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SECTIONAL CURVATURE OF
CONTACT CR-SUBMANIFOLDS OF AN
ODD-DIMENSIONAL UNIT SPHERE

Hyanc Sook KiM AND JIN SUK PAK

ABSTRACT. In this paper we study (n + 1)-dimensional compact
contact C'R-submanifolds of (n — 1) contact C'R-dimension im-
mersed in an odd-dimensional unit sphere §2™+1. Especially we
provide necessary conditions in order for such a submanifold to be
the generalized Clifford surface

S2PL(((2n1 +1)/(n + 1)) F) x §272 (202 +1)/(n + 1))

for some portion (n1,n2) of (n —1)/2 in terms with sectional cur-
vature.

1. Introduction

Let §2™+1 be a (2m+1)-unit sphere. For any point z € $?™! we put
¢ = Jz, where J denotes the complex structure of the complex (m +1)-
space C™*!. We consider the orthogonal projection 7 : T,C™*! —
T,S?m+1, Putting ¢ = mo.J, we can see that the aggregate (¢,£,7,9) is
a Sasakian structure on $?™+! where 1 is a 1-form dual to £ and g the
standard metric tensor induced on §2™*1. So §?™+! can be considered
as a Sasakian manifold of constant ¢-holomorphic sectional curvature 1,
that is, of constant curvature 1 (cf. 1, 2, 7]).

Let M be an (n + 1)-dimensional submanifold tangent to the struc-
ture vector field £ of $?™*! and denote by D, the ¢-invariant subspace
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T, M N ¢T, M of the tangent space T, M of M at z in M. Then & can-
not be contained in D, at any point z in M (cf. [4, 5]). Thus the
assumption dim D} being constant and equal to 2 at any point z in M
yields that M can be given with a contact C R-submanifold in the sense
of Yano-Kon [7], where D;- denotes the complementary orthogonal sub-
space to D, in T, M. In fact, if there exists a non-zero vector U which
is orthogonal to ¢ and contained in Dy, then ¢U must be normal to M.

In this paper we shall study (n+1)-dimensional contact C R-submani-
folds M of (n—1) contact C R-dimension immersed in $2™*! and, espe-
cially, provide necessary conditions in order that M is locally isometric
to a Riemannian product of My x M> in terms with sectional curvature,
where M; and M3 belong to some (2n; + 1) and (2n2 4 1)-dimensional
spheres.

Manifolds, submanifolds, geometric objects and mappings we discuss
in this paper will be assumed to be differentiable and of class C*°.

2. Preliminaries

Let M be a (2m+1)-dimensional almost contact metric manifold with
structure (¢,&,n,g). Then by definition it follows that

P*X =-X+nX)E, ¢£=0, n(¢X)=0, n¢) =1,
9(dX,9Y) = g(X,Y) —n(X)n(Y), n(X)=g9(X,$)

for any vector fields X, Y tangent to M. We consider a Riemannian
manifold isometrically immersed in M with induced metric tensor field g.

First of all we note that an n-dimensional submanifold normal to the
structure vector field & of M is anti-invariant with respect to ¢, that is,
¢TeM C T, M+ for each point x of M, and m > n (for details, see [7]).

In the sequel we assume that M is an (n+1)-dimensional submanifold
tangent to the structure vector field € of a (2m + 1)-dimensional almost
contact metric manifold M. We now denote by D, the ¢-invariant sub-
space defined by T,, MN¢T,, M and by D the complementary orthogonal
to D, in T, M. Then the structure vector field £ is contained in ’Di‘. In
fact, if £ € D,, then there is a vector field X tangent to M such that
& = ¢X, from which applying the operator ¢ and using (2.1), we have
X =n(X)¢. Thus it follows that £ = 0, which is a contradiction. Hence
¢ € D at each point = of M. Moreover by definition we can easily see
that ¢D} € T, ML for each point = of M.
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If the ¢-invariant subspace D, has constant dimension for x in M,
then M is called a contact C R-submanifold ([1, 7]) and the constant is
called contact CR-dimension of M([4, 5]). Especially, a contact C'R-
submanifold M of which contact CR-dimension is equal to dim M is
called an invariant submanifold (cf. [1, 7]). Real hypersurfaces tan-

gent to the structure vector field £ are typical examples of contact CR-
submanifolds.

3. Fundamental properties of contact C R-submanifolds

Let M be an (n+ 1)-dimensional contact C R-submanifold of (n — 1)
contact C R-dimension in a (2m + 1)-dimensional almost contact metric
manifold M. Then by definition dim D} = 2 for any z in M, and so
there is a unit vector field U contained in D+ which is orthogonal to &.
Since ¢D+ C TM+, ¢U is a unit normal vector field to M, which will
be denoted by N, that is,

Moreover, it is clear that ¢TM C TM & Span{N;}. Hence we
have, for any tangent vector field X and for a local orthonormal basis
{Ng, a=1,...,p} (p = 2m — n) of normal vectors to M, the following
decomposition in tangential and normal components:

(3.2) ¢X = FX +u*(X)Ny,
(3.3) ¢Ny = —Uy + PNy, a=1,...,p.

It is easily shown that F and P are skew-symmetric linear endomor-
phisms acting on T, M and T,M~, respectively. Since the structure
vector field ¢ is tangent to M, (2.1) implies

(3.4) g(FU,, X) = —u'(X)g(N1, PN,),

(3.5) 9(Ua,Us) = 605 — g(PN4, PNp).
We also have

(3.6) 9(Uq, X) = u' (X)b14

and consequently

(3.7) gU, X)=u'(X), Uy,=0, a=2,...,p.
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Furthermore from (3.2), it is clear that

(3.8) F¢=0, u'(¢)=0, FU=0, «'(U)=1.
Next, applying ¢ to (3.1) and using (2.1) and (3.3), we have

(3.9) Uy=U, PN, =0.

Applying ¢ to (3.2) and using (2.1), (3.2), (3.3), and (3.9), we also
have

(3.10) F?2X = - X +n(X)¢ + ' (X)U, u*(FX)=0.
On the other hand, it follows from (3.3), (3.7), and (3.9) that
(3.11) ¢Ny =-U, ¢Nou=PN,, oa=2,...,p
and moreover we may put
P
(3.12) PNy=) PogNs, a=2,..,p,
B=2
where (P,g) is a skew-symmetric matrix which satisfies
P
(3.13) > " PapPgy = ~0a.
B=2
We denote by V and V the Levi-Civita connection on M and M,
respectively and denote by V- the normal connection induced from V

in the normal bundle TM+ of M. The Gauss and Weingarten equations
are

(3.14) VxY =VxY +h(X,Y),
(3.15) VxNy = —A,X+V%N,, a=1,...,p
for any tangent vector fields X,Y to M. Here h denotes the second

fundamental form and A, is the shape operator corresponding to N,.
They are related by
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P
=Y g(AaX,Y)N,
a=1

Furthermore, we put
p
(3.16) ViNa = sag(X)Ng,
B=1

where (s,3) is the skew-symmetric matrix of connection forms of V.
Finally the equation of Gauss, Codazzi and Ricci are

g(I—%(X,Y)Z, W) =g(R(X,Y)Z, W)
(3.17) + 3 {9(4aX, 2)g(AaY, W)

— 9(AaY, Z)g(AaX, W)},

g(}_z(XaY)Z’ Na) = g((VXAa)Y - (VYAa)X7 Z)

(3.18) +> {9(AgY, Z)spa(X)
I

— 9(ApX, Z)spa(Y)},
(319) g(R-(Xa Y)Naa Nﬂ) = g(RJ—(Xa Y)Naa Nﬁ) + g([Aﬂa Aa]X7 Y)
for any tangent vector fields X,Y,Z to M, where R and R denote the

Riemannian curvature tensors of M and M, respectively, and R+ is the
curvature tensor of the normal connection V+ (cf. [2]).

4. The special case of an ambient Sasakian manifold M

In this section we specialize to the case of an ambient Sasakian man-
ifold M, that is,

vXé- = ¢X’
(Vx9)Y = —g(X,Y)E+n(Y)X.
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Then, by differentiating (3.2) and (3.11) covariantly and by comparing
the tangential and normal parts, we have

(4.3) (Vy F)X = —g(Y, X)¢ + n(X)Y — g(A1Y, X)U +u'(X)ArY,

(4.4) (Vyul)X = g(FAY, X),
(4.5) VxU=FAX
(4.6) g(ALU, X) Zsm )Psay, @=2,...,p

On the other hand, since § is tangent to M, (4.1) gives

(4.7) Vxé = FX,
(4.8) 9(A1€,X) = u!(X), that is, A€ =U,
(4.9) A=0,a=2,...,p

In what follows we assume that M is a Sasakian manifold of constant
curvature 1 and that Ny is parallel with respect to the normal connection
VL. Hence it follows from (3.16) that

(410) S18 =0, B=2,...,p,
which and (4.6) give
(4.11) AU =0, a=2,...,p

Next, since the curvature tensor R has the form
for X, Y, Z tangent to M, the equations (3.17), (3.18), and (3.19) imply

(4.12) + > {9(AaY, 2)g(AaX, W)}
- g(AOch Z)g(AaYa W)a

(4.13)(a) (VxA)Y — (VyA1)X =0,

P

(VxAa)Y = (VyAa)X =) {s5a(Y)ApX — s5a(X)AsY},

(4.13) 3 g2

a=2,...,p,
(4.14) [A1,A4,] =0, a=2,...,p

with the help of (4.10) and (4.11).
Finally weé introduce some lemmas for later use :
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LeEMMA 4.1. Let M be an (n+1)-dimensional contact C R-submanifold
M of (n—1) contact C R-dimension immersed in a Sasakian manifold of
constant curvature 1 and let the distinguished normal vector field N1 be
parallel with respect to the normal connection. Then the commutativity
condition

AlF - FA1

holds on M if and only if
VA =0.

Moreover, in this case
(4.15) A =u (A A + I, AU =€+ (AUU

and the function u'(A,U) is locally constant.

Proof. We first assume that VA; = 0. Differentiating (4.8) covari-
antly along M and using (4.5), (4.7), and VA; = 0, we can easily see
that A;F = FA{ holds on M.

The proofs of the converse and (4.15) have been given in [4, Lemma
5.1, p.433].

LEMMA 4.2. Let M be as in Lemma 4.1. Then

(4.16) FAL+ A F =0, trA,=0, a=2,...,p.

Proof. Differentiating (4.9) covariantly and using (4.7), we have
(Vx A+ A FX =0,
or equivalently
(4.17) 9(Vx ALY, &) + g(AFX,Y) =0

for any vector fields X, Y tangent to M. By means of (4.9) and (4.13)),
it can be easily verified from (4.17) that

(AeF + FA)X =0, a=2,...,p

hold on M. Inserting FX back into the above equation and using (3.10),
(4.9) and (4.11), we have A, X = FAL,FX, which implies tr4, = 0.
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5. Main theorems

In this section we assume that the ambient manifold is a (2m + 1)-
dimensional unit sphere $?™*!. Suppose that the distinguished normal
vector field N; is parallel with respect to the normal connection V+ and
that the trace of the shape operator A; vanishes, that is,

(5.1) tI‘Al = (.

Then, from (4.13)(,) and (5.1), we have

(52) Z(V,Al)e, = 0,

where {e;}i=1,...n+1 is an orthonormal basis of tangent vectors to M
and V; := V,,. Hence it follows from (4.13)(,) and (5.2) that

Y (ViVid))X = (R(ei, X)Ar)e;

for any vector X tangent to M, and consequently we have

(53) g(V2A1,A1) = Zg((R(ei,ej)Al)ei,Alej).

Thus we have

THEOREM 5.1. Let M be an (n + 1)-dimensional compact contact
C R-submanifold of (n — 1) contact C R-dimension immersed in S*™+1
and let the distinguished normal vector field Ny be parallel with respect
to the normal connection. Suppose that the trace of the shape opera-
tor A; in direction of N, vanishes and that the minimum of sectional
curvatures of M is zero. Then M is minimal and VA; =0on M.

Proof. The minimality of M is easily followed by our assumptions
and Lemma 4.2.
Taking account of the Laplacian of trA%, we have

/MIIVA1]|2*1=—/Mg(V2A1,A1)*1,

which together with (5.3) yields

(5.4) og/M ||VA1||2*1=—/ S o((Rles, e5) Ar)es, Areg) * 1.
M i,j
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Now we choose an orthonormal frame {e;} of M such that
A1€j=)\jej (]:1,,7’L+1)

Then it is clear that
Zg ezaeg Al)ezaAleg)

= Z{g 6176] AlezaAlej) (AlR(ei,ej)ei,Alej)}
2 Z (X = X;)" Kig,

where K;; denotes the sectional curvature of the plane section spanned
by {ei,e;}. Hence, if the minimum of the sectional curvature of M is
zero, the above equation and (5.4) imply VA4; = 0.

By means of Theorem 5.1 we can obtain the following theorem under
additional condition:

THEOREM 5.2. Let M be an (n + 1)-dimensional compact contact
CR-submanifold of (n — 1) contact C R-dimension in S*™*! and as-
sume that there exists an orthonormal basis { N1, No}q=2,...p of normal
vectors to M each of which is parallel with respect to the normal con-
nection. If the trace of the shape operator A, in direction of Ny vanishes
and if the minimum of sectional curvatures of M is zero, then there is
an (n + 2)-dimensional totally geodesic unit sphere S"*2 of $*™+1 such
that M C S™+2.

Proof. Under our assumptions it follows from Theorem 5.1 that
trAda =0, a=2,...p.

Moreover, it is clear from (4.13)(, that, for any vector fields X,Y
tangent to M,

(VxAa)Y — (VyAg)X =0

since so3 = 0, 1 < o, 8 < p, and consequently

Y (Vida)es =0,



786 Hyang Sook Kim and Jin Suk Pak

where {€;}i=1,....n+1 is an orthonormal basis of tangent vectors to M.
Taking account of the Laplacian of trA2 and using the quite similar
method as shown in the proof of Theorem 5.1, we can easily see that

(5.5) VxAa =0, a=2,...,p

for any vector field X tangent to M.
Differentiating (4.9) covariantly and using (4.7) and (5.5), we have

AFX =0

for any vector fields X,Y tangent to M. Inserting X instead of X in
this equation and using (3.10), (4.9), and (4.11), we have

Ae=0, a=2,...,p.

Hence the first normal space of M is contained in Span{N;}, which is
invariant under parallel translation with respect to the normal connec-
tion from our assumption. Thus we may apply Erbacher’s reduction
theorem [3], which gives the proof of our theorem.

Combining Theorem 5.2 and a theorem provided in [4, Theorem 6.2,
p.436], we have

THEOREM 5.3. Let M be an (n + 1)-dimensional compact contact
CR-submanifold of (n — 1) contact C R-dimension in S?™*! and assume
that there exists an orthonormal basis { N1, Ny }q=2,...p of normal vec-
tors to M each of which is parallel with respect to the normal connection.
If the trace of the shape operator A, in direction of Ny vanishes and if
the minimum of sectional curvatures of M is zero, then M is isometric
to a generalized Clifford surface:

82 (2m + 1)/(n+ 1))F) x 82+ ((2n2 +1)/(n+ 1))

for some portion (ny,nz) of (n —1)/2.

Proof. By means of Theorem 5.2, M can be regarded as a real mini-
mal hypersurface of $"*2 which is a totally geodesic invariant submani-
fold of S2™+!. Moreover, it is clear from (4.15) that M has exactly two
constant eigenvalues p;, po with

pr=A+VA+4)/2, pa=(A—VI+4)/2,
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where A = g(A;U,U). In fact, since pp?2 — dpx — 1 =0 (k = 1,2), (4.8)
and (4.15) imply

AU + &) = pr(mU +€),  A1(p2U + &) = pa(p2U +§).

Therefore, since VA; = 0 and A1 F = FA,, we can easily see that M is
isometric to a Riemannian product of odd-dimensional spheres, that is,

S2n1+1 (7_1) % 52n2+1 (7‘2)

for some portion (ny,ns) of (n — 1)/2 and some r1, 75 with r + 73 =1
(for details, see [4]). In fact, since M is minimal, 1 = ((2n1 + 1)/(n +
1))z, = ((2ng + 1)/(n +1))2. Taking account of (4.15), we can ver-

ify that the minimum of sectional curvatures of those hypersurfaces is
Zero.

COROLLARY 5.4. Let M be a compact, minimal real hypersurface
tangent to the structure vector fields £ of an odd-dimensional unit sphere
S™+2 | If the minimum of sectional curvatures of M is zero, then M is
isometric to

S ((2m +1)/(n + 1)3) x 8727 ((2n2 + 1)/ (n+1))%)

for some portion (n1,ng) of (n —1)/2.
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