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ABSTRACT. This article addresses the problem of prescribing the scalar cur-
vature in a conformal class. (For the standard conformal class on the 2-sphere, 
this is usually referred to as the Nirenberg problem.) Thanks to the ac-
tion of the conformal group, integrability conditions due to J. L. Kazdan and 
F. W. Warner are extended, and shown to be universal. A counterexample to 
a conjecture by J. L. Kazdan on the role of first spherical harmonics in these 
integrability conditions on the standard sphere is given. Using the action of 
the conformal groups, some existence results are also given. 

O. Statements of results. Recently, the study of functions which, on a con-
nected Coo n-manifold M without boundary, are scalar curvatures of complete 
Riemannian metrics has drawn special attention among both analysts and geome-
ters. Decisive steps were taken by J. L. Kazdan and F. Warner (cf. [7J for an update 
with bibliography), R. Schoen and S. T. Yau (cf. [16]), and M. Gromov and H. B. 
Lawson (cf. [6]). Nevertheless, one among the oldest questions related to scalar 
curvature functions remains unsolved, the Nirenberg problem, namely "describe all 
curvature functions on the 2-sphere conformal to a standard one." In this article, 
we shall address this problem. Since it concerns the most familiar compact man-
ifold 8 2 with its standard conformal class, it was expected to be a simple case of 
the more involved problem: "On a complete n-dimensional manifold, describe the 
scalar curvature functions in a given conformal class." (For recent developments 
on the subject, see [2, 4 and 5], and the announcement [15J by R. Schoen of the 
solution of the Yamabe conjecture.) 

In [13], J. Moser showed that any antipodally symmetric function on 8 2 which 
is positive somewhere is the curvature of a metric in the standard conformal class. 
This result relies on a sharp form of a refined Sobolev estimate due to N. Trudinger 
(cf. [17]). A little later (cf. [8]), J. L. Kazdan and F. Warner showed that, even if 
they were positive somewhere (as made necessary by the Gauss-Bonnet theorem), 
monotonic functions of the distance to a point were forbidden as curvature func-
tions. This followed from an identity satisfied by first spherical harmonics on 8 2 , 

which, when correctly stated, generalized to the n-sphere 8n . More recently, T. 
Aubin pushed further sharp Sobolev estimates for constrained functions by con-
sidering certain submanifolds of the Sobolev space H 1(M). In this way, in [1], he 
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724 J. P. BOURGUIGNON AND J. P. EZIN 

obtains some new existence results of a rather intricate nature, solving Nirenberg's 
problem "up to" a first spherical harmonic. 

The main results contained in this article are the following. The identity due 
to J. L. Kazdan and F. Warner alluded to above is shown to be rather universal. 
(This is our Theorem II.9.) On any compact n-manifold M, an identity ties together 
curvature functions and conformal vector fields as follows: for any conformal vector 
field X of a Riemannian metric g, the scalar curvature Sg satisfies 

(Here, Vg is the volume element of the metric g.) Its proofrelies on defining properly 
an action of the group of conformal transformations on the space of functions, then 
showing that the scalar curvature mapping nicely intertwines this action and the 
standard action. (This is done in §II.) It generalizes the Kazdan-Warner relation 
in two ways, firstly to a general Riemannian manifold, and secondly to the whole 
Lie algebra of conformal vector fields. (The gradients of first spherical harmonics 
generate only one part of the conformal Lie algebra of the standard sphere, the 
missing part corresponding to isometric vector fields.) 

This last point turns out to be crucial in the next result we present in this 
paper, namely the existence of new forbidden functions on the standard sphere. 
These functions are not obstructed by the Kazdan-Warner conditions. (See §III, 
and the Appendix for details on the construction.) They disprove the conjecture 
made on p. 187 of [7]. This suggests that Nirenberg's problem is more connected 
with conformal transformations than merely with first spherical harmonics. The 
standard conformal class on the sphere appears then as special because it is the 
only one with a noncom pact automorphism group. (This was proved independently 
by J. Ferrand, cf. [11], and by M. Obata, cf. [14], and is known as the solution of 
the Lichnerowicz conjecture.) 

To underline the role of conformal transformations, we take up T. Aubin's re-
finement of Sobolev inequalitites for constrained functions. In particular, we give 
some new existence results, such as the occurrence of certain third order (or more 
generally any order larger than one) spherical harmonics as curvature functions in 
the standard conformal class of the sphere 8 2 • This is done in §IV. (Notice that 
the case of even order spherical harmonics is covered by J. Moser's result.) 

To summarize, our contribution to Nirenberg's problem is to show that it is 
indeed much more complicated than expected, the forbidden functions being very 
likely quite numerous. On the other hand, the action of the conformal group which 
is one of our main tools in this article can be of help in discussing it. 

The authors thank J. L. Kazdan for discussions on the subject matter of this 
article, and J. Lafontaine for comments on a first draft. 

I. A quick review of conformal transformations. 
I.1 Let M be a smooth compact n-dimensional manifold without boundary. We 

say that two metrics 9 and g on Mare conformally equivalent if there exist a 
diffeomorphism 'P and a positive smooth function p such that 

(I.2) 
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If in (1.2), cp can be taken to be the identity, we say that 9 and 9 are conformally 
related. We denote by G = [g] the conformal class of g, i.e., the set of metrics 
conformally related to g. 

1.3 A conformal transformation of 9 is a diffeomorphism cp of M such thatcp*g 
and 9 are conform ally related. We denote the set of those transformations by 
C(M, G) since it is obvious that it is an invariant of the conformal class G of g. It 
is a classical fact (cf. [10, p. 310]) that C(M, G) is a finite dimensional Lie group. 
The only compact manifold on which one finds a conformal class with a noncom pact 
group of conformal transformations is the sphere sn for any of the conformal classes 
defined by metrics of constant sectional curvature. 

1.4 We take as definition of a conformal vector field on a Riemannian manifold 
(M, g) that it is a vector field X whose flow (~t )tER is made of conformal transfor-
mations. If the diffeomorphisms ~t are isometries of the metric g, the vector field 
X is said to be a Killing field (or an infinitesimal isometry). 

Conformal vector fields form a Lie algebra c!:(M, G). It is a Lie subalgebra of the 
Lie algebra T M of vector fields of M. For M compact, c!:(M, G) is the Lie algebra 
of C(M,G). 

One easily sees that the differential operator Ig defined on TM whose kernel is 
c!:(M, G) takes its values in g-traceless symmetric 2-tensor fields, and is defined as 
follows 

(1.5) ,g(X) = Lxg - (2/n)(divg X)g. 

(Here, Lx denotes the Lie derivative operator with respect to X and divg the di-
vergence operator given by (div 9 X)vg = LXVg for the Riemannian volume element 
vg .) 

Notice that the notion of a g-traceless symmetric 2-tensor field only depends on 
the conformal class G. 

1.6 The operator Ig has a nice behavior in the conformal class G, namely, for 
9 = p2g, 

(I. 7) 2 Ig = Pig' 

(The proof of (1.7) is straightforward, and left to the reader. Notice also that 
divg = divg + ndlog p.) 

From this property, it is clear that the kernel of Ig remains indeed constant when 
9 varies in the conformal class. 

1.8 The conformal Lie algebra of the standard conformal structure on sn that 
we denote by C!:( sn, C) splits as the direct sum 

where Dn+1 is the Lie algebra of the orthogonal group On+l corresponding to 
Killing fields of the metric c and l,pC!:n+l is an (n + I)-dimensional vector space 
which can be identified with the space of gradient vector fields of first spherical 
harmonics of (sn, c). The decomposition above defines a Z2-grading of C!:(sn, C). 

In C!:(sn, C), elements of l,pC!:n+l are orthogonal to Killing fields with respect to 
the global scalar product. This is why we call them purely conformal vector fields. 

Using geodesic coordinates (e, r) on (sn, c) (r denotes the geodesic distance to 
a point chosen as north pole and e a point on the equator), one easily shows that 
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726 J. P. BOURGUIGNON AND J. P. EZIN 

the flow (~t)tER of a purely conformal vector field is given by 

~t (flo, ro) = (00 , 41r-1ro Arctan e- t ). 

1.9 We derive a skew action of the conformal group on the space 1M offunctions 
on M by identifying 1M with the conformal class G. Of course, this means that 
we made a choice of a background metric 9 in the conformal class. First, for <p in 
C(M, G) we set 

for n = 2, 
for n 23, 

We now have the formulas: 

<pO (g) = e202 (cp) g, 
<p*(g) = (an(<p))4/(n-2)g. 

for n = 2, 

for n 2 3, 

(<p, e2u g) f-+ <p*(e2u g) = e2(UOCP+02(CP))g; 
(<p, u4/(n-2)) f-+ <p*(u4/(n-2)g) = ((u 0 <p)an(<p))4/(n-2)g. 

It will be convenient to denote this action by ° n, so that u ° 2 <p = U 0 <p + a2 (<p ) 
and u On <p = (u 0 <p)an(<p) if n 2 3. 

The linearized action is now given by the following lemma, the proof of which is 
straightforward. 

1.10 LEMMA. If (~dtER is the flow of a conformal vector field X, then, for 
any smooth function u (u> 0 ifn 2 3), 

:t (u °2 ~dlt=O = X . u + ~divg X, 
d n- 2 . 
dt (u On ~dlt=o = X . u + ~(dlvg X)u if n 2 3. 

II. A conservation law in a conformal class involving the scalar cur-
vature. 

11.1 Let 9 and 9 be two conformally related metrics. For questions involving the 
scalar curvature that we are going to consider, it is convenient (and classical) to 
write the conformal factor as we did in 1.9 in the following way: 

(II.2) { 
p = eU for n = 2, 
p = u2/(n-2) with u > 0 for n 2 3. 

If Sg denotes the scalar curvature of the metric g, one then has the classical 
formulas (see [14] for details) 

(II.3) { 
Sg = (2~gu + sg)e-2u 

s- = (4 n - 1 ~ u + S u) u-(n+2)/(n-2) 
9 n-2 9 9 

for n = 2, 

for n 2 3 

(where ~g denotes the Laplace-Beltrami operator attached to the metric g). 
II.4 We are thus led to introduce the family of quasi-linear differential operators 

Fn on the space 1M of smooth functions defined as 

F2(U) = e-2U(2~gu + Sg), 

Fn(u) = u-(n+2)/(n-2) (4 n - 1 ~gU + sgu) for n 2 3. 
n-2 
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For any function U viewed as sitting in the tangent space TulM, the directional 
derivative U . Fn is given by 

(II.5) 

(n 2 3). 

II.7 LEMMA. The divergence of a conformal vector field X satisfies the identity 

(II.7) ~g(divg X) = n ~ 1 Sg divg X + 2(n ~ 1) X . Sg. 

11.8 Formula (II.7) can be found in [12, p. 134]. Notice that an alternative proof 
follows by considering the linearizations of the maps Fn at u == 0 for n = 2, and at 
u == 1 for n 2 3, since 

d d 
dt (se;(g))lt=o = dt (Sg 0 ~t)lt=o = X· Sg 

where (~dtER denotes the flow of the conformal vector field X. 

II.9 THEOREM. For any conformal vector field X on a compact Riemannian 
manifold (M, g), the following identity called (N x) holds 

(11.9) 1M X . Sg Vg = O. 

(Here, Sg denotes the scalar curvature of the metric g.) 

PROOF. The statement is about conformal classes of metrics on the compact 
manifold M. It is convenient to treat separately the cases n = 2 and n 2 3. 

IUO The case n 2 3 follows directly by integrating (II. 7) against Vg since the 
left-hand side gives 0 and the right-hand side fM X . SgVg with the coefficient 
(n - 2)/2(n - 1) which is not zero in the case at hand. 

11.11 The case n = 2 is more delicate. A rough idea of the proof is to use the fact 
that the map F2 intertwines the ordinary action and the action ° 2 of the conformal 
group on the space of functions. Notice that this fact was already behind the proof 
of Lemma II.7 which solved the case n 2 3. 

We take a metric go as origin of a conformal class, and we use a subscript 0 for 
all objects attached to it. 

If g = e2ugo is a metric conformally related to go, then Sg = F2(U). 
If cp is a conformal transformation, then 

F2(u 02 cp) = Scp*(e2Ugo) = F2(U) 0 cpo 

We evaluate the derivative for the flow (~dtER of a conformal vector field at t = 0 

! (F2(U 02 ~d)lt=o = (:t (u 02 ~t)lt=o . F2) (u) = X . Sg' 

hence, 

X· Sg = 2 ( ~o (X. U + ~diVO X) - (X. U + ~diVO X) (2~ou + SO)) e-2u . 
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Since M is compact, one can integrate this identity against Vg, the volume ele-
ment of g. (Recall that Vg = e2uvo.) We get 

1M X· SgVg = - 41M X· u~ouvo - 2 1M soX· UVo 

- 2 1M divo X ~ou Vo - 1M So divo X Vo, 

and after integrating by parts 

1M X . SgVg = - 4 1M X . U ~ou Vo + 2 1M divo X SoU Vo + 1M U X . So Vo 

- 2 1M ~odivoXuvo + 1M X· SOVo· 

Now, taking account of identity (11.7) leaves us with 

1M X . Sg Vg - 1M X . So Vo = -4 1M X . U ~ou Vo· 

We shall show in Lemma II.I2 (a slight extension of (8.3) in [8] that we present 
below) that the integral on the right-hand side vanishes. Therefore, the integral 
fM X· SgVg does not depend on a metric in the conformal class. Two cases are then 
to be consider. Either the connected component of the identity of the conformal 
group Co(M, G) is compact, hence one can find a metric gl within the conformal 
class admitting it as a group of isometries. It is then clear that X· Sgl = 0 , and 
the integral vanishes. Or Co(M, G) is noncompact, and by the theorem of Obata-
Ferrand (M, G) is the standard conformal sphere (82 , C). The integral vanishes 
also in this case, since Se == 2. 0 

11.12 LEMMA. For any conformal vector field X and any smooth function u 
on a compact surface M, one has 

(II.I2) 1M ~gU (X· u) Vg = O. 

PROOF. It is based on the conformal invariance of the Dirichlet integral 
fM g-l(du, du)vg. (We deliberately wrote g-l the metric on I-forms to empha-
size that for a metric e2u g the square norm of a I-form is multiplied by e2u .) We 
now let a conformal flow act 

1M g-l(du, dU)Vg = 1M e-2cx2U;tlg-1(du, du)e2cx2(~tlVg 

= 1M (~;g)-l(du, du)v~;g 

= IMg-1(d(uo~-t),d(uo~-t))Vg. 

Taking the derivative of this identity at t = 0 gives Formula (II.I2). 0 
II.I3 REMARK. Another proof of Theorem II.9 can be found in [4]. This other 

proof explains why the cases n = 2 and n ~ 3 behave so differently. Also, it shows 
that formula (II.9) is one among an infinite family of conservation laws attached to 
the conformal group. 
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1I.14 Theorem 11.9 is the proper generalization of the Kazdan-Warner integra-
bility condition (cf. [8]) which was valid for the pure conformal vector fields of the 
standard conformal sphere. We see that it is by no means a special identity due to 
peculiarities of the sphere, but truly a universal relation. 

III. Forbidden functions attached to a conformal class. New exam-
ples. 

111.1 We fix a conformal class G on a compact manifold M. We say that a smooth 
function u is forbidden if u cannot be the scalar curvature of a metric belonging to 
G. 

It follows trivially from Theorem 11.9 that a function u for which there exists a 
conformal vector field X so that for any metric g in G J M X . U Vg i- 0 is forbidden. 
Since Vg can be any positive density, this will be a priori so only if X . u keeps a 
fixed sign on M. Notice though that this can never be the case when Co(M, G) is 
compact, since then all conformal vector fields X can be made Killing fields for the 
same metric go in G, and for the volume element Vo of go 

1M X· UVo = - 1M udivoXvo = 0 

since divo X = O. Therefore, (11.9) provides forbidden functions only on (sn, C), 
although it is an integrability condition for all (M, G). 

III.2 By its very definition, the set of forbidden functions attached to a conformal 
class G is invariant under the conformal group C(M, G). 

Notice also that if u has been shown to be forbidden by condition (11.9) in the 
obvious way that we presented above, the same is true for all functions X 0 u where 
X is a monotonic function on the real line. 

111.3 The main point we would like to make in this section is that in condition 
(11.9) conformal vector fields other than purely conformal ones have also to be taken 
into account. We illustrate this point by giving a counterexample to a conjecture 
of J. L. Kazdan (cf. [7, p. 187]). In [8], the forbidden functions h + ho where h is 
a first spherical harmonic on sn and ho a constant were exhibited thanks to the 
condition (N<;;;,ch) (where \7gh denotes the gradient of h for the metric g). More 
generally, the condition (N<;;;,ch) prohibits all monotonic functions of the distance 
to the pole associated to h. 

To get new forbidden functions for the standard conformal class C on S2, we 
consider the vector field Xa = cos a \7c h + sin a Y where Y is the Killing field 
deduced from \7c h by a 7f /2-rotation which is obviously conformal. With our choice, 
\7C h and Y both vanish at the north and south poles. If we construct a function 
u so that Xa . u ~ 0 everywhere (Xa . u =j. 0), we get a new forbidden function 
because of the following lemma. 

111.4 LEMMA. The conformal vector field Xa is the gradient of a first spherical 
harmonic with respect to a metric belonging to C only if a = 0 (mod 7f). 

PROOF. Suppose that Xa = \7g k where \7g is the gradient operator for a metric 
9 = e2uc. We then have 

cos a \7c h + sin a Y = e-2u \7c k, 

which in a covariant form reads 
e2u(cos a dh + sin a YD) = dk. 
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(Here, we used II to denote the index lowering operator for C.) Therefore, by taking 
the exterior differential, 

2 du 1\ (cos 0: dh + sin 0: yl» = - sin 0: dyl> . 

In particular, at the north and south poles where dh and Y vanish, we have 
sin 0: dyl> = O. If sin 0: =I- 0, this says that at the north and south poles DY = 0 
where D denotes the Levi-Civita covariant derivative. (Indeed, the symmetric part 
of DY vanishes since Y is a Killing field, and the previous equation precisely says 
that the skew-symmetric part of DY vanishes at those points.) 

But, along any geodesic the Killing field Y satisfies the Jacobi equation, hence 
vanishes on the whole sphere, a contradiction. 

IlL5 We now claim that one can construct a function f with support in a small 
ball away from the poles so that h + f is forbidden by the conformal vector field 
Xc> for some angle 0:, 0 < 0: < 7r /2, because 

Xc>' (h + f) = sino: y. f + cos 0: c(\7ch, \7c f) + cos 0: c(\7ch, \7ch) 

keeps a fixed sign on 8 2 • The rough idea is to take f to be the height function 
for a cone with basis the small ball mentioned above and with vertex appropriately 
placed. Since the construction is a bit technical, we detail it in an appendix. 

Therefore, we proved the following theorem. 

II I. 6 THEOREM. There are forbidden functions attached to the standard con-
formal class of 8 2 which are not obviously forbidden by the condition (N x) where 
X varies amongst gradients of first spherical harmonics. 

IIL7 REMARKS. (i) It may be that, by considering the relative measure of the 
sets of 8 2 where the functions c(\7c h, \7c (h + f)) and Y . f are respectively positive 
and negative, one might deduce that condition (NVch) is necessarily violated. This 
seems to be difficult to put to work. 

(ii) Our construction, suitably modified, generalizes to higher dimensional 
spheres. The only point to clarify is what happens to Killing fields when going 
from even-dimensional spheres to odd-dimensional spheres. One must allow the 
Killing field Y to have two curves of zeroes. We do not detail this here. 

IV. Some remarks on the images of the maps Fn. 
IV.1 We pointed out in lI.ll that the map F2 intertwines the actions 02 and 0 

on functions. It is straightforward to show that for n 2: 3 one has, for any positive 
function u and any conformal transformation cp, 

Fn(u On cp) = Fn(u) 0 cpo 

In particular, this shows that the orbit of the constant functions u == 0 for n = 2 
and u == 1 for n 2: 3 is {O:n(CP),CP E C(M,G)}. This orbit is mapped by Fn onto 
the ordinary orbit under C(M, G) of s, the scalar curvature of the metric g taken 
as origin of the conformal class. If g has constant scalar curvature, this orbit is 
reduced to the point {s}. A very special case of this is provided by taking g to be 
a metric with constant sectional curvature 1 in the standard conformal class C of 
8 n . 

The counterimage of Sc = n(n - 1) by Fn is reduced to the On-orbit of the 
constant function 1 if n 2: 3 or 0 if n = 2 as follows from a theorem of M. Obata 
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(cf. [14]), namely 
I V . 2 THEOREM. The conformal class of an Einstein metric on a compact Rie-

mannian manifold (M, g) contains no other metric with constant scalar curvature 
except if (M, g) is isometric to a standard sphere (sn, c). 

Here, we include a proof of it which is more transparent and follows the lines of 
thought of this article. 

PROOF. If Zg denotes the traceless part of the Ricci curvature of a Riemannian 
metric g, then 
(IV.3) 
where, for a symmetric 2-tensor field h, one remarks that 

n 

,;h(x) = -2 2)Dei h)(ei, x) 
i=I 

for any tangent vector x and orthonormal basis (ei). 
(The classical version of the second Bianchi identity for the full Ricci curvature 

rg is ,;rg = ((2 - n)/n). It is a trivial exercise to deduce (IV.3) from it since 
-1 ) zg=rg-n Sgg. 

We now notice that for two conform ally related metrics go and 9 = p-2 g0 , one 
has (cf. [14, p. 255]) 

Zg = ZgO + (n - 2)p-1,goCilgO p). 
If the metric go is Einstein, the expression simplifies, and one gets 

(n - 2)-1 Zg = p-1'goCil gO p). 
Therefore, 

(n - 2)-1,;Zg =,; [p- 1h go(\7g0 p))]. 
Since we assumed that 9 has constant scalar curvature, thanks to (IV.3), we get 

,; [p- 1hgo (\7 g0 p))] = o. 
We now take the L2-inner product for the metric 9 of this identity with \7g0 p. 

We obtain 
( gh;(p-1,go(\7g0p)), \7g0 p)Vg = O. isn 

Using relation (1.7) to the effect that ,g = p-2,gO and the definition of the adjoint, 
we end up with 

( p-1ghg(\7g0p)"g(\7g0p))Vg = O. isn 
Since p > 0, this ensures that ,g(\7g0 p) = O. Therefore, Zg == 0, and 9 is an 
Einstein metric. Notice that this finishes the proof of Obata's theorem since (sn, c) 
is conformally flat. 

In the more general case, we notice that, according to (11.7) the function p is an 
eigenvalue of the Laplacian of the metric 9 for the eigenvalue sgo/(n -1), hence, by 
the Lichnerowicz-Obata theorem, the Einstein metric go is isometric to c on sn. 0 

IV.4 Besides the case of constant functions whose orbits by the conformal group 
are degenerate to a point, hence cannot be of much help to describe the image of the 
maps Fn, the orbits under the action by C(S2, C) allow us to prove the following 
result. 
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IV.5 PROPOSITION. Any smooth function on 8 2 which is positive somewhere 
belongs to the Lp-closure of the image of F2 for all p ~ 1. 

PROOF. Suppose u is a smooth function positive at m that we take to be the 
north pole on 8 2 . For any c: > 0, there exists a conformal transformation 'P of 
(82 , C) which maps the cap BT/+7r /2 of radius 'TJ + 7r /2 containing the northern 
hemisphere of 8 2 into a ball centered at m whose volume is less that c:. (Compare 
for example with the formula in 1.8.) 

We now set 
u = u on 8 2 - 'P(BT/+7r/2); 
u = u 0 'P 0 T 0 'P- 1 on 'P(B-T/+7r/2) 

where T is the antipodal map on 8 2 ; along the geodesic through m, u interpolates 
linearly for the 'P. c-distance between its values on the boundaries of the balls 
'P(BT/+7r/2) and 'P(B-T/,,/2) for the rest of 8 2 • 

By construction, the function u is continuous, invariant under the antipodal map 
'P 0 T 0 'P- 1 of the metric 'P·c. 

Moreover, 

Ilu - ulltp = l lu - ul P :s; 2Pllull~oC:. 
B'1+,,/2 

One can then find a smooth function u invariant under the antipody of the 'P·c-
metric c:-close to u in the CO-topology. Therefore, u is positive somewhere. By J. 
Moser's theorem, u is the curvature of some metric on 8 2 conformal to 'P·c, hence 
to c. Clearly, the distance in the LP-norm between u and u can be made arbitrarily 
small. 0 

IV.6 In [1], T. Aubin shows that any function on 8 2 which is positive some-
where belongs to the image of F2 provided one adds to it some first order spherical 
harmonic i.e., an eigenfunction for the lowest eigenvalue of a standard metric. We 
show in the next theorem that the first spherical harmonics do not play any specific 
role with respect to this problem. 

IV.7 PROPOSITION. Let f be a smooth function on 8 2 which is positive some-
where. Then, for any p ~ 1 there exists at least one spherical harmonic of order p, 
say h (p) (I), so that f + h (p) (I) belongs to the image of F2· 

PROOF. We do not duplicate the arguments in [1]. To prove that the equation 
f + h (p) (I) = F2 (u) admits a solution, we only need to show that for each p (p ~ 1), 
one can find a set (h~p)) of spherical harmonics of order p which form an admissible 
set. (This means that the hi'S change sign, and that 2::i Ih~p) I > 0 at each point 
of the sphere.) This is done in Lemma IV.8. In such a case, the best constant in 
Trudinger's extension of the Sobolev inequality can be cut in half, and the direct 
variational method works on a submanifold of the Sobolev space Hl defined by 
constraints involving the admissible set. 

IV.8 LEMMA. For any p ~ 1, the space Vp of spherical harmonics of order 
p on the sphere 8 2 contains a subspace of dimension 3 whose elements do not all 
vanish at the same point. 

PROOF. As is well known, the spaces Vp are irreducible representation spaces of 
0 3 , the isometry group of (82 , c). In each Vp , there are some special eigenfunctions 
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which depend only on the distance to some point. (E. Cartan calls them the zonal 
eigenfunctions.) We call this point the pole of the zonal function considered since 
its antipodal point plays the same role. These functions form an orbit of 0 3 , 

parametrized by the action on the poles. For each p, the set of zeroes of a zonal 
spherical harmonic of order p is exactly a union of p circles of radii (rih:Si:Sp all 
centered at the pole. By fixing arbitrarily two such poles, one is left with at most 
finitely many common zeros, say (mj h:SJ:SN, for the two zonal spherical harmonics 
hlP) and h~p). If any other zonal spherical harmonic of order p has a common zero 
with hip) and h~p), this would mean that the function m f---t TIi,j(d(m,mj) - ri) 
is identically zero, a contradiction. (Here, d denotes the distance between two 
points.) 0 

IV.9 COROLLARY. For any p 2 2, there are spherical harmonics of order p 
which are in the image of F2 . 

IV.lO REMARKS. (i) Of course, as we said in 0.3, all spherical harmonics of even 
order are in the image of F2 by J. Moser's theorem. 

(ii) What makes the first spherical harmonics special is the fact that one needs 
a basis of them to define an admissible set, hence leaving no place to solve this 
equation with f a first spherical harmonic. 

(iii) It is interesting to remark that the set of forbidden functions has no linear 
structure. Namely, if f is a first spherical harmonic and tp a conformal transforma-
tion, then by T. Aubin's theorem there is some first spherical harmonic MI) (J 0 tp) 
so that fotp+h(1)(jotp) lies in the image of F2 although both fotp and h(1)(jotp) 
are forbidden functions. 

A. Appendix. 
A.O The function f quoted in III.5 is a smoothing of the height function fa of a 

cone with circular basis and with an appropriately placed vertex. 
A.l We work in a Euclidean 2-dimensional space (R 2, e) tangent to 52 at some 

point and we approximate \lch (where h is a first spherical harmonic on 52) by a 
constant vertical vector field, i.e., the Euclidean gradient of the linear function ky 
in that plane for some real number k. This is because we think of our construction 
as being done in a small ball. In the (x, y)-plane, we call B the projection of the 
vertex A of the cone. The point B has polar coordinates (b, {3), a point p, on the 
boundary circle (r, B). 

A.2 The gradient of fa lies tangentially to the cone, hence at each point P it is 
collinear to the segment joining P to the vertex A and points towards A. Moreover, 
its norm which is constant along this segment measures its slope. If a denotes the 
height of the cone, one has \le fa = a ;4./1 p,A 1 2 so that its components in the 
(x, y)-plane are 

( r cos B - b cos {3 r sin B - b sin {3 ) 
a r2 + b2 _ 2brcos(B - {3)' a r2 + b2 - 2brcos(B - {3) . 

We want to control the sign of the function z = ke(\le y , \le(ky + fa)) in the 
following sense. We want this function to change sign (as we want the function 
c(\lch, \lC(h + J)) not to be obviously forbidden by condition N('\jch)), but we still 
want to be able to find a vector field X~ = k( cos 0: (a / ay) - sin 0: (a / ax)) so that 
XO . (ky + fa) keeps a fixed sign. 
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A.3 Therefore, we must study how the function 

z(O)=ak rsinO-bsin(3 +k2 
r2 + b2 - 2brcos(O - (3) 

depends upon the parameters a, b, k and (3. For that purpose, it is useful to look 
at Figure 1. 

We want the function z to achieve its minimum in a small region .4- located to 
the right of the y-axis going through B, the constant k being taken large enough 
so that z is positive elsewhere. We are thus led to compare the coordinates of the 
point Pm on the circle where z achieves its minimum to those of the point C on the 
base circle with y-coordinate bcos (3. We must have the polar coordinates (r, Om) 
of J.lm satisfy r cos Om > bcos (3. 

A.4 We know that (r, Om) are solutions of the equation 

(r2 + b2 cos 2(3) cos Om + b2 sin 2(3 sin Om - 2br cos (3 = O. 

This relation can also be written 

rcos Om - bcos (3 = b (cos (3 - ~ cos(2(3 - Om)) . 

The condition we mentioned before (r cos Om > b cos (3) will therefore be satisfied 
if cos (3 > blr, a possible explicit value being (3 = rr/4, blr = !. 

In such a case, by choosing appropriately k and a, z will be negative in a small 
zone .4- around the minimum whose size can be made arbitrarily small. Therefore, 
the vector field V'e (ky + fo) makes an angle less than rr 12 with B I By except on .4 - . 

A.5 To prove existence of the vector field X~, we analyse the situation in the 
four quadrants centered at B as shown in Figure 1. For each zone, we consider the 
direction in which the vector V'e(ky + fo) points. To distinguish between the affine 
quadrants (where points are located) and the vector quadrants (in which vectors 
point), we use respectively roman and arabic figures. 
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In zone II, \Je(ky + fo) belongs by construction to quadrant 1. Even more, since 
the y-component of \Je fo is far away from its minimum, in zone II, the y-component 
of \Je(ky+ fo), i.e., the function z, is bounded from below by some positive number. 
Hence, \Je(ky + fo) belongs to an angular sector containing the y-axis included in 
quadrant 1. 

In zone III, \Je(ky + fo) clearly belongs to the same angular sector of quadrant 
1 mentioned above. 

In zone IV, \Je(ky + fo) obviously belongs to quadrant 2. 
We now come to the more delicate description of what happens in zone 1. In j/- , 

z is by definition negative, but by choosing appropriately k can be made arbitrarily 
small. On the other hand, since j/- lies strictly in zone I, the x-component of 
\Je(ky + fo) is bounded from above by a negative number. It then follows that 
\Je(ky+ fo) belongs to an angular sector as close as we like to the x-axis in quadrant 
3. Outside j/- in zone I, z is positive, hence \Je(ky + fo) belongs to quadrant 2. 

A.6 We therefore proved that one can indeed find an angle 0:, 0 < 0: < 7r /2, so 
that \Je(ky + fo) belongs to the upper-half plane making this angle with the x-axis. 
The function fo can be smoothed out while keeping its properties: at the basis 
of the cone by an ordinary radial mollification; at the tip of the cone, by using a 
vertex-centered mollification. 

A.7 To go from this Euclidean description back to 52 uses the uniform conver-
gence of the Riemannian geometry (both the metric and the gradient operator) to 
the Euclidean geometry when the size of a ball goes to zero. 

Notice though that the function that we produce is not small in absolute norm 
since the height of the cone a must be large enough to force the function z to have 
a negative minimum. 

A.8 It is clear from the construction that one can superimpose any finite family 
of such functions fo with small disjoint supports. This clearly provides an infinite 
family of new forbidden functions. 
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