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SCALAR CURVATURE OF CONTACT THREE

CR-SUBMANIFOLDS IN A UNIT (4m + 3)-SPHERE

Hyang Sook Kim∗ and Jin Suk Pak

Abstract. In this paper we derive an integral formula on an (n + 3)-

dimensional, compact, minimal contact three CR-submanifold M of (p−
1) contact three CR-dimension immersed in a unit (4m+3)-sphere S4m+3.
Using this integral formula, we give a sufficient condition concerning the
scalar curvature of M in order that such a submanifold M is to be a

generalized Clifford torus.

1. Introduction

Let S4m+3 be a (4m+ 3)-dimensional unit sphere, that is,

S4m+3 = {q ∈ Qm+1 : ∥q∥ = 1},

where Qm+1 is the real 4(m+ 1)-dimensional quaternionic number space. For
any point q ∈ S4m+3, we put

ξ = Jq, η = Kq, ζ = Lq,

where {J,K,L} denotes the canonical quaternionic Kähler structure of Qm+1.
Then {ξ, η, ζ} becomes a Sasakian three structure, that is, ξ, η and ζ are
mutually orthogonal unit Killing vector fields which satisfy

(1.1)

∇̄Y ∇̄Xξ = g(X, ξ)Y − g(Y,X)ξ,

∇̄Y ∇̄Xη = g(X, η)Y − g(Y,X)η,

∇̄Y ∇̄Xζ = g(X, ζ)Y − g(Y,X)ζ

for any vector fields X,Y tangent to S4m+3, where g denotes the canonical
metric on S4m+3 induced from that of Qm+1 and ∇̄ the Riemannian connection
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with respect to g. In this case, putting

(1.2) ϕX = ∇̄Xξ, ψX = ∇̄Xη, θX = ∇̄Xζ,

it follows that

(1.3)

ϕξ = 0, ψη = 0, θζ = 0,

ψζ = −θη = ξ, θξ = −ϕζ = η, ϕη = −ψξ = ζ,

[η, ζ] = −2ξ, [ζ, ξ] = −2η, [ξ, η] = −2ζ,

(1.4)

ϕ2 = −I + fξ ⊗ ξ, ψ2 = −I + fη ⊗ η, θ2 = −I + fζ ⊗ ζ,

ψθ = ϕ+ fζ ⊗ η, θϕ = ψ + fξ ⊗ ζ, ϕψ = θ + fη ⊗ ξ,

θψ = −ϕ+ fη ⊗ ζ, ϕθ = −ψ + fζ ⊗ ξ, ψϕ = −θ + fξ ⊗ η,

and

g(ϕX, Y ) = −g(X,ϕY ),

g(ψX, Y ) = −g(X,ψY ),

g(θX, Y ) = −g(X, θY ),

(1.5)

where I denotes the identity transformation and

(1.6) fξ(X) = g(X, ξ), fη(X) = g(X, η), fζ(X) = g(X, ζ).

Moreover, from (1.1) and (1.2), we have

(∇̄Y ϕ)X = g(X, ξ)Y − g(Y,X)ξ,

(∇̄Y ψ)X = g(X, η)Y − g(Y,X)η,

(∇̄Y θ)X = g(X, ζ)Y − g(Y,X)ζ

(1.7)

for any vector fields X,Y tangent to S4m+3 (cf. [4, 5, 6, 7, 8]).
LetM be an (n+3)-dimensional submanifold tangent to the structure vectors

ξ, η and ζ of S4m+3. If there exists a subbundle ν of the normal bundle TM⊥

such that

(1.8)
ϕνx ⊂ νx, ψνx ⊂ νx, θνx ⊂ νx,

ϕν⊥x ⊂ TxM, ψν⊥x ⊂ TxM, θν⊥x ⊂ TxM

at any point x ∈M , where TM denotes the tangent bundle ofM and ν⊥ is the
complementary orthogonal subbundle to ν in TM⊥, then the submanifold is
called a contact three CR-submanifold of S4m+3 and the dimension of ν contact
three CR-dimension. In particular we can easily see that real hypersurfaces
tangent to ξ, η and ζ of S4m+3 are typical examples of such submanifolds.

In this paper we shall study (n+3)-dimensional contact three CR-submani-
folds with (p−1) contact three CR-dimension of S4m+3, where p is 4m−n the
codimension. In this case the maximal {ϕ, ψ, θ}-invariant subspace

Dx = TxM ∩ ϕTxM ∩ ψTxM ∩ θTxM
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of TxM has constant dimension n− 3 because the orthogonal complement D⊥
x

to Dx in TxM has constant dimension 6 at any point x ∈ M (cf. See §2 and
[7]).

Moreover we shall investigate some geometric characterizations of

S4r+3(a)× S4s+3(b) (a2 + b2 = 1, r + s = (n− 3)/4)

as a contact three CR-submanifold of S4m+3.

2. Preliminaries

LetM be an (n+3)-dimensional contact three CR-submanifold with (p−1)
contact three CR-dimension of S4m+3. Then we may set ν⊥ = Span{N} for a
unit normal vector field N to M since dim νx = p − 1 at every x ∈ M . From
now on we put

(2.1) ϕN = −U, ψN = −V, θN = −W.
Then it follows from (1.3)-(1.6) and (1.8) that U , V ,W are mutually orthogonal
unit tangent vector fields to M and satisfy

(2.2)

g(ξ, U) = 0, g(ξ, V ) = 0, g(ξ,W ) = 0,

g(η, U) = 0, g(η, V ) = 0, g(η,W ) = 0,

g(ζ, U) = 0, g(ζ, V ) = 0, g(ζ,W ) = 0.

Moreover ξ, η, ζ, U , V and W are all contained in D⊥
x and consequently

dim D⊥
x = 6, or equivalently dim Dx = n − 3 at any point x ∈ M (cf. [7]). It

is clear that

(2.3) ϕD⊥
x ⊂ Span{N}, ψD⊥

x ⊂ Span{N}, θD⊥
x ⊂ Span{N}

at any point x ∈ M . Hence for any tangent vector field X and for a local
orthonormal basis {Nα}α=1,...,p (N1 := N) of normal vectors to M , we have
the following decomposition in tangential and normal components:

(2.4)

(i) ϕX = FX + u(X)N,

(ii) ψX = GX + v(X)N,

(iii) θX = HX + w(X)N,

(2.5) ϕNα=

p∑
β=2

PϕαβNβ , ψNα=

p∑
β=2

PψαβNβ , θNα=

p∑
β=2

P θαβNβ , α = 2, . . . , p,

where {F,G,H} define skew-symmetric linear endomorphisms acting on TxM
and {u, v, w} are local 1-forms on M . Since the structure vector fields {ξ, η, ζ}
are tangent to M , it follows from (1.3), (1.5), (2.1) and (2.4) that

(2.6)

Fξ = 0, Fη = ζ, Fζ = −η,
Gξ = −ζ, Gη = 0, Gζ = ξ

Hξ = η, Hη = −ξ, Hζ = 0,
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(2.7)

FU = 0, FV =W, FW = −V,
GU = −W, GV = 0, GW = U

HU = V, HV = −U, HW = 0,

(2.8) g(U,X) = u(X), g(V,X) = v(X), g(W,X) = w(X).

Next, applying ϕ to both side of (2.4)(i) and using (1.4), (1.6), (2.1) and
(2.4)(i), we have

(2.9) F 2X = −X + u(X)U + g(ξ,X)ξ, u(FX) = g(U,FX) = 0.

Similarly, from (2.4)(ii) and (2.4)(iii) it follows that

(2.10) G2X = −X + v(X)V + g(η,X)η, v(GX) = g(V,GX) = 0,

(2.11) H2X = −X + w(X)W + g(ζ,X)ζ, w(HX) = g(W,HX) = 0.

Also applying ψ and θ to both side of (2.4)(i), respectively, and using (1.4)-(1.6),
(2.1) and (2.4), we get

(2.12) GFX = −HX + u(X)V + g(ξ,X)η, v(FX) = −w(X),

(2.13) HFX = GX + u(X)W + g(ξ,X)ζ, w(FX) = v(X).

Similarly, it follows from (2.4)(ii) and (2.4)(iii) that

(2.14) HGX = −FX + v(X)W + g(η,X)ζ, w(GX) = −u(X),

(2.15) FGX = HX + v(X)U + g(η,X)ξ, u(GX) = w(X),

(2.16) FHX = −GX + w(X)U + g(ζ,X)ξ, u(HX) = −v(X),

(2.17) GHX = FX + w(X)V + g(ζ,X)η, v(HX) = u(X).

3. Fundamental equations for the contact three CR-submanifold

Let M be as in §2. Then, by means of (1.4), (1.6) and (2.5), we can take
a local orthonormal basis {N,Na, Na∗ , Na∗∗ , Na∗∗∗}a=1,...,q:=(p−1)/4 of normal
vectors to M in such a way that

(3.1) Na∗ := ϕNa, Na∗∗ := ψNa, Na∗∗∗ := θNa.

Let ∇ and ∇⊥ denote the covariant differentiation in M and the normal
connection induced from ∇̄ on the normal bundle TM⊥, respectively. Then
Gauss and Weingarten formulae are given by

(3.2) ∇̄XY = ∇XY + h(X,Y ),

(i) ∇̄XN=−AX+∇⊥
XN

=−AX+

q∑
a=1

{sa(X)Na+sa∗(X)Na∗+sa∗∗(X)Na∗∗+sa∗∗∗(X)Na∗∗∗},

(3.3)
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(ii) ∇̄XNa=−AaX − sa(X)N

+

q∑
b=1

{sab(X)Nb+sab∗(X)Nb∗+sab∗∗(X)Nb∗∗+sab∗∗∗(X)Nb∗∗∗},

(iii) ∇̄XNa∗ =−Aa∗X − sa∗(X)N

+

q∑
b=1

{sa∗b(X)Nb + sa∗b∗(X)Nb∗ + sa∗b∗∗(X)Nb∗∗ + sa∗b∗∗∗(X)Nb∗∗∗},

(iv) ∇̄XNa∗∗ =−Aa∗∗X − sa∗∗(X)N

+

q∑
b=1

{sa∗∗b(X)Nb+sa∗∗b∗(X)Nb∗+sa∗∗b∗∗(X)Nb∗∗+sa∗∗b∗∗∗(X)Nb∗∗∗},

(v) ∇̄XNa∗∗∗ =−Aa∗∗∗X − sa∗∗∗(X)N

+

q∑
b=1

{sa∗∗∗b(X)Nb+sa∗∗∗b∗(X)Nb∗+sa∗∗∗b∗∗(X)Nb∗∗+sa∗∗∗b∗∗∗(X)Nb∗∗∗}

for any vector fields X,Y tangent toM , where s′s are coefficients of the normal
connection ∇⊥. Here and in the sequel h denotes the second fundamental form
and A, Aa, Aa∗ , Aa∗∗ and Aa∗∗∗ the shape operators corresponding to the
normals N , Na, Na∗ , Na∗∗ and Na∗∗∗ , respectively. They are related by

h(X,Y ) = g(AX,Y )N+

q∑
a=1

{g(AaX,Y )Na + g(Aa∗X,Y )Na∗

+g(Aa∗∗X,Y )Na∗∗ + g(Aa∗∗∗X,Y )Na∗∗∗}.
(3.4)

On the other hand, since the ambient manifold S4m+3 is a space form of the
constant curvature 1, its curvature tensor R̄ satisfies

R̄(X,Y )Z = g(Y,Z)X − g(X,Z)Y

Hence, by means of the equation of Gauss, we can easily see that the Ricci
tensor Ric(Y,Z) turns out to be

Ric(Y,Z)

= (n+ 2)g(Y, Z) + (trA)g(AY,Z)− g(A2Y, Z)

+

q∑
a=1

{(trAa)g(AaY, Z)− g(A2
aY,Z) + (trAa∗)g(Aa∗Y,Z)− g(A2

a∗Y,Z)

+(trAa∗∗)g(Aa∗∗Y,Z)−g(A2
a∗∗Y, Z)+(trAa∗∗∗)g(Aa∗∗∗Y, Z)−g(A2

a∗∗∗Y, Z)}

(3.5)

and consequently the scalar curvature ρ is given by

ρ =(n+ 2)(n+ 3) + (trA)2 − trA2 +

q∑
a=1

{(trAa)2 − trA2
a

+ (trAa∗)
2 − trA2

a∗ + (trAa∗∗)
2 − trA2

a∗∗ + (trAa∗∗∗)
2 − trA2

a∗∗∗}.
(3.6)
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Moreover, by means of the equation of Codazzi, we also have

(∇XA)Y − (∇YA)X

=

q∑
a=1

{sa(X)AaY − sa(Y )AaX + sa∗(X)Aa∗Y − sa∗(Y )Aa∗X

+ sa∗∗(X)Aa∗∗Y − sa∗∗(Y )Aa∗∗X + sa∗∗∗(X)Aa∗∗∗Y − sa∗∗∗(Y )Aa∗∗∗X}.

(3.7)

Now differentiating (2.4)(i) covariantly and using (1.7), (3.2), (3.3)(i) and
(3.4), we have

(∇Y F )X = g(X, ξ)Y − g(X,Y )ξ − g(AX,Y )U + u(X)AY,

(∇Y u)X = −g(AFX, Y ).
(3.8)

Similarly, from (2.4)(ii) and (2.4)(iii), we also obtain

(∇YG)X = g(X, η)Y − g(X,Y )η − g(AX,Y )V + v(X)AY,

(∇Y v)X = −g(AGX,Y ),
(3.9)

(∇YH)X = g(X, ζ)Y − g(X,Y )ζ − g(AX,Y )W + w(X)AY,

(∇Y w)X = −g(AHX,Y ).
(3.10)

Differentiating (2.1) covariantly and using (1.7), (2.4), (3.2), (3.3)(i) and
(3.4), we have

(3.11) ∇XU = FAX, ∇XV = GAX, ∇XW = HAX.

Moreover, it is clear from (1.2), (3.2) and (3.4) that

∇Xξ = FX, ∇Xη = GX, ∇Xζ = HX,(3.12)

Aξ = U, Aη = V, Aζ =W,(3.13)

Aaξ = 0, Aa∗ξ = 0, Aa∗∗ξ = 0, Aa∗∗∗ξ = 0,

Aaη = 0, Aa∗η = 0, Aa∗∗η = 0, Aa∗∗∗η = 0,

Aaζ = 0, Aa∗ζ = 0, Aa∗∗ζ = 0, Aa∗∗∗ζ = 0, a = 1, . . . , q.

(3.14)

On the other hand, since the structure vector fields {ξ, η, ζ} are tangent to
M , it follows from (3.1) and (3.3)(iii) that

ϕ∇̄XNa= −Aa∗X − sa∗(X)N

+

q∑
b=1

{sa∗b(X)Nb+sa∗b∗(X)Nb∗+sa∗b∗∗(X)Nb∗∗+sa∗b∗∗∗(X)Nb∗∗∗}.

(3.15)
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Applying ϕ to (3.15) and using (1.4), (1.6), (2.1), (2.4)(i), (3.1) and (3.14), we
get

∇̄XNa=FAa∗X − sa∗(X)U + g(Aa∗X,U)N

−
q∑
b=1

{sa∗b(X)Nb∗−sa∗b∗(X)Nb+sa∗b∗∗(X)Nb∗∗∗−sa∗b∗∗∗(X)Nb∗∗},

which together with (3.3)(ii) implies

AaX = −FAa∗X + sa∗(X)U, sa(X) = −g(Aa∗X,U) = −u(Aa∗X).

Applying ψ and θ to (3.15), respectively and using (1.4), (1.6), (2.1), (2.4)(ii),
(2.4)(iii), (3.1) and (3.14), we also have

∇̄XNa∗∗∗ =GAa∗X − sa∗(X)V + g(Aa∗X,V )N

−
q∑
b=1

{sa∗b(X)Nb∗∗−sa∗b∗(X)Nb∗∗∗−sa∗b∗∗(X)Nb+sa∗b∗∗∗(X)Nb∗},

∇̄XNa∗∗ = −HAa∗X + sa∗(X)W − g(Aa∗X,W )N

+

q∑
b=1

{sa∗b(X)Nb∗∗∗+sa∗b∗(X)Nb∗∗−sa∗b∗∗(X)Nb∗−sa∗b∗∗∗(X)Nb},

thus comparing the above two equations with (3.3)(iv) and (3.3)(v), we obtain

Aa∗∗X = HAa∗X − sa∗(X)W, sa∗∗(X) = g(Aa∗X,W ) = w(Aa∗X),

Aa∗∗∗X = −GAa∗X + sa∗(X)V, sa∗∗∗(X) = −g(Aa∗X,V ) = −v(Aa∗X).

Similarly, from (3.3)(iv) it follows that

ψ∇̄XNa

= −Aa∗∗X − sa∗∗(X)N

+

q∑
b=1

{sa∗∗b(X)Nb + sa∗∗b∗(X)Nb∗ + sa∗∗b∗∗(X)Nb∗∗ + sa∗∗b∗∗∗(X)Nb∗∗∗},

which implies

∇̄XNa

= GAa∗∗X − sa∗∗(X)V + g(Aa∗∗X,V )N

−
q∑
b=1

{sa∗∗b(X)Nb∗∗ − sa∗∗b∗(X)Nb∗∗∗ − sa∗∗b∗∗(X)Nb + sa∗∗b∗∗∗(X)Nb∗},

∇̄XNa∗∗∗

= − FAa∗∗X + sa∗∗(X)U − g(Aa∗∗X,U)N

+

q∑
b=1

{sa∗∗b(X)Nb∗ − sa∗∗b∗(X)Nb + sa∗∗b∗∗(X)Nb∗∗∗ − sa∗∗b∗∗∗(X)Nb∗∗},
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∇̄XNa∗

= HAa∗∗X − sa∗∗(X)W + g(Aa∗∗X,W )N

−
q∑
b=1

{sa∗∗b(X)Nb∗∗∗ + sa∗∗b∗(X)Nb∗∗ − sa∗∗b∗∗(X)Nb∗ − sa∗∗b∗∗∗(X)Nb}.

Hence we have

AaX = −GAa∗∗X + sa∗∗(X)V, sa(X) = −g(Aa∗∗X,V ) = −v(Aa∗∗X),

Aa∗X = −HAa∗∗X + sa∗∗(X)W, sa∗(X) = −g(Aa∗∗X,W ) = −w(Aa∗∗X),

Aa∗∗∗X = FAa∗∗X − sa∗∗(X)U, sa∗∗∗(X) = g(Aa∗∗X,U) = u(Aa∗∗X).

Also, by means of (3.3)(v) we have

θ∇̄XNa = −Aa∗∗∗X − sa∗∗∗(X)N

+

q∑
b=1

{sa∗∗∗b(X)Nb + sa∗∗∗b∗(X)Nb∗ + sa∗∗∗b∗∗(X)Nb∗∗

+ sa∗∗∗b∗∗∗(X)Nb∗∗∗},

which yields

∇̄XNa = HAa∗∗∗X − sa∗∗∗(X)W + g(Aa∗∗∗X,W )N

−
q∑
b=1

{sa∗∗∗b(X)Nb∗∗∗ + sa∗∗∗b∗(X)Nb∗∗ − sa∗∗∗b∗∗(X)Nb∗

− sa∗∗∗b∗∗∗(X)Nb},

∇̄XNa∗∗ = FAa∗∗∗X − sa∗∗∗(X)U + g(Aa∗∗∗X,U)N

−
q∑
b=1

{sa∗∗∗b(X)Nb∗ − sa∗∗∗b∗(X)Nb + sa∗∗∗b∗∗(X)Nb∗∗∗

− sa∗∗∗b∗∗∗(X)Nb∗∗},

∇̄XNa∗ = −GAa∗∗∗X + sa∗∗∗(X)V − g(Aa∗∗∗X,V )N

+

q∑
b=1

{sa∗∗∗b(X)Nb∗∗ − sa∗∗∗b∗(X)Nb∗∗∗ − sa∗∗∗b∗∗(X)Nb

+ sa∗∗∗b∗∗∗(X)Nb∗}.

Thus we have

AaX = −HAa∗∗∗X + sa∗∗∗(X)W, sa(X) = −g(Aa∗∗∗X,W ) = −w(Aa∗∗∗X),

Aa∗X = GAa∗∗∗X − sa∗∗∗(X)V, sa∗(X) = g(Aa∗∗∗X,V ) = v(Aa∗∗∗X),

Aa∗∗X = −FAa∗∗∗X + sa∗∗∗(X)U, sa∗∗(X) = −g(Aa∗∗∗X,U) = −u(Aa∗∗∗X).
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Finally, applying ϕ, ψ and θ to (3.3)(ii), respectively and using (1.4), (1.6),
(1.7), (2.1), (2.4) and (3.1), we have

∇̄XNa∗ =− FAaX + sa(X)U − g(AaX,U)N

+

q∑
b=1

{sab(X)Nb∗ − sab∗(X)Nb + sab∗∗(X)Nb∗∗∗ − sab∗∗∗(X)Nb∗∗},

∇̄XNa∗∗ =−GAaX + sa(X)V − g(AaX,V )N

+

q∑
b=1

{sab(X)Nb∗∗ − sab∗(X)Nb∗∗∗ − sab∗∗(X)Nb + sab∗∗∗(X)Nb∗},

∇̄XNa∗∗∗ =−HAaX + sa(X)W − g(AaX,W )N

+

q∑
b=1

{sab(X)Nb∗∗∗ + sab∗(X)Nb∗∗ − sab∗∗(X)Nb∗ − sab∗∗∗(X)Nb},

thus comparing the above three equations with (3.3)(iii), (3.3)(iv) and (3.3)(v),
we obtain

Aa∗X = FAaX − sa(X)U, sa∗(X) = g(AaX,U) = u(AaX),

Aa∗∗X = GAaX − sa(X)V, sa∗∗(X) = g(AaX,V ) = v(AaX),

Aa∗∗∗X = HAaX − sa(X)W, sa∗∗∗(X) = g(AaX,W ) = w(AaX).

Summing up, we have:

Lemma 3.1. Let M be an (n+ 3)-dimensional contact three CR-submanifold
of S4m+3 with contact three CR-dimension (p − 1). Then the following rela-
tionships (3.16) and (3.17) are established on M , where p = 4m− n.

AaX = −FAa∗X + sa∗(X)U = −GAa∗∗X + sa∗∗(X)V

= −HAa∗∗∗X + sa∗∗∗(X)W,

Aa∗X = FAaX − sa(X)U = GAa∗∗∗X − sa∗∗∗(X)V

= −HAa∗∗X + sa∗∗(X)W,

Aa∗∗X = −FAa∗∗∗X + sa∗∗∗(X)U = GAaX − sa(X)V

= HAa∗X − sa∗(X)W,

Aa∗∗∗X = FAa∗∗X − sa∗∗(X)U = −GAa∗X + sa∗(X)V

= HAaX − sa(X)W,

(3.16)

(i) sa(X) = −u(Aa∗X) = −v(Aa∗∗X) = −w(Aa∗∗∗X),

(ii) sa∗(X) = u(AaX) = v(Aa∗∗∗X) = −w(Aa∗∗X),

(iii) sa∗∗(X) = −u(Aa∗∗∗X) = v(AaX) = w(Aa∗X),

(iv) sa∗∗∗(X) = u(Aa∗∗X) = −v(Aa∗X) = w(AaX).

(3.17)
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Because of Lemma 3.1 and the facts that F,G,H are skew-symmetric and
Aa, Aa∗ , Aa∗∗ , Aa∗∗∗ are symmetric, (3.16) yields

g((AaF + FAa)X,Y ) = sa(X)u(Y )− sa(Y )u(X),

g((AaG+GAa)X,Y ) = sa(X)v(Y )− sa(Y )v(X),

g((AaH +HAa)X,Y ) = sa(X)w(Y )− sa(Y )w(X),

(3.18)

g((Aa∗F + FAa∗)X,Y ) = sa∗(X)u(Y )− sa∗(Y )u(X),

g((Aa∗G+GAa∗)X,Y ) = sa∗(X)v(Y )− sa∗(Y )v(X),

g((Aa∗H +HAa∗)X,Y ) = sa∗(X)w(Y )− sa∗(Y )w(X),

(3.19)

g((Aa∗∗F + FAa∗∗)X,Y ) = sa∗∗(X)u(Y )− sa∗∗(Y )u(X),

g((Aa∗∗G+GAa∗∗)X,Y ) = sa∗∗(X)v(Y )− sa∗∗(Y )v(X),

g((Aa∗∗H +HAa∗∗)X,Y ) = sa∗∗(X)w(Y )− sa∗∗(Y )w(X),

(3.20)

g((Aa∗∗∗F + FAa∗∗∗)X,Y ) = sa∗∗∗(X)u(Y )− sa∗∗∗(Y )u(X),

g((Aa∗∗∗G+GAa∗∗∗)X,Y ) = sa∗∗∗(X)v(Y )− sa∗∗∗(Y )v(X),

g((Aa∗∗∗H +HAa∗∗∗)X,Y ) = sa∗∗∗(X)w(Y )− sa∗∗∗(Y )w(X).

(3.21)

It is also clear from (3.14) and (3.17) that

sa(ξ) = sa∗(ξ) = sa∗∗(ξ) = sa∗∗∗(ξ) = 0,

sa(η) = sa∗(η) = sa∗∗(η) = sa∗∗∗(η) = 0,

sa(ζ) = sa∗(ζ) = sa∗∗(ζ) = sa∗∗∗(ζ) = 0.

(3.22)

On the other hand, we can take an orthonormal basis

{ei}i=1,...,4l+6, l := (n− 3)/4

of tangent vectors to M in such a way that

el+1 := Fe1, . . . , e2l := Fel, e2l+1 := Ge1, . . . , e3l := Gel,

e3l+1 := He1, . . . , e4l := Hel,
(3.23)

(3.24) e4l+1 := U, e4l+2 := V, e4l+3 :=W, e4l+4 := ξ, e4l+5 := η, e4l+6 := ζ.

Replacing X by Fei in (3.17)(i), we have

sa(Fei) = −g(Aa∗Fei, U) = −g(Aa∗∗Fei, V ) = −g(Aa∗∗∗Fei,W ),

which together with (2.7), (3.19), (3.20) and (3.21) implies

sa(Fei) = −sa∗(ei) = −w(Aa∗∗ei) = v(Aa∗∗∗ei).

But it follows from (3.17)(ii) that

sa∗(ei) = −w(Aa∗∗ei) = v(Aa∗∗∗ei),

which and the above equation imply

(3.25) sa(Fei) = 0, sa∗(ei) = 0, i = 1, . . . , l.
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Similarly, replacing X by Gei and Hei in (3.17)(i), respectively, we also have

sa(Gei) = −g(Aa∗Gei, U) = −g(Aa∗∗Gei, V ) = −g(Aa∗∗∗Gei,W ),

sa(Hei) = −g(Aa∗Hei, U) = −g(Aa∗∗Hei, V ) = −g(Aa∗∗∗Hei,W ),

which together with (2.7), (3.19), (3.20) and (3.21) yields

sa(Gei) = w(Aa∗ei) = −sa∗∗(ei) = −u(Aa∗∗∗ei),
sa(Hei) = −v(Aa∗ei) = u(Aa∗∗ei) = −sa∗∗∗(ei).

But it follows from (3.17)(iii) and (3.17)(iv) that

sa∗∗(ei) = w(Aa∗ei) = −u(Aa∗∗∗ei), sa∗∗∗(ei) = −v(Aa∗ei) = u(Aa∗∗ei),

which and the above equation give

(3.26) sa(Gei) = 0, sa(Hei) = 0, sa∗∗(ei) = 0, sa∗∗∗(ei) = 0 i = 1, . . . , l.

Next, replacing X by Fei, Gei and Hei in (3.17)(ii), respectively, we have

sa∗(Fei) = u(AaFei) = v(Aa∗∗∗Fei) = −w(Aa∗∗Fei),
sa∗(Gei) = u(AaGei) = v(Aa∗∗∗Gei) = −w(Aa∗∗Gei),
sa∗(Hei) = u(AaHei) = v(Aa∗∗∗Hei) = −w(Aa∗∗Hei)

from which together with (2.7), (3.18), (3.20) and (3.21),

sa∗(Fei) = sa(ei) = w(Aa∗∗∗ei) = v(Aa∗∗ei),

sa∗(Gei) = −w(Aaei) = sa∗∗∗(ei) = −u(Aa∗∗ei),
sa∗(Hei) = v(Aaei) = −u(Aa∗∗∗ei) = −sa∗∗(ei).

But (3.17)(i), (3.17)(iii) and (3.17)(iv) yield

sa(ei) = −v(Aa∗∗ei) = −w(Aa∗∗∗ei),

which together with the above equation and (3.26) gives

(3.27) sa(ei) = 0, sa∗(Fei) = 0, sa∗(Gei) = 0, sa∗(Hei) = 0, i = 1, . . . , l.

Replacing X by Fei, Gei and Hei in (3.17)(iii), respectively, we have

sa∗∗(Fei) = −u(Aa∗∗∗Fei) = v(AaFei) = w(Aa∗Fei),

sa∗∗(Gei) = −u(Aa∗∗∗Gei) = v(AaGei) = w(Aa∗Gei),

sa∗∗(Hei) = −u(Aa∗∗∗Hei) = v(AaHei) = w(Aa∗Hei),

from which together with (2.7), (3.18), (3.19) and (3.21),

sa∗∗(Fei) = −sa∗∗∗(ei) = w(Aaei) = −v(Aa∗ei),
sa∗∗(Gei) = w(Aa∗∗∗ei) = sa(ei) = u(Aa∗ei),

sa∗∗(Hei) = −v(Aa∗∗∗ei) = −u(Aaei) = sa∗(ei).

Thus (3.25), (3.26) and (3.27) give

(3.28) sa∗∗(Fei) = 0, sa∗∗(Gei) = 0, sa∗∗(Hei) = 0, i = 1, . . . , l.
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Finally, replacing X by Fei, Gei and Hei in (3.17)(iv), respectively, we have

sa∗∗∗(Fei) = u(Aa∗∗Fei) = −v(Aa∗Fei) = w(AaFei),

sa∗∗∗(Gei) = u(Aa∗∗Gei) = −v(Aa∗Gei) = w(AaGei),

sa∗∗∗(Hei) = u(Aa∗∗Hei) = −v(Aa∗Hei) = w(AaHei),

from which together with (2.7), (3.18), (3.19), and (3.20),

sa∗∗∗(Fei) = sa∗∗(ei), sa∗∗∗(Gei) = −sa∗(ei), sa∗∗(Hei) = sa(ei).

Hence (3.25), (3.26) and (3.27) imply

(3.29) sa∗∗∗(Fei) = 0, sa∗∗∗(Gei) = 0, sa∗∗∗(Hei) = 0, i = 1, . . . , l.

4. An integral formula on the compact contact three
CR-submanifold

Let M be as in §2 and put

T := ∇UU +∇V V +∇WW + (div U)U + (div V )V + (div W )W

and take the same orthonormal basis {ei}i=1,...,4l+6 (l = (n− 3)/4) of tangent

vectors to M as given in (3.23) and (3.24), where div U =
∑4l+6
i=1 g(ei,∇eiU).

Since F is skew-symmetric and A is symmetric, (3.11) implies

(4.1) T = FAU +GAV +HAW.

We note that T is a global function on M . Now, for later use we shall compute

div T =
∑4l+6
i=1 g(ei,∇eiT ).

First of all, differentiating both side of (4.1) covariantly and using (3.8)-
(3.11), we have

∇XT = (∇XF )AU + F (∇XA)U + FA∇XU

+ (∇XG)AV +G(∇XA)V +GA∇XV

+ (∇XH)AW +H(∇XA)W +HA∇XW,

that is,

∇XT = g(AU, ξ)X − g(AU,X)ξ − g(A2U,X)U + u(AU)AX + F (∇XA)U

+ FAFAX + g(AV, η)X − g(AV,X)η − g(A2V,X)V + v(AV )AX

+G(∇XA)V +GAGAX+g(AW, ζ)X−g(AW,X)ζ−g(A2W,X)W

+ w(AW )AX +H(∇XA)W +HAHAX,

which and (3.13) give

∇XT = 3X − g(AU,X)ξ − g(AV,X)η − g(AW,X)ζ

+ {u(AU) + v(AV ) + w(AW )}AX − g(A2U,X)U − g(A2V,X)V

− g(A2W,X)W + FAFAX +GAGAX +HAHAX + F (∇XA)U

+G(∇XA)V +H(∇XA)W.

(4.2)
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Thus, from (2.6), (2.7) and (2.9)-(2.17), we have

divT

= 3(n+ 2) + trA{u(AU) + v(AV ) + w(AW )}
− g(A2U,U)− g(A2V, V )− g(A2W,W )

+
n+3∑
i=1

g(FAFAei +GAGAei +HAHAei, ei)

+
l∑
i=1

{g((∇FeiA)ei − (∇eiA)Fei, U) + g((∇GeiA)ei − (∇eiA)Gei, V )

+ g((∇HeiA)ei − (∇eiA)Hei,W ) + g((∇HeiA)Gei − (∇GeiA)Hei, U)

+ g((∇FeiA)Hei−(∇HeiA)Fei, V )+g((∇GeiA)Fei−(∇FeiA)Gei,W )}
+ g((∇WA)V −(∇VA)W,U)+g((∇UA)W−(∇WA)U, V )

+ g((∇VA)U−(∇UA)V ),W )+g((∇ζA)η−(∇ηA)ζ, U)

+ g((∇ξA)ζ−(∇ζA)ξ, V )+g((∇ηA)ξ−(∇ξA)η),W ),

which together with (3.7), (3.22) and (3.25)-(3.29) implies

divT

= 3(n+ 2) + trA{u(AU) + v(AV ) + w(AW )}
− g(A2U,U)− g(A2V, V )− g(A2W,W )

+

n+3∑
i=1

g(FAFAei +GAGAei +HAHAei, ei)

+

q∑
a=1

{sa(W )u(AaV )− sa(V )u(AaW ) + sa∗(W )u(Aa∗V )

− sa∗(V )u(Aa∗W ) + sa∗∗(W )u(Aa∗∗V )− sa∗∗(V )u(Aa∗∗W )

+ sa∗∗∗(W )u(Aa∗∗∗V )− sa∗∗∗(V )u(Aa∗∗∗W )}

+

q∑
a=1

{sa(U)v(AaW )− sa(W )v(AaU) + sa∗(U)v(Aa∗W )− sa∗(W )v(Aa∗U)

+ sa∗∗(U)v(Aa∗∗W )− sa∗∗(W )v(Aa∗∗U)

+ sa∗∗∗(U)v(Aa∗∗∗W )− sa∗∗∗(W )v(Aa∗∗∗U)}

+

q∑
a=1

{sa(V )w(AaU)− sa(U)w(AaV ) + sa∗(V )w(Aa∗U)− sa∗(U)w(Aa∗V )

+ sa∗∗(V )w(Aa∗∗U)− sa∗∗(U)w(Aa∗∗V )

+ sa∗∗∗(V )w(Aa∗∗∗U)− sa∗∗∗(U)w(Aa∗∗∗V )},
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that is,

divT = 3(n+ 2) + trA{u(AU) + v(AV ) + w(AW )}
− ∥AU∥2 − ∥AV ∥2 − ∥AW∥2

+
n+3∑
i=1

g(FAFAei +GAGAei +HAHAei, ei).

(4.3)

On the other hand, using (2.9)-(2.17) and (3.13), we can easily verify that

n+3∑
i=1

g(FAFAei, ei) =
1

2
∥FA−AF∥2 − trA2 + ∥AU∥2 + 1,

n+3∑
i=1

g(GAGAei, ei) =
1

2
∥GA−AG∥2 − trA2 + ∥AV ∥2 + 1,

n+3∑
i=1

g(HAHAei, ei) =
1

2
∥HA−AH∥2 − trA2 + ∥AW∥2 + 1,

that is,

n+3∑
i=1

g(FAFAei +GAGAei +HAHAei, ei)

=
1

2
(∥FA−AF∥2 + ∥GA−AG∥2 + ∥HA−AH∥2)

− 3trA2 + ∥AU∥2 + ∥AV ∥2 + ∥AW∥2 + 3,

which and (4.3) yield

divT = 3{ρ− (n+ 1)(n+ 3)}+ trA{u(AU) + v(AV ) + w(AW )}

+
1

2
(∥FA−AF∥2 + ∥GA−AG∥2 + ∥HA−AH∥2)

− 3(trA)2 − 3

q∑
a=1

{(trAa)2 − trA2
a + (trAa∗)

2 − trA2
a∗

+ (trAa∗∗)
2 − trA2

a∗∗ + (trAa∗∗∗)
2 − trA2

a∗∗∗}.

(4.4)

Thus we have:

Lemma 4.1. Let M be an (n+3)-dimensional compact, minimal contact three
CR-submanifold of S4m+3 with contact three CR-dimension (p − 1). If the
scalar curvature ρ is greater or equal to (n+ 1)(n+ 3), then

(4.5) FA = AF, GA = AG, HA = AH,

(4.6) Aa = Aa∗ = Aa∗∗ = Aa∗∗∗ = 0, a = 1, . . . , q.
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5. The proof of main theorem

For the submanifold M given in Lemma 4.1, it is clear from (4.6) that its
first normal space is contained in Span{N} which is invariant under parallel
translation with respect to the normal connection ∇⊥ with the aid of (3.3)(i)
and (3.17). Thus we may apply Erbacher’s reduction theorem ([3]) and this
yields that there is an (n+4)-dimensional totally geodesic unit sphere Sn+4 such
thatM ⊂ Sn+4. Here we note that n+4 = dim Sn+4 is of the type 4(l+1)+3.
Moreover, since the tangent space TxS

n+4 of the totally geodesic submanifold
Sn+4 at x ∈M is TxM ⊕Span{N}, Sn+4 is an invariant submanifold of S4m+3

with respect to the Sasakian three structure {ξ, η, ζ} (that is, ξ, η and ζ are
all tangent to Sn+4, and ϕ(TxS

n+4) ⊂ TxS
n+4, ψ(TxS

n+4) ⊂ TxS
n+4 and

θ(TxS
n+4) ⊂ TxS

n+4 for any x ∈ Sn+4) because of (2.1) and (2.4). Hence the
submanifold M given in Lemma 4.1 can be regarded as a real hypersurface of
Sn+4 which is a totally geodesic invariant submanifold of S4m+3.

Tentatively we denote Sn+4 by M ′ and by i1 the immersion of M into M ′

and i2 the totally geodesic immersion ofM ′ into S4m+3. Then, from the Gauss
equation (3.1), it follows that

(5.1) ∇′
i1X i1Y = i1∇XY + h′(X,Y ) = i1∇XY + g(A′X,Y )N ′,

where h′ denotes the second fundamental form of M in M ′, A′ the correspond-
ing shape operator and N ′ a unit normal vector field to M in M ′. Since
i = i2 ◦ i1, we have

∇̄i2◦i1X i2 ◦ i1Y = i2∇′
i1X i1Y + h̄(i1X, i1Y )

= i2(i1∇XY + g(A′X,Y )N ′),
(5.2)

because M ′ is totally geodesic in S4m+3. Comparing (5.2) with (3.2), we can
easily see that

(5.3) N = i2N
′, A = A′.

Since M ′ is an invariant submanifold of S4m+3, for any X ′ ∈ TM ′,

(5.4) ϕi2X
′ = i2ϕ

′X ′, ψi2X
′ = i2ψ

′X ′, θi2X
′ = i2θ

′X ′

are valid, where {ϕ′, ψ′, θ′} is the induced Sasakian three structure ofM ′. Thus
it follows from (2.4) that

ϕiX = ϕi2 ◦ i1X = i2ϕ
′i1X = i2(i1F

′X + u′(X)N ′)

= iF ′X + u′(X)i2N
′ = iF ′X + u′(X)N,

ψiX = ψi2 ◦ i1X = i2ψ
′i1X = i2(i1G

′X + v′(X)N ′)

= iG′X + v′(X)i2N
′ = iG′X + v′(X)N,

θiX = θi2 ◦ i1X = i2θ
′i1X = i2(i1H

′X + w′(X)N ′)

= iH ′X + w′(X)i2N
′ = iH ′X + w′(X)N.

Comparing those equations with (2.4), we have F = F ′, u′ = u; G = G′,
v′ = v and H = H ′, w′ = w. Hence M is a real hypersurface of Sn+4 which
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satisfies F ′A′ = A′F ′, G′A′ = A′G′ and H ′A′ = A′H ′. Now applying the
theorem(cf. Theorem 10 in [8]) due to the second author, we can conclude:

Theorem. Let M be an (n+ 3)-dimensional compact, minimal, contact three
CR-submanifold of (p−1) contact three CR-dimension in S4m+3. If the scalar
curvature is greater or equal to (n+ 1)(n+ 3), then

M = S4r+3(a)× S4s+3(b), a2 + b2 = 1, r + s = (n− 3)/4.
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