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Abstract

In this short paper, we prove that scalar curvature is uniformly bounded
for the Kähler-Ricci flow over a minimal manifold of general type. This
result can be compared with the result in [6] for the positive first Chern
class case. A big part of the computation works for more general situation
and we keep track of that for future application.

1 Introduction and set-up

We consider the following Kähler-Ricci flow over a closed manifold X of complex
dimension n > 2,

∂ω̃t

∂t
= −Ric(ω̃t) − ω̃t, ω̃0 = ω0 (1.1)

where ω0 is any Kähler metric.
In this short note, we are going to prove the following theorem. Some classic

computations used during the process might be of more interest. Most of them
are more or less quoted directly from [7] and [6].

Theorem 1.1. Suppose X is a non-singular minimal model of general type,
then the evolving Kähler metric along the above Kähler-Ricci flow has uniformly
bounded scalar curvature (for all time).

As in [8], define ωt := ω∞ + e−t(ω0 − ω∞) as the background form for the
flow metric, with ω∞ = −Ric(Ω) for a smooth volume form over X, and one
has [ω∞] = −c1(X) = KX cohomologically, where KX is the canonical class of
X. Then [ω̃t] = [ωt] and we can assume ω̃t = ωt +

√
−1∂∂̄u. The following

evolution flow of the space-time function u (usually called the metric potential
of the flow metric),

∂u

∂t
= log

(ωt +
√
−1∂∂̄u)n

Ω
− u, u(0, ·) = 0, (1.2)

would imply (1.1), the metric flow above. They are indeed equivalent to each
other by the basics on the existence and uniqueness of these flows. 1

1This is illustrated in [12], for example. There is very nice discussion in [2] for complete
non-compact setting.
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In the case of KX being Kähler, the flow converges exponentially fast to
the (unique) Kähler-Einstein metric as completely discussed in [1], [8] and [12].
Just as in [8], the degenerate case, i.e. KX no longer Kähler, is the main focus.

Without further clarification, all the constants appearing later are positive.
The same letter C might stand for different (but fixed) positive constants at
different places.

To begin with, we summarize some useful computations and estimates al-
ready known (as in [8] and [12]) for the evolution equations (1.1) and (1.2),
which are valid without any further assumption on the closed manifold, X.

By direct Maximum Principle argument for (1.2), we can easily see that

u 6 C because ωn
t 6 C · Ω,

as long as the flow exists.
In the following, the gradient ∇, Laplacian ∆ and norm | · | below are always

with respect to the evolving metric along the flow, ω̃t. We start with

∂

∂t

(

∂u

∂t

)

= ∆

(

∂u

∂t

)

− e−t〈ω̃t, ω0 − ω∞〉 − ∂u

∂t
,

which is just the t-derivative of (1.2) and has the following two transformations,

∂

∂t

(

et ∂u

∂t

)

= ∆

(

et ∂u

∂t

)

− 〈ω̃t, ω0 − ω∞〉,

∂

∂t

(

∂u

∂t
+ u

)

= ∆

(

∂u

∂t
+ u

)

− n + 〈ω̃t, ω∞〉, (1.3)

where the notation 〈·, ·〉 means taking trace of the second term with respect to
the first term which is always a metric. It is indeed equivalent to taking inner
product of these two terms with respect to the first (metric) term.

A proper linear combination of these equations provides the following ”finite
time version” of (1.3),

∂

∂t

(

(1 − et−T )
∂u

∂t
+ u

)

= ∆

(

(1 − et−T )
∂u

∂t
+ u

)

− n + 〈ω̃t, ωT 〉. (1.4)

If one allows T = ∞, this naturally gives back (1.3) above by taking e−∞ = 0.
The difference of the two transformations of the t-derivative equation would give

∂

∂t
((1 − et)

∂u

∂t
+ u) = ∆((1 − et)

∂u

∂t
+ u) − n + 〈ω̃t, ω0〉,

which, by Maximum Principle argument, implies the ”essential decreasing” of
metric potential along the flow, i.e.

∂u

∂t
6

nt + C

et − 1
.
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Let’s point out that this estimate only depends on the initial value of u and its
upper bound along the flow. The control is uniform away from the initial time.

Another t-derivative of the potential flow equation (1.2) gives

∂

∂t

(

∂2u

∂t2

)

= ∆

(

∂2u

∂t2

)

+ e−t〈ω̃t, ω0 − ω∞〉 − ∂2u

∂t2
− |∂ω̃t

∂t
|2.

Take summation with the first t-derivative to arrive at

∂

∂t

(

∂2u

∂t2
+

∂u

∂t

)

= ∆

(

∂2u

∂t2
+

∂u

∂t

)

−
(

∂2u

∂t2
+

∂u

∂t

)

− |∂ω̃t

∂t
|2,

which provides the following estimate from Maximum Principle argument,

∂2u

∂t2
+

∂u

∂t
6 Ce−t.

Noticing ω̃n
t = e

∂u

∂t
+uΩ, this estimate implies the ”essential decreasing” of

volume form along the flow, i.e.

∂

∂t

(

∂u

∂t
+ u

)

6 Ce−t, (1.5)

and also induces, by transforming it to be ∂
∂t

(

et ∂u
∂t

)

6 C, that

∂u

∂t
6 (Ct + C)e−t.

Let’s point out that most of these estimates depend on the initial values of
∂2u
∂t2

, ∂u
∂t

and u, which is of course not a problem for us in this work.

Let’s take a look at the metric evolution equation (1.1). Rewrite it as follows,

Ric(ω̃t) = −
√
−1∂∂̄

(

u +
∂u

∂t

)

− ω∞.

Taking trace with respect to ω̃t for (1.1) and the one above, we have

R = e−t〈ω̃t, ω0 − ω∞〉 − ∆

(

∂u

∂t

)

− n = −∆

(

u +
∂u

∂t

)

− 〈ω̃t, ω∞〉,

where R stands for the scalar curvature of ω̃t. Using (1.3), one also has

R = −n − ∂

∂t

(

∂u

∂t
+ u

)

,

and so the estimate got for ∂
∂t

(∂u
∂t

+ u) before is equivalent to the well known
fact for scalar curvature along (this rescaled version of) Ricci flow (as discussed
in [7]).
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2 Current interest

We have proven in [8] that the flow (1.1) (or equivalently (1.2)) exists (smoothly)
as long as the cohomology class [ω̃t] = [ωt] remains to be Kähler, which can be
grasped by simple algebraic concern. As usual, let’s define

T = sup{t| [ωt] is Kähler.}.

Of course, our main interest is on the case when [ωT ] is no longer Kähler
where T can be either infinite or finite. From now on, T 6 ∞ unless explicitly
stated otherwise. We only consider smooth solution of Kähler-Ricci flow in
[0, T ) × X.

At this moment, we focus on the case when the smooth limiting background
form ωT > 0. It should be essentially equivalent to assume [ωT ] is the pullback
of a Kähler class by some holomorphic map (or even semi-ample for algebraic
geometry concern).

For T < ∞, we already have (1.4),

∂

∂t

(

(1 − et−T )
∂u

∂t
+ u

)

= ∆

(

(1 − et−T )
∂u

∂t
+ u

)

− n + 〈ω̃t, ωT 〉

with the ”T” in the equation chosen to be the ”T” above. Using ωT > 0, by
Maximum Principle, one has

(1 − et−T )
∂u

∂t
+ u > −C.

As u 6 C and ∂u
∂t

6 C, we can conclude that

u > −C,
∂u

∂t
> − C

1 − et−T
∼

C

t − T
.

The situation for T = ∞ is somewhat different. Further assuming [ω∞] =
KX is also big, we still have the lower bound of u.

Remark 2.1. This is an application of the general results obtained in [8],
[4], [11] and [12] by generalizing Kolodziej’s L∞ estimate for complex Monge-
Ampère equation (as summarized in [5]) to the degenerate case.

It is observed in [12] that the lower bound of u actually implies the lower
bound of ∂u

∂t
after combining with the ”essential decreasing” of volume form

ω̃n
t along the flow, i.e. (1.5). More precisely, (1.5) gives the decreasing of

∂u
∂t

+ u + Ce−t along the flow. As proven in [8], over a dense open subset of

X, u converges smoothly as t → ∞, and so the limit of ∂u
∂t

would have to be 0.

Thus the whole term, ∂u
∂t

+ u + Ce−t has limit equal to the limit of u which is
uniformly bounded from below in a dense open subset. The decreasing tells us
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that the uniform lower bound is good for all time in a dense open subset, which
is then good over X because of continuity. Hence we conclude

∂u

∂t
> −C.

These are the cases under consideration in this paper. We can summarize
that it is always true that

|(1 − et−T )
∂u

∂t
+ u| 6 C,

where e−∞ = 0 if T = ∞.

3 Further computation

Now we carry through some classic computations for Kähler-Ricci flow in the
current situation. Similar computations can be found in [7] and [6], which are
also where the author learned these stuffs, although the flow and situation being
considered are not exactly the same.

3.1 Parabolic Schwarz estimate

Use the following set-up as in [7]. Suppose we have a holomorphic (non-trivial)
map F : X → Y between smooth closed complex manifolds, ω is a Kähler metric
over Y and ω̃t is metric under Kähler-Ricci flow (1.1) over X.

Define φ := 〈ω̃t, F
∗ω〉, then direct computation gives, over [0, T ) × X,

(

∂

∂t
− ∆

)

φ 6 φ + Cφ2 − H, (3.1)

where ∆ is with respect to the metric ω̃t, C is related to the bisectional curvature
bound of ω over Y and H > 0 is described as follows. Using normal coordinates
locally over X and Y , with indices i, j and α, β respectively, φ = |Fα

i |2 and
H = |Fα

ij |2 with all the summations. Notice that the normal coordinate over X

is changing along the flow with the metric. Furthermore, one has
(

∂

∂t
− ∆

)

logφ 6 Cφ + 1. (3.2)

For our application (to the proof of Theorem 1.1), the map F is coming from
the class [ωT ] with Y being some projective space CP

N , and so ωT is F ∗ω where
ω is (some multiple of) Fubini-Study metric over Y .

For simplicity, define v := (1 − et−T )∂u
∂t

+ u and we have |v| 6 C from the
discussion in Section 2. We have (1.4) as follows

(

∂

∂t
− ∆

)

v = −n + 〈ω̃t, ωT 〉 = −n + φ.
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Taking a large enough positive constant A, we have the following inequality
in sight of (1.4) and (3.2),

(

∂

∂t
− ∆

)

(logφ − Av) 6 −Cφ + C.

Since v is bounded, Maximum Principle can now be used to deduce φ 6 C,
i.e.

〈ω̃t, ωT 〉 6 C.

As in [7], in complex surface case, when the corresponding map F gives
a holomorphic fibration structure of X with the base and fiber spaces being
of complex dimension 1, then (at least for the regular part), one has, when
restricted to each fiber,

ω̃t

ω0
=

ω̃t ∧ ωT

ω0 ∧ ωT

=
ω̃t ∧ ωT

ω̃2
t

· ω̃2
t

ω0 ∧ ωT

=
1

2
〈ω̃t, ωT 〉 ·

ω̃2
t

ω0 ∧ ωT

6 C,

where one makes use of the volume bound in the last step.

These two estimates above give us the picture that the flow metric ω̃t will
not collapse horizontally and will be bounded fiberwise as t → T .

3.2 Gradient and Laplacian estimates

In this part, we deduce gradient and Laplacian estimates for v. Recall first that
(

∂

∂t
− ∆

)

v = −n + φ, φ = 〈ω̃t, ωT 〉. (3.3)

Standard computations (as in [7]) then gives:
(

∂

∂t
− ∆

)

(|∇v|2) = |∇v|2 − |∇∇v|2 − |∇∇̄v|2 + 2Re(∇φ,∇v), (3.4)

(

∂

∂t
− ∆

)

(∆v) = ∆v + (Ric(ω̃t),
√
−1∂∂̄v) + ∆φ. (3.5)

Recall that all the ∇, ∆ and (·, ·) are with respect to ω̃t and ∇∇̄v is ∂∂̄v.

Consider the quantity Ψ = |∇v|2

C−v
. Since v is bounded, one can easily make

sure the denominator is positive, bounded from above and also away from 0.
We have the following computation,

(

∂

∂t
− ∆

)

Ψ =

(

∂

∂t
− ∆

) ( |∇v|2
C − v

)

=
1

C − v
· ∂

∂t
(|∇v|2) +

|∇v|2
(C − v)2

· ∂v

∂t
−

(

(|∇v|2)ī

C − v
+

vī|∇v|2
(C − v)2

)

i

=
|∇v|2

(C − v)2
·
(

∂

∂t
− ∆

)

v +
1

C − v
·
(

∂

∂t
− ∆

)

(|∇v|2) − vi · (|∇v|2)ī

(C − v)2
− vī ·

( |∇v|2
(C − v)2

)

i

=
|∇v|2

(C − v)2
·
(

∂

∂t
− ∆

)

v +
1

C − v
·
(

∂

∂t
− ∆

)

(|∇v|2) − 2Re(∇v,∇|∇v|2)
(C − v)2

− 2|∇v|4
(C − v)3

.
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Plug equations (3.3) and (3.4) into the equation to get

(
∂

∂t
− ∆)Ψ

=
(−n + φ)|∇v|2

(C − v)2
+

|∇v|2 − |∇∇v|2 − |∇∇̄v|2
C − v

+
2Re(∇φ,∇v)

C − v

− 2Re(∇v,∇|∇v|2)
(C − v)2

− 2|∇v|4
(C − v)3

.

(3.6)

We also need the computations below to transform this expression further.

|(∇v,∇|∇v|2)| = |vi(vjvj̄)ī|
= |vivj̄vjī + vivjvj̄ī|
6 |∇v|2(|∇∇v| + |∇∇̄v|)
6

√
2|∇v|2(|∇∇v|2 + |∇∇̄v|2) 1

2 .

∇Ψ = ∇
( |∇v|2

C − v

)

=
∇(|∇v|2)

C − v
+

|∇v|2∇v

(C − v)2
.

Using the bounds for φ and C − v, we have the following computation with
ǫ representing small positive constant which might be different from place to
place,

(
∂

∂t
− ∆)Ψ

6 C|∇v|2 + ǫ · |∇φ|2 − C(|∇∇v|2 + |∇∇̄v|2)

− (2 − ǫ)Re

(

∇Ψ,
∇v

C − v

)

− ǫ · Re(∇v,∇|∇v|2)
(C − v)2

− ǫ · |∇v|4
(C − v)3

6 C|∇v|2 + ǫ · |∇φ|2 − C(|∇∇v|2 + |∇∇̄v|2)

− (2 − ǫ)Re

(

∇Ψ,
∇v

C − v

)

+ ǫ · (|∇∇v|2 + |∇∇̄v|2) − ǫ · |∇v|4

6 C|∇v|2 + ǫ · |∇φ|2 − (2 − ǫ)Re

(

∇Ψ,
∇v

C − v

)

− ǫ · |∇v|4.

We need a few more calculations to set up Maximum Principle argument.
Recall that φ = 〈ω̃t, ωT 〉 and (3.1),

(

∂

∂t
− ∆

)

φ 6 φ + Cφ2 − H.

With the description of H before and the estimate for φ, i.e. φ 6 C, from
Subsection 3.1, we can conclude by classic computation (as in [7]) that

H > C|∇φ|2.
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Now one arrives at
(

∂
∂t

− ∆
)

φ 6 C − C|∇φ|2, which is also, for small enough
positive constant ǫ,

(

∂

∂t
− ∆

)

φ + ǫ|∇φ|2 6 C.

Of course, one has

|
(

∇φ,
∇v

C − v

)

| 6 ǫ · |∇φ|2 + C · |∇v|2. (3.7)

Now consider the function Ψ + φ. Choosing ǫ > 0 small enough 2, we have

(

∂

∂t
− ∆

)

(Ψ + φ) 6 C + C|∇v|2 − ǫ · |∇v|4 − (2 − ǫ)Re

(

∇(Ψ + φ),
∇v

C − v

)

.

At the maximum value point of Ψ + φ, we know |∇v|2 can not be too large.
It’s then easy to conclude the upper bound for Ψ + φ, and so for Ψ. Hence we
have achieved the gradient estimate,

|∇v| 6 C.

Now we want to do similar things for the Laplacian, ∆v. Define Φ := C−∆v
C−v

.
Similar computation as before gives the following

(

∂

∂t
− ∆

)

Φ =

(

∂

∂t
− ∆

) (

C − ∆v

C − v

)

= − 1

C − v
·
(

∂

∂t
− ∆

)

∆v +
C − ∆v

(C − v)2
·
(

∂

∂t
− ∆

)

v

+
2Re(∇v,∇∆v)

(C − v)2
− 2|∇v|2(C − ∆v)

(C − v)3

= − 1

C − v
·
(

∆v + (Ric(ω̃t),
√
−1∂∂̄v) + ∆φ

)

+
C − ∆v

C − v
· (−n + φ)

+
2Re(∇v,∇∆v)

(C − v)2
− 2|∇v|2(C − ∆v)

(C − v)3
.

We also have ∇(C−∆v
C−v

) = (C−∆v)∇v

(C−v)2 − ∇∆v
C−v

. Recall that it is already proven

(0 6)φ 6 C. The following inequality follows from standard computation (as in
[7]) and has actually been used before,

∆φ > (Ric (ω̃t), ωT ) + H − Cφ2,

where H > C|∇φ|2 > 0 from the bound of φ as used already before. Now we
have

(Ric,
√
−1∂∂̄v) + ∆φ > (Ric,

√
−1∂∂̄v + ωT ) − C

2Of course, this affects the choices of C’s, but they will all be fixed eventually.
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with Ric = Ric(ω̃t).

At this moment, let’s finally restrict ourselves to the case of T = ∞ as for
Theorem 1.1. Then we have

v =
∂u

∂t
+ u, Ric = −

√
−1∂∂̄v − ω∞.

Now the previous estimation can be continued as follows,

(Ric,
√
−1∂∂̄v) + ∆φ > (Ric,

√
−1∂∂̄v + ω∞) − C

= −|
√
−1∂∂̄v + ω∞|2 − C

> −(1 + ǫ)|
√
−1∂∂̄v|2 − C · |ω∞|2 − C,

where ǫ is a small positive number. As φ = 〈ω̃t, ω∞〉 6 C and ω∞ > 0, which
give |ω∞|2 6 C, one finally arrives at

(Ric,
√
−1∂∂̄v) + ∆φ > −(1 + ǫ)|∇∇̄v|2 − C.

If T = ∞, we also have ∆v = −R − φ 6 C, and so the numerator and
denominator of Φ can both be positive and bounded away from 0. We only
want to make sure that the numerator can not be too large.

Let’s continue the computation for Φ,
(

∂

∂t
− ∆

)

Φ 6 C + C · (C − ∆v) +
(1 + ǫ)|∇∇̄v|2

C − v
− 2Re

(

∇Φ,
∇v

C − v

)

.

Now we need the computation for Ψ before, but from a slightly different
point of view. There is no need to involve ǫ now. Also, it is already known that
|∇v| 6 C. Basically from (3.6) and (3.7), we get the following inequality,

(

∂

∂t
− ∆

)

(Ψ + φ) 6 C − |∇∇̄v|2
C − v

− 2Re

(

∇(Ψ + φ),
∇v

C − v

)

.

Combining the two inequalities above and choosing ǫ small enough, we get
(

∂

∂t
− ∆

)

(Φ+2Ψ+2φ) 6 C+C·(C−∆v)−C·|∇∇̄v|2−2Re

(

∇(Φ + 2Ψ + 2φ),
∇v

C − v

)

.

Using the inequality above, one only needs to observe

|∇∇̄v|2 > C(∆v)2 > C(C − ∆v)2 − C

to carry through the Maximum Principle argument for Φ + 2Ψ + 2φ. Hence we
can conclude that Φ 6 C, and so

−∆v 6 C,

which is equivalent to R 6 C as φ is bounded for our concern.
The uniform lower bound for scalar curvature is classic as in [7], and we have

finished the proof of Theorem 1.1.
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4 Remarks

Of course, Theorem 1.1 would imply the uniform bound of scalar curvature for
the limiting metric (in the regular open dense part), which is a rather trivial
result as the limiting metric is Kähler-Einstein in this case. The (local) conver-
gence is treated in [8].

In surface case, the limiting metric is an orbifold Kähler-Einstein metric,
which is more than just a metric with bounded scalar curvature over the regular
part. For general dimension, hopefully this scalar curvature bound along Kähler-
Ricci flow would be helpful to improve our knowledge on the limiting (singular
Kähler-Einstein) metric itself.

Recently, the result here has been applied by Yuguang Zhang to provide an
alternative proof of the classic Miyaoka-Yao Inequality using flow construction
(see [10]).

In sight of the argument for bounded diameter in [6], one might want to
get similar result for our case. There is a quite involving issue that our flow
corresponds to the infinite time case for the Ricci flow (before rescaling) and so
Perelman’s W -functional won’t be as effective for us.

One might think of applying these computations for more general flows as
introduced by H. Tsuji in [9] and discussed a little more in [8] and [12]. More
importantly, try to use them for this flow discussed above for finite time singu-
larity case as the last part of the argument only works now for T = ∞ so far.
This is very interesting and also challenging. In fact, for the case of finite time
singularity, the situation is very different. We can already show the blow-up
of scalar curvature when approaching the finite singular time. The argument
makes use of our flow computation and the characterization of Kähler cone by
Demailly and Paun (in [3]). This, together with more discussions for finite time
singularity, would be included in a paper of continuation [13].

References

[1] Cao, Huaidong: Deformation of Kaehler metrics to Kaehler-Einstein metrics
on compact Kaehler manifolds. Invent. Math. 81(1985), no. 2, 359–372.

[2] Chau, Albert: Convergence of the Kähler-Ricci flow on noncompact Kähler
manifolds. J. Differential Geom. 66 (2004), no. 2, 211–232.

[3] Demailly, Jean-Pierre; Paun, Mihai: Numerical characterization of the
Kähler cone of a compact Kähler manifold. Ann. of Math. 159 (2004), 1247–
1274.

[4] Philippe Eyssidieux; Vincent Guedj; Ahmed Zeriahi: Singular Kähler-
Einstein metrics. ArXiv, math/0603431.

[5] Kolodziej, Slawomir: The complex Monge-Ampere equation and pluripoten-
tial theory. Mem. Amer. Math. Soc. 178 (2005), no. 840, x+64 pp.

10



[6] Sesum, Natasa; Tian, Gang: Bounding scalar curvature and diamater along
the Kähler Ricci flow (after Perelman). J. Inst. Math. Jussieu 7 (2008), no.
3, 575–587. 53C44.

[7] Song, Jian; Tian, Gang: The Kähler-Ricci flow on surfaces of positive Ko-
daira dimension. Invent. Math. 170 (2007), no. 3, 609–653.

[8] Tian, Gang; Zhang, Zhou: On the Kähler-Ricci flow on projective mani-
folds of general type. Chinese Annals of Mathematics - Series B, Volume 27,
Number 2, 179–192.

[9] Tsuji, Hajime: Degenerated Monge-Ampere equation in algebraic geome-
try. Miniconference on Analysis and Applications (Brisbane, 1993), 209–224,
Proc. Centre Math. Appl. Austral. Nat. Univ., 33, Austral. Nat. Univ., Can-
berra, 1994.

[10] Zhang, Yuguang: Miyaoka-Yau inequality for minimal projective manifolds
of general type. ArXiv:0812.0462(math.DG)(math.AG).

[11] Zhang, Zhou: On Degenerate Monge-Ampère equations over closed Kähler
manifolds. Int. Math. Res. Not. 2006, Art. ID 63640, 18 pp.

[12] Zhang, Zhou: Degenerate Monge-Ampere equations over projective mani-
folds. PHD Thesis at MIT, 2006.

[13] Zhang, Zhou: Scalar curvature behavior for finite time singularity of
Kähler-Ricci flow. ArXiv:0901.1474(math.DG).

11


