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SCALAR   CURVATURE,  INEQUALITY  AND  SUBMANIFOLD

BANG-YEN   CHEN  AND   MASAFUMI  OKUMURA

Abstract. Using an inequality relation between scalar curvature

and length of second fundamental form, we may conclude that a

submanifold must have nonnegative (or positive) sectional curva-

tures. An application to compact submanifolds in obtained.

1. Statement of results.1 Let M he an «-dimensional submanifold of

an («+/>)-dimensional Riemannian manifold 7Y of constant sectional

curvature c, and let h and H he the second fundamental form and the

mean curvature vector field respectively. Let h*¡, i, j=l, ■••,«, oc=

«+1, • ■ • ,n+p, be the coefficients of the second fundamental form h

with respect to a local field of orthonormal frame et, • • •, en, en+1, ■ ■ ■ ,

e„+p. Then the square of length of second fundamental form, S, and the

scalar curvature, £, of M are given respectively by

n+v       n

(1) 5=2   IWif,
ot=n+l i,j=\

(2) R = n*H ■ H - S + n(n - \)c,

where dot "•" denotes the scalar product of vectors. A normal vector

field r¡ is said to be parallel if Dr¡=0 identically, where D denotes the

connection of the normal bundle. The purpose of this paper is to show

the following

Theorem 1. Let M be an n-dimensional submanifold of a Riemannian

manifold N of constant curvature c. If the scalar curvature £ satisfies

£ > (« - 2)S + (n - 2)(« - l)c
(3)
K ' (resp. £ > (« - 2)5 - (« - 2)(« - l)e)

at a point p e M, then the sectional curvatures of M are nonnegative (resp.

positive) at p.
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© American Mathematical Society 1973

605

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



606 BANG-YEN   CHEN  AND  MASAFUMI  OKUMURA [May

Theorem 2. Let M be an n-dimensional compact submanifold of eucli-

dean (n+p)-space En+P. Then the mean curvature vector H is parallel and we

have R>(n — 2)S if and only if M is a hypersphere of a linear (zz+1)-

subspace of E"+p when « _t 3, and M is a minimal surface of a hypersphere

of En+P with positive Gaussian curvature when zz=2.

Remark 1. If the connection of the normal bundle is flat, zz>2, or

if the submanifold is a hypersurface, Theorem 2 was proved by one of

the present authors ([3], [4]).

2. Proof of Theorem 1. First we state the following lemma which is a

slight generalization of a lemma given in [4]. The method of the proofs

are quite the same.

Lemma. Let ax, • • • , an, b be n + l («_:2) real numbers satisfying the

following inequality :

(4)

1  n        \2 n

then, for any distinct i, j; 1 ̂ i<ij^n, we have

(5) lafi, ^ b\(n - 1)    (resp. ».

This lemma is proved in the following way: (4) can be rewritten as

■{2ai)an (n - 2)2 a? - 2 2 aiai + b(n - 2)a\ - 2\2,ai)an + ¡
¿=1 i<j<n

(resp. <). Denote the left-hand side by — r. Since an is real,

^0,

(n—l    \2

2«<)=(«2) (n

^ (zz - 2)

Hence we obtain

/n-l

2)2>?-2 2 a^ + b + r)
i=X i< 3 <n

n—1 /n—l     \2

«-1)2«?-   2«<   +b ■
¿=1 \i=l     /

(!«,)a<„-2,'!„;+(^), (rKp.».

Continuing the same process (zz—2) times, we obtain (5).

Substituting (2) into (3), we obtain

(6) n2H ■ H ^ (n - l)S - 2(zz - l)c    (resp. »    at p.

For simplicity we may choose a local field of orthonormal frame ex, ■ • • ,

?m 0*+i> ' ' ' ' en+v around p such that en+x is parallel to the mean curva-

ture vector H and elt • ■ ■ ,e„ axe in the principal directions of en+x at
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p e M. (If H=0 at p, we may choose an arbitrary en+1.) Then we have

(7)      (h?n= ) »*H-H= (fhi)   at p.

V     ' J
Thus we obtain from (6):

2 hi) > (n - 1) 2 h\ + (n - 1) 2    2 W - 2(« - l)c

(resp. >).
Applying the lemma to (8), we get

n+v n

2hlhj ̂22 (*w" -2c
a=n+2 7c. m=l

(9) ^ 2 K/1«>2 + Wi>* + Wfi -2c
a=n+2

72 + 13

> 2 2  WWi + (ÄS,)*] - 2c,
x=n+2

for any l^/'</"^« at/7. Thus the sectional curvature at p,

Ktj = 2 w*íí - c/»«)2] + c,

for the plane section spanned by et and e, is nonnegative (resp. positive).

This proves the theorem.

3. Proof of Theorem 2. Let M he an «-dimensional submanifold of an

(«+jp)-dimensional Riemannian manifold N of constant sectional curva-

ture c and r) be a parallel unit normal vector over M. If we choose the

local fields of orthonormal frame in such away that e,H1 = j7 and el5 • • • , e,t

are in the principal directions of e„+1, then we have

01

We assume that Tr Hn+1 is constant. Then a recent paper of Smyth [5]

gives the following formula:

do)       2Kr^Kr = 2 k„+2W
!.}'=1

(fc,   -   *,)',
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where Ali'lf1 denotes the Laplacian of the second fundamental form h^f1

in the direction of en+x. Now, suppose that M is an zz-dimensional compact

submanifold of En+P such that the mean curvature vector H is parallel

and R>in — 2)S. Then, by Theorem 1, we see that the sectional curvatures

of M axe all positive, that is, K,-¡>0 for 1 iïf</'^zz. Therefore, we see that

2, j hit1 A/z?/"1^. Hence we get

(11) X- A(Tr Hl+X) = 2 Kil Azzjf1 + 2 (*Sf¥ ^ 0.
i,$ i.i.Tc

By Hopfs lemma we see that /z^=0 and 2,-.3- /'Üí+1 Azz^'^O. Hence,

from (10) we have

(12) hx = ---=hn*0.

This shows that M is pseudo-umbilical in En+P and H is parallel. Hence,

we see that M is contained in a hypersphere 5"+"-! of En+P as a minimal

submanifold (see, for instance, [1]). Without loss of generality, we may

assume that Sn+P~l is of radius 1. Then, by the assumption, R>(n—2)S,

we see that the square of the length of second fundamental form of M in

S«+*-i} say S, satisfies

(13) S < zz/(zz - 1).

Therefore, by a result of Chern-do Carmo-Kobayashi [2], we find that

iF n_t3, then M must be totally geodesic in Sn+V~1. Hence M is a hyper-

sphere of a linear (n+ l)-subspace of En+P. If zz=2, then the condition

R>(n—2)S implies that the Gaussian curvature of M is positive. This

proves a part of the theorem. The remaining part is obvious.
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