to g. It is known that the scalar curvature R' on (Mm,g') is

related to R, the one on (Mm,g), by the Yamabe equation

(Ya) - 4(m ~n1) AgU + RU = R'u(m+2),(m-2)
m — 2v

where k = u4^m~2\ whenever m > 3 [4, Aul, p. 126].
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If we consider now the case of a warped product we have

THEOREM 2.1.   Let R, H and R denote the scalar curvature on M, N and Mxj

N respectively.  Then the following equality holds:

(2.1) -—A0u + Ru + H^n-^^n+^=Ru
n+ 1

where u = /(n+1)/2.

PROOF. We write g = g+f2h - f2(f~2g + h), so g is conformai to g = f~2g + h

on M x N and f~2g is conformai to g on M.

Supposing m > 3, we apply (Ya) in M to obtain that / satisfies

(2.2) -4{m-2) AaV + Rr, = riim+2)/{m-2)R

with r/4/(m_2) = f~2 and where R denotes the scalar curvature on (Mm,f~2g).

As m + n > 3, we use (Ya) in M x N. Hence / also satisfies

(2.3) _4(m + n - 1) + »    = ^(m+n+a)/(tn+w-a)

m + n - 2      g

with j/)4/(m+n_2) = Z2, where ñ denotes the scalar curvature on ((M x N)m+n, g)

and At« the corresponding laplacian.
g

From V G C°°(M) we deduce that A^iji = Af-2g+hij) = Af-2gip.  Working in

local coordinates

a,-^ = \r2g\'1/2di[(r2g)l3\r2g\1/2d^}

with |/-29| = det(f-2gtJ) = f-2m\g\ and (f~2g)^ = f2g^. Hence

A,-.,* = r¡-2m/(m-2)\9\-1/2di[v29ij\9\1/2djil>]

= [r1Agil> + 2gl>dtrid]ip\n-(m+2)>(rn-2).

On the other hand

Ag(r/V) = ^A^ + ^Agr/ + 2gl3dind3ip

and from (2.4) we get

(2.5) r/(m+2)/(m-2)A!BV = AJntP) - ipAgn.
g

We have that R — R + H, because we consider the usual product of (Mm, f~2g)

by (Nn,h). Using this in (2.3), multiplying by ??(*»+2)/(m-2)) we 0Dtain from (2.5)

-4(r+nn-21)(AgM) " Ms??) + ^(m+2)/(m"2)(Ä + #)V>

=  r^(™+" + 2)/(m + n-2)r?(m+2)/(m-2)_

From (2.2) we arrive at

-,    ^     4!u-^A^ - 4(m + n-l) + +       (m+2)/(m_2)^
(m + n - 2)(m - 2)      a (m + n - 2)

= RiPr,iP4/(-m+n-^ni/{m-2].
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Recalling that T/,4/(m+n-2)i?4/(m-2) _ 1   denoting u = /<n+1)/2, replacing in

terms of u in this last equality, then multiplying by u1_ra/(n+1), we obtain

4n

(2.6)

_u(m+n-l)/(n+l)^  u-(m-2)/(n+l)

(m + n - 2)(m - 2) 9

4(m + n-l)uX/{n+x) A    „/(„+!) +Ru + Hu>n-3)/(n+i) = ñu
m + n -2

For any a/0, »6 C°°(M), « > 0 on M satisfies

(2.7) Agva = a(a - l)va-2VlvViV + afQ_1AgW.

Choosing first a = n/(n + 1), then a = — (m — 2)/(n + 1) in (2.7) (for v = u) we

obtain from (2.6) the desired result (2.1).

REMARK. Formula (2.1) holds even for m = 1,2. For m = 1, it is easily

deduced from a similar formula in [E-l]. For m = 2, the proof is similar but

Yamabe equation is for the conformai change g' = eug:

(Ya)2 -Agu + R = R'eu

(cf. [M, Aul, p. 119]). (2.1) could also be deduced from a formula in [B-O, p. 26]

but this formula is a consequence of an unwritten 15-term calculation and besides

our method of proof is different.

3. Constant scalar curvature. Let the scalar curvatures R of M and H of

N be fixed, we look for a weight / G C°°(M), / > 0, on M such that the warped

product M Xf N has constant scalar curvature R and then which constants are

attained. Taking account of R G C°°(M), u = /("+1)/2 g C°°(M) and H E

C°°(N), it follows easily from Theorem 2.1 that for R to be a constant A, it is

necessary that N have constant scalar curvature, still denoted H.

The simplest case is H = 0.

THEOREM 3.1. Let M be compact and connected. Suppose N of zero scalar

curvature. Then there exists a weight f such that the scalar curvature R on MXfN

is a constant Ai. / is unique up to a positive multiplicative constant, Ai is unique

and is given by

X1=mí(f   (^-\Vv\2 + RvA dV-^EH^M), Í v2 dV = lj

where HX(M) = {v E L2(M);|Vt7|2 = V'vViV E L1(M)} is the Sobolev space of
order 1.

PROOF. From (2.1) we deduce that we search A G R and u E C°°(M), u > 0

on M such that

(3.1) Lu = Xu   on M

where Lu = —4nAgu/(n + 1) + Ru.

It is well known that this linear eigenvalue problem on M compact and connected

has only one nonnegative solution ui with max^ ui = 1; cf. [Aul, p. 137] (in fact

til > 0 on M) ui is the so-called principal eigenfunction of the elliptic operator L.

The corresponding eigenvalue Ai is simple and is called the principal eigenvalue.
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Hence / = ux > 0 on M is the weight we are searching. Any other solution

is of the form rf, r E Rq , because Ai is simple. The formula for Ai is classical.

The case of warping M with a circle, i.e. MXfS1 gives a geometric interpretation

of the principal eigenfunction ui of -A + R/2 and its corresponding eigenvalue Ai,

which in the special case of M 2-dimensional can be expressed in terms of the

classical Gaussian curvature on M.

COROLLARY. Given a compact, connected M = (M2,g) with Gaussian curva-

ture K and Laplace-Beltrami operator A, then the principal eigenfunction ui of

the canonical elliptic operator —A + K holds the property that the warped product

M xUl S1 has a scalar curvature constantly equal to the principal eigenvalue Ai of
-A + K.

PROOF. Take n = 1 in (2.1). Recall that H = 0 in S1 and R/2 = K in a
2-dimensional manifold.

The case H E R, H < 0 is similar to H = 0 because the half-line {(Ai,rui),

r > 0} is deformed into a curve {(A,/(A)); A < Ai}:

THEOREM 3.2. Let M = (Mm,g) be compact and connected. Suppose N —

(Nn, h) of constant negative scalar curvature H and assume n > 3. Let Ai denote

the principal eigenvalue of —4nAg/(n + 1) + R. Then for each A < Ai there exists

a unique weight f = f(X) such that M Xf N has constant scalar curvature A. No

constant > Ai may be curvature of M x¡ N for any weight f.

PROOF. We look for positive solutions u in C°°(M) of

(3.2) Lu + Hua=Xu   on M

where Lu = -4nAgu/(n + 1) + Ru, 0 < a = (n - 3)/(n + 1) < 1 (cf. (2.1)).

Let us still denote ui the positive eigenfunction of Lu = Xu but with L2-norm

1, i.e. fM u\ dV = 1. If it is a positive solution of (3.2), then multiplying (3.2) by
iti and integrating by parts (L is selfadjoint), we obtain

A, /  uuidV + H [  uaui dV = X [  uui dV.
Jm Jm Jm

Hence

(3.3) (A-A,)/   uuidV = H [  uauidV.
Jm Jm

Then H < 0 necessarily gives A < Ai.

Let usfixA<Ai. AsO<a<l,we have that

(L - XI)tui < |r7|ia<

for t E R+ small enough, so tux is a subsolution of (3.2). Also

(L - XI)tui > \H\taut

for f G R+ big enough, so we have a supersolution tux > tux.

The operator (L — XI): C2'^(M) —* Cl3(M) is an isomorphism and its inverse

(L-XI)~l is continuous for the C°-norm on C0(M) and the C1,/J-norm on C2'ß(M).

Besides (L - A/)-1 is strongly positive, i.e. w E Cß(M), w > 0, w ^ 0, implies

(L - XI)~lw > 0 on M.  So it extends uniquely to a compact map, still denoted
License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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(L - A/)-1 from C(M) into C(M), which is still strongly positive (cf. [Am]). For

each w G C(M), (L — A/)-1 w is a weak solution of Lu — Xu = w.

The nonlinear compact and order preserving operator v —► (L-A/)_1(|r7||t;|a) :

C(M)+ —> C(M)+ leaves invariant the order interval [íui,íui] C C(M), so it has

a fixed point u G C(M), with 0 < tui < u < tui, i.e. u = (L - A/)-1(|/i"||u|a),

hence by a classical bootstrap argument u E C°°(M); in particular u is a classical

positive solution of (3.2) (cf. [Am] in the Neumann case for details). Finally the

nonlinearity \H\ta in (3.2) is such that ta/t is strictly decreasing in t > 0; hence u

is unique [L, Bere]. As / = u2/(n+1) we obtain the uniqueness.

The situation seems more complicated when H > 0.

THEOREM 3.3. Let M = (Mm,g) be compact and connected. Suppose N =

(Nn,h) of constant positive curvature H and assume n > 3. Let Ai denote the

principal eigenvalue of —4nAg/(n + 1) + R. Then for each X in some interval

(Ai,Ai + 8) there exists a weight f = /(A) such that M Xf N has X as scalar

curvature. No constant < Ai may be curvature of M Xf N for any f.

PROOF. If u > 0 on M is a solution of (3.2) with H > 0, then (3.3) gives that

A > Ai is a necessary condition.

Denote ||u|| = maxM |u|, v = m/||u||2 for ii/O, i.e. u = ü/||t>||2. We will

obtain solutions as a bifurcation from infinity near A = Ai (cf. [R-2]). Multiplying

our equation (3.2) by l/||u||2, replacing by v, we are reduced to finding positive

solutions of

(3.4) Lv + av = Xv-H\\v\\2(1'a)va+av

where A G R is a parameter and a G R+ is a fixed number chosen big enough so

that the operator (L + ai): C2'0(M) —► C0(M) is an isomorphism with positive

inverse. Hence, as in the preceding proof, (L + ai)-1 : C(M) —► C(M) is a linear

compact strongly prositive operator such that (L + al)~1v > 0 on M if v > 0,

v ^ 0 on M.

We now search for pairs (A, v) E R x C(M) with v > 0 on M, solutions of

(3.5) v = p(L + aI)-1v-H(L + aI)-1f(v)

where p = X + a, H > 0, and f(v) = ||r||2(1-a)|u|a. We easily see that

H(L + al)~1f(v) = o(||u||) in C(M) for \\v\\ near 0. Moreover from Lui = AiUt,

it follows that pi = Ai + a is a simple characteristic value of the compact map

(L + ai)"1. Then by the Rabinowitz bifurcation theorem [R-l], there exists a

maximal connected closed subset Cßl of

S = adhRxC7(A!f){(A,?;) solutions of (3.5) with v ^ 0}

such that (pi,0) G Cßl and either

(i) Cfll is bounded in R x C(M) or

(ii) CMl meets (p,0) with pi ^ p E {X + a;X eigenvalue of L}.

We write v = fui + w, with 7 = v(x0), where ui(x0) = |jui|| and w(x0) = 0.

For {; > 0, 0 < n < 1, the open sets in R x C(M) : K~£ , K~¿   defined by

(3.6) Kfyn = {(p, v)ERx C(M); \p-p1\<^,±1< r,\\v\\}

satisfy both K* n Cßl ^ 0 for £ small enough as in Theorem 1.25 in [R-l].

Consequently the maximal connected closed subset (or continuum) of CMl contained
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in {(p,~¡ui + w);7 > 0} U {(pi,0)} is nontrivial; we denote it as C+r Besides

from H(L + a/)-1 f(v) = o(\\v\\) we deduce that ||w|| = 0(7) near 7 = 0, so

v = 7«! + w E C+j is (strictly) positive on M for 7 > 0 small enough.

We have then obtained a "branch" of C(M)-solutions (p,v), v > 0 on M of

(3.5). Going back to u = i>/|M|2, A = p-a, we have weak C(M)-solutions of (3.2):

(A,it.) for A near Ai, u > 0 on M, {||u||} unbounded. By a regularity argument,

each u is a C°° classical solution and by the necessary condition we have A > Ai.

REMARK 1. The nonlinearity v -* (L + aI)~xf(v) = ||i>||2(1_Q!)(Z,-|-a.r)_1(|t;|a)

is not always differentiable for ||u|| near 0, so we cannot directly apply the results

in [R-l, 2].

REMARK 2. The operator F(p,v) = (L + aI)~1{pv-Hf(v)), H > 0, generally

transforms a positive v into a nonpositive F(p,v), so some known results on maps

of cones into cones [L, T] do not apply. More precisely, when JV is 3-dimensional,

(3.2) can be written as

(3.7) (-3Ag + RI -XI)u = -H

and Theorem 3.3 is a consequence of the antimaximum principle (cf. [C-P]) which

says that A > Ai and near Ai implies that negative data —H on M gives a positive

solution u, on the contrary of the maximum principle.

Let us denote

Coo = {(A, u); u > 0, u ¿ 0, (X + a, u/\\u\\2) G C+ } C R x C(M) + ,

the nonnegative weak C(M)-solutions bifurcating from infinity. We know now that

H > 0 fixed implies that u > 0 for A > Ai, A near Ai. We can say more on ||m|| in

i'OO'

THEOREM 3.4. Let M,N and Xi be as in Theorem 3.3. For any 0 < e < A,

the set {(X,u) E Coo, Ai + e < X < Ai + A} is bounded in R x C(M).

PROOF. Suppose not. Then there exists a sequence (A„,u„) G Coo with A„ e

[Ai + s, Xi + A], un > 0 on M, un ^ 0, limn A„ = A and lim„ ||u„|| = +00, which

satisfies

«n/||«n|| = (A„ + a)(L + aiy^Un/WunW) - H(L + air^uZ/WunW).

(L + a/)-1 : C(M) —> C(M) being compact we may suppose, up to a subsequence,

that lim„(L + cri^Ki/IKI!) = uin C(M). From limn«/||u„||) = 0 in C(M),
we obtain that u„/||m„|| tends to some u in C(M), u > 0, ||w|| = 1, so we have

u= (X + a)(L + aI)~1u

i.e., by regularity properties, —4nAu/(n + I) + Ru = Aw, u > 0, u ^ 0, hence

u = ui and A = Ai by uniqueness. This contradicts A > Ai + e.

REMARK. If the set Coo meets (p, 0) G R x C(M) so does C^. Then p ^ pi and

p is necessarily a characteristic value of (L + al)~x (cf. [R-l]). Hence p = X + a,

X > Ai, A an eigenvalue of -4nA/(n + 1) + R. We would then have a sequence

(Pk,Vk) G C+, such that limfcpfc = p, limfcwfc = limfctifc/||tifc||2 = 0 in C(M),

Vk # 0, i.e. (Afc,Ufc) G Coo, with A¿ — pk - a > Xi + e, {Xk} bounded and

limi; ||ufc|| = +00, contradicting Theorem 3.4. Then Coo never meets some (A,0).

For n = 3, H > 0 we are able to characterize the case that for any A > Ai there

is a u(X) > 0 on M with (A,it(A)) G Coo-
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THEOREM 3.5. Let M,N and Ai be as in Theorem 3.3 with dimN = 3. Then

any constant X E (Ai,oo) is scalar curvature of M Xf N for some weight f if and

only if the scalar curvature R on M is constant.

PROOF. If R is constant and A > Ai, u(A) = H/(X - Ai) is a solution of (3.7),

hence / = ull2 is a constant weight which gives A as scalar curvature on M x¡ N.

Conversely, suppose that for each A > Ai there corresponds a weight / i.e. a

solution u of (3.7). This means for A = Afc (k > 1) an eigenvalue of the selfadjoint

operator —3A9 + R, that the second member in equality (3.7) is orthogonal to the

corresponding eigenspace. Hence H is orthogonal to all eigenfunctions except the

principal one ui, so H = tui with t > 0 by the completeness of an orthonormal

system of eigenfunctions, i.e. ui is constant and (3.7) with u = «i gives R constant.

Ejiri proves in [E-2] that there exist countable immersions of S1 x Sn into Sn+2

such that S1 x Sn is a warped product of constant scalar curvature n(n + 1) with

respect to the induced metric.

On one hand, if we consider equation (2.1) in S1 x Sn, we have R = 0 on S1

and H = n(n - I) on Sn with the usual metric. So [E-2] gives a countable number

of positive solutions of

(3.8) -—u" + i/w("-3)/("+1) = n(n + l)u.
v     ' n+l v '

In particular for n = 3, this equation becomes

(3.9) -3it" - 12m = -H

with H = 6.

On the other hand, equation (3.7) reduces on S1 x S3 to

(3.10) -3u" -Xu= -H.

This last equation has a unique solution u = u(X) for A > Ai, A not an eigenvalue.

But A = 12 is an eigenvalue of (—3) times the laplacian on S1, the eigenvalues

being {Afc — 3(fc - l)2, k = 1,2,... }, so the countable solutions of (3.9) given in

[E-2] appear for A = A3. But then we have uncountable positive solutions of (3.10)

for A = Afc, k > 1, they are

(3.11) v = H/Xk + iufc

where — 3u'k' = AfcUfc and \t\ small enough so that v is positive. We have proved

THEOREM 3.6. Let M,N and Ai be as in Theorem 3.3 with dim M = 1 and

dimN = 3. Given an eigenvalue Afc, k > 1, of—3Ag there exist uncountable weights

f such that M Xf N has Afc as scalar curvature.

REMARK. The u = f2 from this theorem are secondary bifurcations of the

branch {H/X} of solutions considered up to now, at points A = Afc. In the case

M = S1 and N = Sn with n > 3, the curvature on S1 x¡ Sn given in [E-2] is

n(rt-l-l) with u = /(n+1)/2 a solution of (3.8). This constant n(n+l) is far from the

scalar curvatures obtained from Theorem 3.3 which are near zero, i.e. our solutions

of (2.1) and those in [E-2] on S1 x 5n seem to be of different type.

Theorem 3.2 still holds for TV of dimension 2 with a different proof inspired from

[C-R-T].
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