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SCALAR CURVATURE OF CONTACT THREE
CR-SUBMANIFOLDS IN A UNIT (4m + 3)-SPHERE

HyaNG Sook KiM* AND JIN SUK PAK

ABSTRACT. In this paper we derive an integral formula on an (n + 3)-
dimensional, compact, minimal contact three C'R-submanifold M of (p —
1) contact three C' R-dimension immersed in a unit (4m+3)-sphere $4m+3,
Using this integral formula, we give a sufficient condition concerning the
scalar curvature of M in order that such a submanifold M is to be a
generalized Clifford torus.

1. Introduction
Let S*™+3 be a (4m + 3)-dimensional unit sphere, that is,
S = {ge Q™' ¢ |lq| =1},

where Q™*1 is the real 4(m + 1)-dimensional quaternionic number space. For
any point g € S4™*+3, we put

§=Jq, n=Kgq, (=Lq,

where {J, K, L} denotes the canonical quaternionic Kihler structure of Q™*1.
Then {£,n,(} becomes a Sasakian three structure, that is, &, n and ¢ are
mutually orthogonal unit Killing vector fields which satisfy

(1.1) VyVxn=g(X,n)Y —g(Y, X)n,
VyVx(=g(X, Q)Y —g(Y,X)¢

for any vector fields X,Y tangent to S4m+3, where g denotes the canonical
metric on $4™*3 induced from that of Q™! and V the Riemannian connection
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with respect to ¢g. In this case, putting
(1.2) X =Vx&, oYX =Vxn 60X =Vx(,
it follows that
€ =0, Yn =0, 6C =0,
(1.3) Y(=—0n=¢, 0 =—9¢C=mn, ¢n=—¢§=_C(,
[7.¢l = —=2¢, [C,€] = =2n, [&,n] = =2,

¢?*=—I+fe®¢ Y=-I+f®n =-I+[fc
(1.4) Yo=9+ fc@n 0o=v+f®( v=0+[Q¢,
O =—d+f,®0¢ =Y+ [f@E vop=—-0+fc@n,
and
g(¢X,Y) = —g(X, ¢Y),
(1.5) g X,Y) = —g(X,yY),
9(0X,Y) = —g(X,0Y),

where I denotes the identity transformation and

(1'6) ff(X):g(X’§)> fT](X):g(X777)’ fC(X):g(XaC)
Moreover, from (1.1) and (1.2), we have

(Vyd)X = g(X, €)Y — g(Y, X)¢,
(1.7) (Vy¥)X = g(X,n)Y —g(Y, X)n,

(Vy0)X = g(X,Q)Y — g(Y, X)¢

for any vector fields X,Y tangent to S¥™*3 (cf. [4, 5, 6, 7, 8]).

Let M be an (n+3)-dimensional submanifold tangent to the structure vectors
¢, nand ¢ of S4™*3. If there exists a subbundle v of the normal bundle 7'M+
such that

Gy C Vg, YUy C Uy, vy Cuy,

1.8
(1.8) vt Cc T,M, vt CcT,M, vy cCT,M

at any point x € M, where TM denotes the tangent bundle of M and v+ is the
complementary orthogonal subbundle to v in TM=, then the submanifold is
called a contact three CR-submanifold of S4™+3 and the dimension of v contact
three C R-dimension. In particular we can easily see that real hypersurfaces
tangent to &, n and ¢ of S4™*3 are typical examples of such submanifolds.

In this paper we shall study (n + 3)-dimensional contact three C R-submani-
folds with (p— 1) contact three C' R-dimension of S4*3, where p is 4m —n the
codimension. In this case the maximal {¢, ¢, #}-invariant subspace

D, = T M N ¢T, M N T, M N 0T, M
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of T, M has constant dimension n — 3 because the orthogonal complement D;-
to D, in T, M has constant dimension 6 at any point € M (cf. See §2 and

[7)-

Moreover we shall investigate some geometric characterizations of
S 3(a) x S¥F3(b) (a®* 4+ VP =1, r+s5=(n—3)/4)

as a contact three C R-submanifold of S*™+3,

2. Preliminaries

Let M be an (n+ 3)-dimensional contact three C R-submanifold with (p—1)
contact three C R-dimension of $#™*+3. Then we may set v+ = Span{N} for a
unit normal vector field N to M since dim v, = p — 1 at every x € M. From
now on we put

(2.1) ¢N =-U, N=-V, ON=-W.

Then it follows from (1.3)-(1.6) and (1.8) that U, V, W are mutually orthogonal
unit tangent vector fields to M and satisfy

9(&U) =0, ¢g(&V)=0, g(&,W)=0,
(2.2) g, U)=0, g(nV)=0, gnw)=0,

9(¢,U) =0, g(¢,V)=0, g(¢.W)=0.
Moreover &, 1, ¢, U, V and W are all contained in D} and consequently
dim D} = 6, or equivalently dim D, = n — 3 at any point z € M (cf. [7]). It
is clear that
(2.3) ¢D C Span{N}, ¢DE c Span{N}, 6D} C Span{N}

at any point z € M. Hence for any tangent vector field X and for a local
orthonormal basis {Ny}a=1,..p, (N1 := N) of normal vectors to M, we have
the following decomposition in tangential and normal components:

(i) $X = FX + u(X)N,
(2.4) (i) X = GX + v(X)N,
(ifi) 0X = HX + w(X)N,

P P P
0
(2.5) ¢Na=Y»_ PINg, No=>» PuNg, ONo=Y Pl;Ns a=2,...,p,
B=2 B=2 B=2
where {F, G, H} define skew-symmetric linear endomorphisms acting on 7T, M

and {u,v,w} are local 1-forms on M. Since the structure vector fields {&,7, ¢}
are tangent to M, it follows from (1.3), (1.5), (2.1) and (2.4) that

F¢=0, Fn=¢, F(=-n,
(2.6) G¢E=—-(¢ Gn=0, G(=¢
Hg:na HU:—5> H<207
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FU =0, FV=W, FW=-V,
(2.7) GU=-W, GV=0, GW=U
HU =V, HV=-U HW =0,
(2.8) 9(U, X) =uw(X), ¢g(V,X)=0(X), g(W,X)=uw(X).

Next, applying ¢ to both side of (2.4)4) and using (1.4), (1.6), (2.1) and
(2.4) (1), we have

(2.9) F2X = - X +u(X)U +g(&, X)¢, u(FX)=g(U,FX)=0.
Similarly, from (2.4) ;) and (2.4) ) it follows that

(2.10) G*X = - X+ 0(X)V4gn X)), v(GX)=g(V,GX)=0,
(2.11) H*X =X+ w(X)W +g(¢, X)¢, wHX)=g(W,HX)=0.

Also applying ¢ and 6 to both side of (2.4) ), respectively, and using (1.4)-(1.6),
(2.1) and (2.4), we get

(2.12) GFX = —HX +u(X)V +g(&, X)n, v(FX)=—w(X),
(2.13) HFX = GX +u(X)W + g(&, X)¢, w(FX) =v(X).
Similarly, it follows from (2.4);;) and (2.4) ;) that

(2.14) HGX = —FX 4+ 0o(X)W +g(n, X)¢, w(GX) = —u(X),
(2.15) FGX = HX +v(X)U + g(n, X)¢, u(GX) = w(X),
(2.16) FHX = —GX +w(X)U +g(¢, X)¢, u(HX) = —v(X),
(2.17) GHX = FX +w(X)V +g(¢, X)n, v(HX) = u(X).

3. Fundamental equations for the contact three C R-submanifold

Let M be as in §2. Then, by means of (1.4), (1.6) and (2.5), we can take
a local orthonormal basis {N, Ny, Nu=, Ngw=, No=r a1, gi=(p—1)/4 Of normal
vectors to M in such a way that
(3.1) Ny« := ¢Ny, Nges := YNy, Ngswn 1= ON,.

Let V and V+ denote the covariant differentiation in M and the normal
connection induced from V on the normal bundle TM+*, respectively. Then
Gauss and Weingarten formulae are given by

(3.2) VxY =VxY +h(X,Y),
(3.3)
(i) VxN=—AX+V%N

q
=—AX+ {5a(X)Na+5a+ (X)Nox +5g- (X) Naws + 54+ (X ) Noeo- },
a=1
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(i) VxNo=—A4,X — 5,(X)N
+ zq:{sab(X)Nb—&—sab* (X) Ny +saper (X) Nyes +Sqpres (X ) Nyees },
(iii) V x Ny :—bZ*X — 54+ (X)N
+ zq:{sa*b(X)Nb + Sqepe (X)Npe + Sqepee (X ) Npee 4 Sqepoes (X ) Npees },
(iv) vXNl::: —Age X — 5g+(X)N
+ zq:{sa**b(X)Nb+3a**b* (X)Np +Squrprs (X) Npws +8qunpess (X) Npwss 1,
(v) ?Xz\;;l =— Ager X — 540 (X)N
+ i{sa***b(X)Nb'i‘Sa***b* (X)) Nps + 8gwspex (X ) Npes + 8 grenprrs (X ) Npss
b=1

for any vector fields X, Y tangent to M, where s’s are coefficients of the normal
connection V+. Here and in the sequel h denotes the second fundamental form
and A, A,, Ag+, Ay~ and Ag-++ the shape operators corresponding to the
normals N, Ny, Ng», Ng++ and Ng«==, respectively. They are related by

q
h(Xa Y) = g(AXa Y)N+ Z{Q(AaX, Y)Na + g(Aa*va)Na*

a=1

(3.4)
+g(AH.** X, Y)Na** + g(Aa***X7 Y)Na*** },

On the other hand, since the ambient manifold S54m+3 is a space form of the
constant curvature 1, its curvature tensor R satisfies

Hence, by means of the equation of Gauss, we can easily see that the Ricci
tensor Ric(Y, Z) turns out to be
(3.5)
Ric(Y, Z)
= (n+2)9(Y, Z) + (trA)g(AY, Z) — g(A*Y, Z)

q
+ Z{(trAa)g(AaY7 Z) - g(A%Y? Z) + (trAa*)g(Aa* Y, Z) - Q(Ai*K Z)
a=1

+(trAg)g(Ag=Y, Z) = g(A2..Y, Z)+ (tr Agee= ) g (A Y, Z) —g(A2...Y, Z)}

a**

and consequently the scalar curvature p is given by

p=(n+2)(n+3)+ (trd)* — rA> + Y {(trd,)* — trA]

a=1

+ (trAge)? — trAZ, 4 (trhg-)? —trAZ.. + (trdg)? — trAZ...}.

(3.6)
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Moreover, by means of the equation of Codazzi, we also have

(3.7)
(VxA)Y — (VyA)X

q
= {5a(X)A0Y = 5a(Y)AuX + 50+ (X)AgeY = 54-(Y) Age X
a=1
+ Sgxx (X)Aa**Y — Sgxx (Y)Aa**X + Sgrnn (X)Aa***Y — S (Y)Aa***X}.

Now differentiating (2.4)(;) covariantly and using (1.7), (3.2), (3.3)() and
(3.4), we have

(VyF)X = g(X,6)Y — g(X,Y)¢ — g(AX,Y)U + u(X)AY,

(3:8) (Vyu)X = —g(AFX,Y).

Similarly, from (2.4)) and (2.4) ), we also obtain

(VyG)X = g(X,n)Y — g(X,Y)n — g(AX,Y)V + v(X)AY,

(39) (VYU>X = _g(AGX>Y)?

(VyH)X = g(X, Q)Y = g(X,Y){ = g(AX, Y)W + w(X)AY,

(3.10) (Vyw)X = —g(AHX,Y).

Differentiating (2.1) covariantly and using (1.7), (2.4), (3.2), (3.3)) and
(3.4), we have

(3.11) VxU = FAX, VxV =GAX, VxW = HAX.
Moreover, it is clear from (1.2), (3.2) and (3.4) that

(3.12) Vxé=FX, Vxn=GX, Vx(=HX,
(3.13) AE=U, An=V, A=W,
A =0, Ageb=0, Agrf=0, Ayl =0,
(3.14)  An=0, Apn=0, Agn=0, Agn=0,
A, (=0, Ap(=0, Ay(=0, Ap(C=0, a=1,...,q

On the other hand, since the structure vector fields {£,,(} are tangent to
M, it follows from (3.1) and (3.3);) that

(3.15)
OVxNy= — Ag- X — 5,-(X)N

q
+ {8 b(X)No+ 5024 (X)Npe + 5+ (X) Npwe +5qupres (X ) Nyeos }.
b=1
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Applying ¢ to (3.15) and using (1.4), (1.6), (2.1), (2.4)), (3.1) and (3.14), we
get

VxNy=FAp X — 54-(X)U + g(Ap=- X, U)N
q
_Z{Sa*b(X)Nb* —Sqrpe (X)Ny+Sqepes (X ) Nyeor — Sqepees (X ) Nyes },
b=1

which together with (3.3);) implies
AgX = —FAp X + 5.-(X)U, $4(X) =—g(Ap-X,U) = —u(Ag=X).

Applying ¢ and 0 to (3.15), respectively and using (1.4), (1.6), (2.1), (2.4) ),
(2.4) i), (3.1) and (3.14), we also have

VxNyerr =GAge X — 54+ (X)V 4 g(Ag- X, V)N
—zq:{sa*b(X)Nb** —Saxbr (X) Npwess — Squpes (X) Ny + g e+ (X) Now },
VxNge» = *b:I}Aa*X + S+ (X)W — g(Ag- X, W)N
+Xq:{sa*b(X)me+sa*b* (X)Nper —Sqrpes (X)Npe — Sq=pewe (X ) Np },
b=1

thus comparing the above two equations with (3.3)(yy and (3.3)(yy, we obtain
Ager X = HAp X — 50e (X)W, S (X) = g(Aa X, W) = w(Ag- X),
Ageer X = —GAp X + 80+ (X)W, Sqeer (X) = — (A X, V) = —0(Ag-X).
Similarly, from (3.3)y) it follows that
YV x N,
= — A X — 54+ (X)N

q
+ > {5ar-b(X)Np + Savepe (X)Npr + Sarepes (X)Npee + Sqeepes (X) Npwes },
b=1

which implies
vvaa
= GAG**X — Sg** (X)V + g(Aa**X, V)N

q
— Z{Sa**b(X)Nb** — Sa**b* (X)Nb*** — Sa**b**(X)Nb + Sa**b***(X)Nb*}v
b=1

V x Ngses
= — FAp+ X + 84+ (X)U — g(Ag=» X, U)N

q
+ Z{Sa**b(X)Nb* — Sqeepe (X)Np + Sqeepes (X) Npyews — Sgqenpens (X ) Nyes },
b=1
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V x N~
= HAy- X — S+« (X)W + g(Age X, W)N

q
- Z{sa“b(X)me + Saeepe (X)Nyer — Sgeepen (X)Nipe — Sgeepeen (X )Ny }.

Hence we have
A X = —GApr X 4 80+ (X)V,  84(X) = —g(Ag+ X, V) = —v(Age X),
Apr X = —HApes X + 800« (X)W, 54+(X) = —g(Ag=+ X, W) = —w(Ag X),
Agrin X = FApe X — 802+ (X)U,  $qeex(X) = g(Agr X, U) = u(Ages X).

Also, by means of (3.3)(,) we have
OVxNg = — Agees X — 5ques (X)N

q
+ Z{Samb(x)zvb + Sqeerp (X)Nie 4 Sqeenper (X) Npes

—|— Sa***b***(X)Nb***}a
which yields
VxNy = HApor X — sq0ex (X)W + g(Agees X, W)N

q
— Z{Sa***b(X)Nb*** + Sa***b* (X)Nb** — Sa***b**(X)Nb*
— Sa***bxx*(X)Nb}7
VxNges = FAgees X — 8q00x (X)U + g(Ageex X, U)N
q
=3 {Sareb(X)Npr — Squesps (X) Ny + Sqeespes (X) Npeos
— Sa***b***(X)Nb**}a
VxNar = — GAgenr X 4 8q0e (X)V = g(Agen X, V)N
q
+ ) {Sameb(X)Nyer — squespe (X)Npres — Sqeerper (X)Np

+ Sgrenprer (X) Npe }.
Thus we have
A X = —HApesx X + sgrex (X)W, 84(X) = —g(Ag=== X, W) = —w(Agens X),
Ape X = GAgerr X — 5405 (X)V, 80+ (X) = g(Agen X, V) = v(Agens X),
Aps X = —FApsn X + 8q005 (X)U, 842+ (X) = —g(Ageex X, U) = —u(Agees X).
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Finally, applying ¢, and 6 to (3.3)), respectively and using (1.4), (1.6),
(1.7), (2.1), (2.4) and (3.1), we have

VxNy == FAX + 5,(X)U — g(A, X, U)N
+ i{sab(X)Nb* — Sab (X)Np + Sapex (X) Nprsr — Sgpers (X ) Np=»
Vx Ny = — giax + 54(X)V — g(A X, V)N
+ zq:{sab(X)Nb** — Sab (X) Npwer — Sqpes (X) N + Sqbes (X) Np= },
Vx Nyrsx = — ;14&)( + 54( X)W — g(A, X, W)N

q
+ D {5ab(X) Npsor + sape (X) Ny = Sapes (X)Nye — sapee- (X)No},
b=1

thus comparing the above three equations with (3.3)i), (3.3)¢v) and (3.3) (),
we obtain

A X = FAX — 54(X)U, 80+ (X) = g(AaX,U) = u(A X),
Ag X = GAgX — 5,(X)V, 4 (X) = g(Ac X, V) = v(A,X),
Agrn X = HAGX — 5o(X)W,  $geen(X) = g(Ae X, W) = w(A X).

Summing up, we have:

Lemma 3.1. Let M be an (n + 3)-dimensional contact three C R-submanifold
of Sm+3 with contact three CR-dimension (p — 1). Then the following rela-
tionships (3.16) and (3.17) are established on M, where p = 4m — n.
A X = —FAup- X + 54+ (X)U = =GAgr X + S (X)V
= —HAgere X + 5002+ (X)W,
Aa*X = FAaX - Sa(X)U = GAQ***X — Sgxxx* (X)V
= —HAps X + 80 (X)W,

(3.16) Ao X = =FAgere X + 5000+ (X)U = GAX = 5,(X)V
= HAp X — 80+ (X)W,
Age X = FAg X — s (X)U = —GAp X + 50+ (X)V
=HAX — 5,(X)W,
) 5a(X) = —u(Ag X) = —0(Ag: X) = —w(Age- X),
(3.17) i) sa+ (X) = u(AeX) = v(Age- X) = —w(Ag-- X),

(
(
(iil)  sge (X) = —u(Ages X) = v(4eX) = w(Ag= X),
(iv)  sgees (X) = u(Ag+ X) = —v(Ag- X) = w(AX).
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Because of Lemma 3.1 and the facts that F, G, H are skew-symmetric and
Ag, Agr, Agrr, Ageer are symmetric, (3.16) yields

J((AF+ FA)X,Y) = so(X)u(Y) — s4(Y)u(X),

((AuG+ GALX,)Y) = 5. (X)v(Y) — 3,(Y)v(X)

(3.18) (

(AgH + HA)X,Y) = 54(X)w(Y) — 5(Y)w(X)
(
(

)
)

9(Ag-F + FA)X,Y) = sq- (X)u(Y
(3.19) 9(A-G + GA)X,Y) = 5= (X)v
9(Aa- H + HA)X,Y) = 50 (X)w(Y) — 50 (Y)w(X),
9(Age-F + FAp)X,Y) = s (X)u(Y) (Y)
(3.20) 9((AgerG + GAger) X, Y) = 5004 (X)0(Y) = g0+ (Y)0(X),

9(Ager F + FApe ) X, Y) = Sg0nx (X)u(Y) — sg0x (Y)u(X),
(3.21) J((AgrrG + GApgrs=) X, Y ) = 500+ (X)v(Y) Y) )
9((Agrsn H+ HAgrer ) X, Y) = Sg0ex (X)W(Y) — 8g0e (YV)w(X).

It is also clear from (3.14) and (3.17) that
8a(€) = 8a+(§) = sa=+(§) = 84=++(§) =0,
(3.22) Sa(1) = Sa=(n) = Sa=+(n) = 5a+=+(n) =0
$a(€) = Sa+ () = $a=+(¢) = 84~ (¢) = 0.

On the other hand, we can take an orthonormal basis
{ei}i=1,... 4146, l:=(n—3)/4

of tangent vectors to M in such a way that

(3.23)

ei41:=Feq, ..., eq:=Fey, egy1:=Gey, ..., e3 = Gey,
esiy1:= Hey, ... , ey := Hey,

(3.24) eqr1:=U, eqro:=V, eq13:=W, eqgyya =&, eqys:=1, eqr6 :=C.
Replacing X by Fe; in (3.17)(), we have
sa(Fe;) = —g(Ag<Fe;,U) = —g(AgFe;, V) = —g(Agrss Feg, W),
which together with (2.7), (3.19), (3.20) and (3.21) implies
Sa(Fe;) = —sar(€;) = —w(Ag=re;) = v(Agsrre;).
But it follows from (3.17); that
Sar(€;) = —w(Agere;) = v(Ageine;),
which and the above equation imply

(3.25) sa(Fe;)) =0, Sq«(e;) =0, i=1,... 1.
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Similarly, replacing X by Ge; and He; in (3.17);, respectively, we also have

sa(Ge;) = —g(Ag=Ge;, U) = —g(AgeGe, V) = —g(Ag=-Gey, W),
sa(He;) = —g(Ag-He;, U) = —g(AgHei, V) = —g(Ag= Hey, W),
which together with (2.7), (3.19), (3.20) and (3.21) yields
sa(Ge;) = w(Ag+e;) = —sgx(€;) = —u(Agre=€;),
sa(He;) = —v(Ag-e;) = u(Agre€;) = —Sgne=(€;).
But it follows from (3.17) ;) and (3.17) ) that

Sq** (61‘) = ’U)(Aa* ei) = —U(Aa*** 67;), Sqr** (61‘) = —’U(Aa* ei) = ’U,(Aa** 61‘),

which and the above equation give

(326) Sa(Gei) =0, Sa(Hei) =0, sa**(ei) =0, sgr== (61) =0i=1,...,

l.

Next, replacing X by Fe;, Ge; and He; in (3.17)(;, respectively, we have

sax(Fe;) = u(A Fe;) = v(Agess Fe;) = —w(Ag+ Fe;),
Sax(Ge;) = u(AgGe;) = v(Ag=-Ge;) = —w(AgGe;),
Sax(He;) = u(AgHe;) = v(Agse-He;) = —w(Ag«~He;)
from which together with (2.7), (3.18), (3.20) and (3.21),
Sax (Fe;) = sq(e;) = w(Ageere;) = v(Age=e;),
Sar (Ge;) = —w(Age;) = Sgres(€;) = —u(Ags=e€;),
Sox(Hep) = v(Age;) = —u(Agrre;) = —8qe(€5)-
But (3.17) 1), (3.17) ity and (3.17) sy, yield
Sa(€;) = —v(Ag€;) = —w(Ags=e€;),

o~

which together with the above equation and (3.26) gives

(3.27) sq(e;) =0, sq+(Fe;) =0, s4-(Ge;) =0, sq+(He;) =0, i=1,...

Replacing X by Fe;, Ge; and He; in (3.17)(111), respectively, we have
Sar+(Fe;) = —u(Ag+Fe;) = v(A Fe;) = w(Aq+Fey),
Sar+ (Ge;) = —u(Ager Gey) = v(AaGe;) = w(AgGey),
Sorx (He;) = —u(AgeHey) = v(AgHe;) = w(Ag«Hey),
from which together with (2.7), (3.18), (3.19) and (3.21),
Sare(Fe;) = —Sgres(€;) = w(Age;) = —v(Ag-e;),
sa**(GeZ) w(Agee;) = 8q(e;) = u(Agre;),
o (Hep) = —v(Agrere;) = —u(Age;) = sq-(€).
Thus (3.25), (3. 26) nd (3.27) give

(3.28) Saxx(Fe;) =0, Sqex(Ge;) =0, Se(He;) =0, i=1,...,1.
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Finally, replacing X by Fe;,Ge; and He; in (3.17)(iv), respectively, we have
Sarex (Fe;) = u(Ag=Fe;) = —v(Ag»Fe;) = w(AgFe;),
Sgrex (Ge;) = u(AgeGe;) = —v(Ag=Ge;) = w(ALGe;),
Sares (Hey) = u(Agw»He;) = —v(Ag-He;) = w(Ag He;),

from which together with (2.7), (3.18), (3.19), and (3.20),

Sqrex(Fe;) = Sqen(€;),  Sarn(Ge;) = —sgr(€5), Sae(Hei) = sq(e;).
Hence (3.25), (3.26) and (3.27) imply
(3.29) s (Fe;) =0, sgees(Gey) =0, sqens(Hey) =0, i=1,...,1L

4. An integral formula on the compact contact three
C R-submanifold

Let M be as in §2 and put
T := VU + VoV + VW + (div U)U + (div V)V + (div W)W
and take the same orthonormal basis {e;}i=1,.. a1+6 (I = (n — 3)/4) of tangent

vectors to M as given in (3.23) and (3.24), where div U = ngG g(e;, Ve, U).
Since F' is skew-symmetric and A is symmetric, (3.11) implies

(4.1) T = FAU + GAV + HAW.

We note that T is a global function on M. Now, for later use we shall compute
div 7 =315 g(es, Ve, T).

First of all, differentiating both side of (4.1) covariantly and using (3.8)-
(3.11), we have

VxT = (VxF)AU + F(VxA)U + FAVxU
+(VxG)AV + G(Vx AV + GAVxV
+(VxH)AW + H(VxA)W + HAV xW,
that is,
VxT = g(AU, &)X — g(AU, X)¢ — g(A*U, X)U +u(AU)AX + F(Vx AU
+ FAFAX + g(AV,)) X — g(AV, X)n — g(A?V, X))V + v(AV)AX
+ G(Vx AV + GAGAX +g(AW, () X — g(AW, X )¢ —g(A*W, X)W
+w(AW)AX + H(Vx AW + HAHAX,
which and (3.13) give
(4.2)
VxT =3X — g(AU, X)¢ — g(AV, X)n — g(AW, X)C
+ {u(AU) + v(AV) + w(AW)YAX — g(A?U, X)U — g(A%V, X)V
— g(A*W, X)W + FAFAX + GAGAX + HAHAX + F(Vx AU
+ G(VxA)V + HVxAW.
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Thus, from (2.6), (2.7) and (2.9)-(2.17), we have

divT’
=3(n+ 2) + trA{u(AU) + v(AV) + w(AW)}
— g(AU,U) — g(A*V, V) — g(A*W, W)
n+3
+ Y g(FAFAe; + GAGAe; + HAH Ae;, ¢;)

i=1

l
+ > 9((Vre,A)er — (Ve A)Fei,U) + g(Voe, A)es — (Ve, A)Ges, V)

+9(Vhe, A)ei — (Ve, A)Hei, W) + g((Vie, A)Gei — (Vge, A)He;, U)
((vFeiA)Hei — (VHeiA)Fei, V) +g((VceiA)Fe¢ — (VFEiA)Gei, W)}
(Vw AV = (Vv AW, U)+g(Vu A)W = (Vw A)U, V)

+ (Vv A)U—=(Vu A)V), W)+g((VcA)n—(V,A)(, U)

(VeA) (= (VAL V)+9((Vy A)E—(VeA)n), W),

which together with (3.7), (3.22) and (3.25)-(3.29) implies

divTl

=3(n+2) + trA{u(AU) + v(AV) + w(AW)}

- g(A’U,U) — g(A*V,V) — g(A*W, W)

n+3

+ Y g(FAFAe; + GAGAe; + HAH Ae;, ¢;)

+) {sa(N)u(AaV) = 5a(V)u(AaW) + s (W)u(Aq- V)

— Sar (V)u(Agx W) + sgrx (W)u(Ages V') — Sgux (V) u(Ag== W)
+ Sgrnn (W)u(AaM*V) — Sy (V)u(Aa*** W)}

+ Z{Sa(U)U(AaW) - Sa(W)U(AaU) + Sqx (U)W(Aa* W) — Sax (W)U(Aa* U)

+ Sar (U)v(Ages W) — 8ges (W)v(Ag==U)
+ Sarer (U)v(Agres W) — Sgess (W)U(Aa***U)}

+ Z{SG(V)w(AaU) — S (DwW(AGV) + o+ (V)w(Ag=U) — o« (U)w(Ag-V)

+ sger (V)W (AgerU) = e (U)w(Ag=+ V)
+ Sqxxx* (V)w(Aa*** U) — Sgxxx* (U)’U_}(Aa*** V)},
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that is,
divl = 3(n + 2) + trA{u(AU) + v(AV) + w(AW)}
— | AU|? - [|AV]]* — [ AW?
n+3
+> g(FAFAe; + GAGAe; + HAH Ae; ¢;).
i=1
On the other hand, using (2.9)-(2.17) and (3.13), we can easily verify that
n+3 1
> g(FAFAe;e;) = SlIFA- AF|? — trA% + |AU|* 41,
i=1

(4.3)

n+3
1
> g(GAGAe;, ;) = SlIGA - AG|? — trA% + |AV|? + 1,
i=1
n+3 1
> g(HAHAe;, e;) = SIIHA - AH|? — tr A% + | AW + 1,
i=1
that is,
3
g(FAF Ae; + GAGAe; + HAH Ae;, e;)
1

(||FA— AF|? 4+ ||GA — AG|? + |[HA — AH||?)

n

™+

N |

—3trA* + |AU|” + [[AV|* + |AW|* + 3,
which and (4.3) yield
divT =3{p—(n+1)(n+3)} + trA{u(AU) + v(AV) + w(AW)}

1
+5(IFA—AF|” + |GA - AG|* + |HA - AH|*)
q
= 3(trA)? =3 {(trd,)? — trA2 + (trdq.)” — trA2.
a=1

+ (trAge)? —trAZ.. + (trdge)? — trAZ... .
Thus we have:

Lemma 4.1. Let M be an (n+3)-dimensional compact, minimal contact three
CR-submanifold of S*™+3 with contact three CR-dimension (p — 1). If the
scalar curvature p is greater or equal to (n+ 1)(n + 3), then

(4.5) FA=AF, GA=AG, HA= AH,

(46) Aa = Aa* = Aa** = Aa*** = O, a = 1, e q.



SCALAR CURVATURE OF CONTACT THREE CR-SUBMANIFOLDS 599

5. The proof of main theorem

For the submanifold M given in Lemma 4.1, it is clear from (4.6) that its
first normal space is contained in Span{N} which is invariant under parallel
translation with respect to the normal connection V+ with the aid of (3.3))
and (3.17). Thus we may apply Erbacher’s reduction theorem ([3]) and this
yields that there is an (n+4)-dimensional totally geodesic unit sphere S™*4 such
that M C S™*4. Here we note that n+4 = dim S is of the type 4(I+1)+3.
Moreover, since the tangent space T, St of the totally geodesic submanifold
St at o € M is T, M @ Span{N}, S"** is an invariant submanifold of S*m+3
with respect to the Sasakian three structure {£,7,(} (that is, £, n and ( are
all tangent to S"*4, and ¢(T,S"**) C TS, ¢(T,S"*) C TS and
0(T,S™ ) C T,,S"t for any = € S"T*) because of (2.1) and (2.4). Hence the
submanifold M given in Lemma 4.1 can be regarded as a real hypersurface of
S™*4 which is a totally geodesic invariant submanifold of S4m+3,

Tentatively we denote S"** by M’ and by 4; the immersion of M into M’
and iy the totally geodesic immersion of M’ into $4™*3. Then, from the Gauss
equation (3.1), it follows that

(5.1) ViV =i VxV +H/(X,Y) =i, VxY + g(A'X,Y)N,
where h' denotes the second fundamental form of M in M’, A’ the correspond-

ing shape operator and N’ a unit normal vector field to M in M’. Since

i =19 011, we have
(5 2) ?izoilxig 0i1Y = igvglxil}/-i-h(ilX,ilY)
’ =i(i1VxY + g(A' X, Y)N'),

because M’ is totally geodesic in S¥™*+3. Comparing (5.2) with (3.2), we can
easily see that

(5.3) N=iN', A=A
Since M’ is an invariant submanifold of $*™*3, for any X' € TM’,
(5.4) Gis X = isd X', isX' = ist/ X', 0isX' = inl0 X'

are valid, where {¢’, 4,0’} is the induced Sasakian three structure of M’. Thus
it follows from (2.4) that

$iX = dig0i1 X = isd/i1 X = ia(i1 F' X +u/(X)N')
= iF'X +u/(X)isN' = iF'X + u'(X)N,
BiX =iz o i1 X = io®i1 X = is(i;G'X + v/ (X)N')
=iG'X +v'(X)iaN' = iG'X +v'(X)N,
0iX = Oin 0 i1 X = iof'i1 X = in(ir H'X +w'(X)N')
—iH'X +w'(X)iaN' = iH'X +w'(X)N.
Comparing those equations with (2.4), we have F' = F', ' = u; G = G,
v/ =vand H = H', w = w. Hence M is a real hypersurface of S"*4 which
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satisfies F'A" = A'F', G'A’ = A'/G’ and H'A’ = A'H’. Now applying the
theorem(cf. Theorem 10 in [8]) due to the second author, we can conclude:

Theorem. Let M be an (n + 3)-dimensional compact, minimal, contact three
C R-submanifold of (p— 1) contact three CR-dimension in S*™+3. If the scalar
curvature is greater or equal to (n+ 1)(n + 3), then

M = 8% 3 (a) x S*¥3(b), a*+b*=1, r+s=(n—3)/4
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