SCALAR CURVATURE OF CONTACT THREE $C R$-SUBMANIFOLDS IN A UNIT $(4 m+3)$-SPHERE

Hyang Sook Kim* and Jin Suk Pak

Abstract

In this paper we derive an integral formula on an $(n+3)$ dimensional, compact, minimal contact three $C R$-submanifold M of ($p-$ 1) contact three $C R$-dimension immersed in a unit $(4 m+3)$-sphere $S^{4 m+3}$. Using this integral formula, we give a sufficient condition concerning the scalar curvature of M in order that such a submanifold M is to be a generalized Clifford torus.

1. Introduction

Let $S^{4 m+3}$ be a $(4 m+3)$-dimensional unit sphere, that is,

$$
S^{4 m+3}=\left\{q \in Q^{m+1}:\|q\|=1\right\}
$$

where Q^{m+1} is the real $4(m+1)$-dimensional quaternionic number space. For any point $q \in S^{4 m+3}$, we put

$$
\xi=J q, \quad \eta=K q, \quad \zeta=L q
$$

where $\{J, K, L\}$ denotes the canonical quaternionic Kähler structure of Q^{m+1}. Then $\{\xi, \eta, \zeta\}$ becomes a Sasakian three structure, that is, ξ, η and ζ are mutually orthogonal unit Killing vector fields which satisfy

$$
\begin{align*}
\bar{\nabla}_{Y} \bar{\nabla}_{X} \xi & =g(X, \xi) Y-g(Y, X) \xi, \\
\bar{\nabla}_{Y} \bar{\nabla}_{X} \eta & =g(X, \eta) Y-g(Y, X) \eta, \tag{1.1}\\
\bar{\nabla}_{Y} \bar{\nabla}_{X} \zeta & =g(X, \zeta) Y-g(Y, X) \zeta
\end{align*}
$$

for any vector fields X, Y tangent to $S^{4 m+3}$, where g denotes the canonical metric on $S^{4 m+3}$ induced from that of Q^{m+1} and $\bar{\nabla}$ the Riemannian connection

Received September 29, 2009.
2010 Mathematics Subject Classification. 53C40, 53C25.
Key words and phrases. unit $(4 \mathrm{~m}+3)$-sphere, Sasakian 3 -structure, contact three $C R$ submanifold, scalar curvature.

* This work was supported by the 2009 Inje Research Grant.

This paper was issued from the BIEN2009 conference: INWES Asian Network held from August 27 to 29 in Busan, Korea, hosted by the Association of Korean Women Scientists and Engineers(KWSE).
with respect to g. In this case, putting

$$
\begin{equation*}
\phi X=\bar{\nabla}_{X} \xi, \quad \psi X=\bar{\nabla}_{X} \eta, \quad \theta X=\bar{\nabla}_{X} \zeta \tag{1.2}
\end{equation*}
$$

it follows that

$$
\begin{align*}
& \phi^{2}=-I+f_{\xi} \otimes \xi, \quad \psi^{2}=-I+f_{\eta} \otimes \eta, \quad \theta^{2}=-I+f_{\zeta} \otimes \zeta, \\
& \psi \theta=\phi+f_{\zeta} \otimes \eta, \quad \theta \phi=\psi+f_{\xi} \otimes \zeta, \quad \phi \psi=\theta+f_{\eta} \otimes \xi \tag{1.4}\\
& \theta \psi=-\phi+f_{\eta} \otimes \zeta, \quad \phi \theta=-\psi+f_{\zeta} \otimes \xi, \quad \psi \phi=-\theta+f_{\xi} \otimes \eta,
\end{align*}
$$

and

$$
\begin{align*}
g(\phi X, Y) & =-g(X, \phi Y), \\
g(\psi X, Y) & =-g(X, \psi Y), \tag{1.5}\\
g(\theta X, Y) & =-g(X, \theta Y),
\end{align*}
$$

where I denotes the identity transformation and

$$
\begin{equation*}
f_{\xi}(X)=g(X, \xi), \quad f_{\eta}(X)=g(X, \eta), \quad f_{\zeta}(X)=g(X, \zeta) \tag{1.6}
\end{equation*}
$$

Moreover, from (1.1) and (1.2), we have

$$
\begin{align*}
\left(\bar{\nabla}_{Y} \phi\right) X & =g(X, \xi) Y-g(Y, X) \xi \\
\left(\bar{\nabla}_{Y} \psi\right) X & =g(X, \eta) Y-g(Y, X) \eta, \tag{1.7}\\
\left(\bar{\nabla}_{Y} \theta\right) X & =g(X, \zeta) Y-g(Y, X) \zeta
\end{align*}
$$

for any vector fields X, Y tangent to $S^{4 m+3}$ (cf. [4, 5, 6, 7, 8]).
Let M be an $(n+3)$-dimensional submanifold tangent to the structure vectors ξ, η and ζ of $S^{4 m+3}$. If there exists a subbundle ν of the normal bundle $T M^{\perp}$ such that

$$
\begin{gather*}
\phi \nu_{x} \subset \nu_{x}, \quad \psi \nu_{x} \subset \nu_{x}, \quad \theta \nu_{x} \subset \nu_{x}, \\
\phi \nu_{x}^{\perp} \subset T_{x} M, \quad \psi \nu_{x}^{\perp} \subset T_{x} M, \quad \theta \nu_{x}^{\perp} \subset T_{x} M \tag{1.8}
\end{gather*}
$$

at any point $x \in M$, where $T M$ denotes the tangent bundle of M and ν^{\perp} is the complementary orthogonal subbundle to ν in $T M^{\perp}$, then the submanifold is called a contact three $C R$-submanifold of $S^{4 m+3}$ and the dimension of ν contact three $C R$-dimension. In particular we can easily see that real hypersurfaces tangent to ξ, η and ζ of $S^{4 m+3}$ are typical examples of such submanifolds.

In this paper we shall study $(n+3)$-dimensional contact three $C R$-submanifolds with $(p-1)$ contact three $C R$-dimension of $S^{4 m+3}$, where p is $4 m-n$ the codimension. In this case the maximal $\{\phi, \psi, \theta\}$-invariant subspace

$$
\mathcal{D}_{x}=T_{x} M \cap \phi T_{x} M \cap \psi T_{x} M \cap \theta T_{x} M
$$

of $T_{x} M$ has constant dimension $n-3$ because the orthogonal complement \mathcal{D}_{x}^{\perp} to \mathcal{D}_{x} in $T_{x} M$ has constant dimension 6 at any point $x \in M$ (cf. See $\S 2$ and [7]).

Moreover we shall investigate some geometric characterizations of

$$
S^{4 r+3}(a) \times S^{4 s+3}(b) \quad\left(a^{2}+b^{2}=1, r+s=(n-3) / 4\right)
$$

as a contact three $C R$-submanifold of $S^{4 m+3}$.

2. Preliminaries

Let M be an $(n+3)$-dimensional contact three $C R$-submanifold with ($p-1$) contact three $C R$-dimension of $S^{4 m+3}$. Then we may set $\nu^{\perp}=\operatorname{Span}\{N\}$ for a unit normal vector field N to M since $\operatorname{dim} \nu_{x}=p-1$ at every $x \in M$. From now on we put

$$
\begin{equation*}
\phi N=-U, \quad \psi N=-V, \quad \theta N=-W . \tag{2.1}
\end{equation*}
$$

Then it follows from (1.3)-(1.6) and (1.8) that U, V, W are mutually orthogonal unit tangent vector fields to M and satisfy

$$
\begin{array}{ll}
g(\xi, U)=0, & g(\xi, V)=0, \\
g(\eta, U)=0, & g(\eta, W)=0 \tag{2.2}\\
g(\zeta, U)=0, & g(\zeta, V)=0,
\end{array} \quad g(\eta, W)=0, ~(\zeta, W)=0 . ~ \$
$$

Moreover ξ, η, ζ, U, V and W are all contained in \mathcal{D}_{x}^{\perp} and consequently $\operatorname{dim} \mathcal{D}_{x}^{\perp}=6$, or equivalently $\operatorname{dim} \mathcal{D}_{x}=n-3$ at any point $x \in M$ (cf. [7]). It is clear that

$$
\begin{equation*}
\phi \mathcal{D}_{x}^{\perp} \subset \operatorname{Span}\{N\}, \quad \psi \mathcal{D}_{x}^{\perp} \subset \operatorname{Span}\{N\}, \quad \theta \mathcal{D}_{x}^{\perp} \subset \operatorname{Span}\{N\} \tag{2.3}
\end{equation*}
$$

at any point $x \in M$. Hence for any tangent vector field X and for a local orthonormal basis $\left\{N_{\alpha}\right\}_{\alpha=1, \ldots, p}\left(N_{1}:=N\right)$ of normal vectors to M, we have the following decomposition in tangential and normal components:
(i) $\phi X=F X+u(X) N$,
(ii) $\psi X=G X+v(X) N$,
(iii) $\theta X=H X+w(X) N$,

$$
\begin{equation*}
\phi N_{\alpha}=\sum_{\beta=2}^{p} P_{\alpha \beta}^{\phi} N_{\beta}, \psi N_{\alpha}=\sum_{\beta=2}^{p} P_{\alpha \beta}^{\psi} N_{\beta}, \theta N_{\alpha}=\sum_{\beta=2}^{p} P_{\alpha \beta}^{\theta} N_{\beta}, \alpha=2, \ldots, p, \tag{2.5}
\end{equation*}
$$

where $\{F, G, H\}$ define skew-symmetric linear endomorphisms acting on $T_{x} M$ and $\{u, v, w\}$ are local 1-forms on M. Since the structure vector fields $\{\xi, \eta, \zeta\}$ are tangent to M, it follows from (1.3), (1.5), (2.1) and (2.4) that

$$
\begin{align*}
& F \xi=0, \quad F \eta=\zeta, \quad F \zeta=-\eta \\
& G \xi=-\zeta, \quad G \eta=0, \quad G \zeta=\xi \tag{2.6}\\
& H \xi=\eta, \quad H \eta=-\xi, \quad H \zeta=0
\end{align*}
$$

$$
\begin{gather*}
F U=0, \quad F V=W, \quad F W=-V \\
G U=-W, \quad G V=0, \quad G W=U \tag{2.7}\\
H U=V, \quad H V=-U, \quad H W=0 \\
g(U, X)=u(X), \quad g(V, X)=v(X), \quad g(W, X)=w(X) \tag{2.8}
\end{gather*}
$$

Next, applying ϕ to both side of $(2.4)_{(\mathrm{i})}$ and using (1.4), (1.6), (2.1) and $(2.4)_{(\mathrm{i})}$, we have

$$
\begin{equation*}
F^{2} X=-X+u(X) U+g(\xi, X) \xi, \quad u(F X)=g(U, F X)=0 \tag{2.9}
\end{equation*}
$$

Similarly, from (2.4) (ii) and $(2.4)_{(i i i)}$ it follows that

$$
\begin{array}{cl}
G^{2} X=-X+v(X) V+g(\eta, X) \eta, & v(G X)=g(V, G X)=0 \\
H^{2} X=-X+w(X) W+g(\zeta, X) \zeta, & w(H X)=g(W, H X)=0 \tag{2.11}
\end{array}
$$

Also applying ψ and θ to both side of (2.4) ${ }_{(\mathrm{i})}$, respectively, and using (1.4)-(1.6), (2.1) and (2.4), we get

$$
\begin{gather*}
G F X=-H X+u(X) V+g(\xi, X) \eta, \quad v(F X)=-w(X), \tag{2.12}\\
H F X=G X+u(X) W+g(\xi, X) \zeta, \quad w(F X)=v(X)
\end{gather*}
$$

Similarly, it follows from $(2.4)_{(i i)}$ and $(2.4)_{(i i i)}$ that

$$
\begin{gather*}
H G X=-F X+v(X) W+g(\eta, X) \zeta, \quad w(G X)=-u(X), \tag{2.14}\\
F G X=H X+v(X) U+g(\eta, X) \xi, \quad u(G X)=w(X), \tag{2.15}\\
F H X=-G X+w(X) U+g(\zeta, X) \xi, \quad u(H X)=-v(X), \tag{2.16}\\
G H X=F X+w(X) V+g(\zeta, X) \eta, \quad v(H X)=u(X) . \tag{2.17}
\end{gather*}
$$

3. Fundamental equations for the contact three $C R$-submanifold

Let M be as in $\S 2$. Then, by means of (1.4), (1.6) and (2.5), we can take a local orthonormal basis $\left\{N, N_{a}, N_{a^{*}}, N_{a^{* *}}, N_{a^{* * *}}\right\}_{a=1, \ldots, q:=(p-1) / 4}$ of normal vectors to M in such a way that

$$
\begin{equation*}
N_{a^{*}}:=\phi N_{a}, \quad N_{a^{* *}}:=\psi N_{a}, \quad N_{a^{* * *}}:=\theta N_{a} . \tag{3.1}
\end{equation*}
$$

Let ∇ and ∇^{\perp} denote the covariant differentiation in M and the normal connection induced from $\bar{\nabla}$ on the normal bundle $T M^{\perp}$, respectively. Then Gauss and Weingarten formulae are given by

$$
\begin{equation*}
\bar{\nabla}_{X} Y=\nabla_{X} Y+h(X, Y) \tag{3.2}
\end{equation*}
$$

(i) $\bar{\nabla}_{X} N=-A X+\nabla{ }_{X}^{\perp} N$

$$
=-A X+\sum_{a=1}^{q}\left\{s_{a}(X) N_{a}+s_{a^{*}}(X) N_{a^{*}}+s_{a^{* *}}(X) N_{a^{* *}}+s_{a^{* * *}}(X) N_{a^{* * *}}\right\},
$$

(ii) $\bar{\nabla}_{X} N_{a}=-A_{a} X-s_{a}(X) N$

$$
+\sum_{b=1}^{q}\left\{s_{a b}(X) N_{b}+s_{a b^{*}}(X) N_{b^{*}}+s_{a b^{* *}}(X) N_{b^{* *}}+s_{a b^{* * *}}(X) N_{b^{* * *}}\right\},
$$

(iii) $\bar{\nabla}_{X} N_{a^{*}}=-A_{a^{*}} X-s_{a^{*}}(X) N$

$$
+\sum_{b=1}^{q}\left\{s_{a^{*} b}(X) N_{b}+s_{a^{*} b^{*}}(X) N_{b^{*}}+s_{a^{*} b^{* *}}(X) N_{b^{* *}}+s_{a^{*} b^{* * *}}(X) N_{b^{* * *}}\right\},
$$

(iv) $\bar{\nabla}_{X} N_{a^{* *}}=-A_{a^{* *}} X-s_{a^{* *}}(X) N$

$$
+\sum_{b=1}^{q}\left\{s_{a^{* *} b}(X) N_{b}+s_{a^{* *} b^{*}}(X) N_{b^{*}}+s_{a^{* *} b^{* *}}(X) N_{b^{* *}}+s_{a^{* *} b^{* * *}}(X) N_{b^{* * *}}\right\},
$$

(v) $\bar{\nabla}_{X} N_{a^{* * *}}=-A_{a^{* * *}} X-s_{a^{* * *}}(X) N$

$$
+\sum_{b=1}^{q}\left\{s_{a^{* * *} b}(X) N_{b}+s_{a^{* * *} b^{*}}(X) N_{b^{*}}+s_{a^{* * *} b^{* *}}(X) N_{b^{* *}}+s_{a^{* * *} b^{* * *}}(X) N_{b^{* * *}}\right\}
$$

for any vector fields X, Y tangent to M, where $s^{\prime} s$ are coefficients of the normal connection ∇^{\perp}. Here and in the sequel h denotes the second fundamental form and $A, A_{a}, A_{a^{*}}, A_{a^{* *}}$ and $A_{a^{* * *}}$ the shape operators corresponding to the normals $N, N_{a}, N_{a^{*}}, N_{a^{* *}}$ and $N_{a^{* * *}}$, respectively. They are related by

$$
\begin{align*}
h(X, Y)=g(A X, Y) N & +\sum_{a=1}^{q}\left\{g\left(A_{a} X, Y\right) N_{a}+g\left(A_{a^{*}} X, Y\right) N_{a^{*}}\right. \tag{3.4}\\
& \left.+g\left(A_{a^{* *}} X, Y\right) N_{a^{* *}}+g\left(A_{a^{* * *}} X, Y\right) N_{a^{* * *}}\right\}
\end{align*}
$$

On the other hand, since the ambient manifold $S^{4 m+3}$ is a space form of the constant curvature 1, its curvature tensor \bar{R} satisfies

$$
\bar{R}(X, Y) Z=g(Y, Z) X-g(X, Z) Y
$$

Hence, by means of the equation of Gauss, we can easily see that the Ricci tensor $\operatorname{Ric}(Y, Z)$ turns out to be

$$
\begin{align*}
& \operatorname{Ric}(Y, Z) \tag{3.5}\\
= & (n+2) g(Y, Z)+(\operatorname{tr} A) g(A Y, Z)-g\left(A^{2} Y, Z\right) \\
& +\sum_{a=1}^{q}\left\{\left(\operatorname{tr} A_{a}\right) g\left(A_{a} Y, Z\right)-g\left(A_{a}^{2} Y, Z\right)+\left(\operatorname{tr} A_{a^{*}}\right) g\left(A_{a^{*}} Y, Z\right)-g\left(A_{a^{*}}^{2} Y, Z\right)\right. \\
& \left.+\left(\operatorname{tr} A_{a^{* *}}\right) g\left(A_{a^{* *}} Y, Z\right)-g\left(A_{a^{* *}}^{2} Y, Z\right)+\left(\operatorname{tr} A_{a^{* * *}}\right) g\left(A_{a^{* * *}} Y, Z\right)-g\left(A_{a^{* * *}}^{2} Y, Z\right)\right\}
\end{align*}
$$

and consequently the scalar curvature ρ is given by

$$
\begin{align*}
\rho= & (n+2)(n+3)+(\operatorname{tr} A)^{2}-\operatorname{tr} A^{2}+\sum_{a=1}^{q}\left\{\left(\operatorname{tr} A_{a}\right)^{2}-\operatorname{tr} A_{a}^{2}\right. \tag{3.6}\\
& \left.+\left(\operatorname{tr} A_{a^{*}}\right)^{2}-\operatorname{tr} A_{a^{*}}^{2}+\left(\operatorname{tr} A_{a^{* *}}\right)^{2}-\operatorname{tr} A_{a^{* *}}^{2}+\left(\operatorname{tr} A_{a^{* * *}}\right)^{2}-\operatorname{tr} A_{a^{* * *}}^{2}\right\} .
\end{align*}
$$

Moreover, by means of the equation of Codazzi, we also have

$$
\begin{align*}
& \left(\nabla_{X} A\right) Y-\left(\nabla_{Y} A\right) X \tag{3.7}\\
= & \sum_{a=1}^{q}\left\{s_{a}(X) A_{a} Y-s_{a}(Y) A_{a} X+s_{a^{*}}(X) A_{a^{*}} Y-s_{a^{*}}(Y) A_{a^{*}} X\right. \\
& \left.+s_{a^{* *}}(X) A_{a^{* *}} Y-s_{a^{* *}}(Y) A_{a^{* *}} X+s_{a^{* * *}}(X) A_{a^{* * *}} Y-s_{a^{* * *}}(Y) A_{a^{* * *}} X\right\}
\end{align*}
$$

Now differentiating $(2.4)_{(\mathrm{i})}$ covariantly and using (1.7), (3.2), (3.3) $)_{(\mathrm{i})}$ and (3.4), we have

$$
\begin{align*}
& \left(\nabla_{Y} F\right) X=g(X, \xi) Y-g(X, Y) \xi-g(A X, Y) U+u(X) A Y, \\
& \left(\nabla_{Y} u\right) X=-g(A F X, Y) . \tag{3.8}
\end{align*}
$$

Similarly, from $(2.4)_{(i i)}$ and $(2.4)_{(i i i)}$, we also obtain

$$
\begin{align*}
& \left(\nabla_{Y} G\right) X=g(X, \eta) Y-g(X, Y) \eta-g(A X, Y) V+v(X) A Y \\
& \left(\nabla_{Y} v\right) X=-g(A G X, Y) \tag{3.9}\\
& \left(\nabla_{Y} H\right) X=g(X, \zeta) Y-g(X, Y) \zeta-g(A X, Y) W+w(X) A Y \\
& \left(\nabla_{Y} w\right) X=-g(A H X, Y) \tag{3.10}
\end{align*}
$$

Differentiating (2.1) covariantly and using (1.7), (2.4), (3.2), (3.3) $)_{(\mathrm{i})}$ and (3.4), we have

$$
\begin{equation*}
\nabla_{X} U=F A X, \quad \nabla_{X} V=G A X, \quad \nabla_{X} W=H A X . \tag{3.11}
\end{equation*}
$$

Moreover, it is clear from (1.2), (3.2) and (3.4) that

$$
\begin{gather*}
\nabla_{X} \xi=F X, \quad \nabla_{X} \eta=G X, \quad \nabla_{X} \zeta=H X \tag{3.12}\\
A \xi=U, \quad A \eta=V, \quad A \zeta=W \tag{3.13}\\
A_{a} \xi=0, \quad A_{a^{*}} \xi=0, \quad A_{a^{* *}} \xi=0, \quad A_{a^{* * *}} \xi=0, \\
A_{a} \eta=0, \quad A_{a^{*}} \eta=0, \quad A_{a^{* *}} \eta=0, \quad A_{a^{* * *}} \eta=0, \tag{3.14}\\
A_{a} \zeta=0, \quad A_{a^{*}} \zeta=0, \quad A_{a^{* *}} \zeta=0, \quad A_{a^{* * *}} \zeta=0, \quad a=1, \ldots, q .
\end{gather*}
$$

On the other hand, since the structure vector fields $\{\xi, \eta, \zeta\}$ are tangent to M, it follows from (3.1) and (3.3) (iii) that

$$
\begin{aligned}
&(3.15) \\
& \phi \bar{\nabla}_{X} N_{a}=-A_{a^{*}} X-s_{a^{*}}(X) N \\
&+\sum_{b=1}^{q}\left\{s_{a^{*} b}(X) N_{b}+s_{a^{*} b^{*}}(X) N_{b^{*}}+s_{a^{*} b^{* *}}(X) N_{b^{* *}}+s_{a^{*} b^{* * *}}(X) N_{b^{* * *}}\right\} .
\end{aligned}
$$

Applying ϕ to (3.15) and using (1.4), (1.6), (2.1), (2.4) $)_{(\mathrm{i})}$, (3.1) and (3.14), we get

$$
\begin{aligned}
\bar{\nabla}_{X} N_{a}= & F A_{a^{*}} X-s_{a^{*}}(X) U+g\left(A_{a^{*}} X, U\right) N \\
& -\sum_{b=1}^{q}\left\{s_{a^{*} b}(X) N_{b^{*}}-s_{a^{*} b^{*}}(X) N_{b}+s_{a^{*} b^{* *}}(X) N_{b^{* * *}}-s_{a^{*} b^{* * *}}(X) N_{b^{* *}}\right\},
\end{aligned}
$$

which together with $(3.3)_{(i i)}$ implies

$$
A_{a} X=-F A_{a^{*}} X+s_{a^{*}}(X) U, \quad s_{a}(X)=-g\left(A_{a^{*}} X, U\right)=-u\left(A_{a^{*}} X\right)
$$

Applying ψ and θ to (3.15), respectively and using (1.4), (1.6), (2.1), (2.4) $)_{(i i)}$, $(2.4)_{(i i i)},(3.1)$ and (3.14), we also have

$$
\bar{\nabla}_{X} N_{a^{* * *}}=G A_{a^{*}} X-s_{a^{*}}(X) V+g\left(A_{a^{*}} X, V\right) N
$$

$$
-\sum_{b=1}^{q}\left\{s_{a^{*} b}(X) N_{b^{* *}}-s_{a^{*} b^{*}}(X) N_{b^{* * *}}-s_{a^{*} b^{* *}}(X) N_{b}+s_{a^{*} b^{* * *}}(X) N_{b^{*}}\right\},
$$

$$
\bar{\nabla}_{X} N_{a^{* *}}=-H A_{a^{*}} X+s_{a^{*}}(X) W-g\left(A_{a^{*}} X, W\right) N
$$

$$
+\sum_{b=1}^{q}\left\{s_{a^{*} b}(X) N_{b^{* * *}}+s_{a^{*} b^{*}}(X) N_{b^{* *}}-s_{a^{*} b^{* *}}(X) N_{b^{*}}-s_{a^{*} b^{* * *}}(X) N_{b}\right\}
$$

thus comparing the above two equations with $(3.3)_{(i v)}$ and (3.3) $)_{(\mathrm{v})}$, we obtain

$$
\begin{array}{lc}
A_{a^{* *}} X=H A_{a^{*}} X-s_{a^{*}}(X) W, & s_{a^{* *}}(X)=g\left(A_{a^{*}} X, W\right)=w\left(A_{a^{*}} X\right) \\
A_{a^{* * *}} X=-G A_{a^{*}} X+s_{a^{*}}(X) V, & s_{a^{* * *}}(X)=-g\left(A_{a^{*}} X, V\right)=-v\left(A_{a^{*}} X\right)
\end{array}
$$

Similarly, from $(3.3)_{(\text {iv })}$ it follows that

$$
\begin{aligned}
& \psi \bar{\nabla}_{X} N_{a} \\
= & -A_{a^{* *}} X-s_{a^{* *}}(X) N \\
& +\sum_{b=1}^{q}\left\{s_{a^{* *} b}(X) N_{b}+s_{a^{* *} b^{*}}(X) N_{b^{*}}+s_{a^{* *} b^{* *}}(X) N_{b^{* *}}+s_{a^{* *} b^{* * *}}(X) N_{b^{* * *}}\right\},
\end{aligned}
$$

which implies

$$
\begin{aligned}
& \bar{\nabla}{ }_{X} N_{a} \\
= & G A_{a^{* *}} X-s_{a^{* *}}(X) V+g\left(A_{a^{* *}} X, V\right) N \\
& -\sum_{b=1}^{q}\left\{s_{a^{* *} b}(X) N_{b^{* *}}-s_{a^{* *} b^{*}}(X) N_{b^{* * *}}-s_{a^{* *} b^{* *}}(X) N_{b}+s_{a^{* *} b^{* * *}}(X) N_{b^{*}}\right\}, \\
& \bar{\nabla}_{X} N_{a^{* * *}} \\
= & -F A_{a^{* *}} X+s_{a^{* *}}(X) U-g\left(A_{a^{* *}} X, U\right) N \\
& +\sum_{b=1}^{q}\left\{s_{a^{* *} b}(X) N_{b^{*}}-s_{a^{* *} b^{*}}(X) N_{b}+s_{a^{* *} b^{* *}}(X) N_{b^{* * *}}-s_{a^{* *} b^{* * *}}(X) N_{b^{* *}}\right\},
\end{aligned}
$$

$$
\begin{aligned}
& \bar{\nabla}_{X} N_{a^{*}} \\
= & H A_{a^{* *}} X-s_{a^{* *}}(X) W+g\left(A_{a^{* *}} X, W\right) N \\
& -\sum_{b=1}^{q}\left\{s_{a^{* *} b}(X) N_{b^{* * *}}+s_{a^{* *} b^{*}}(X) N_{b^{* *}}-s_{a^{* *} b^{* *}}(X) N_{b^{*}}-s_{a^{* *} b^{* * *}}(X) N_{b}\right\} .
\end{aligned}
$$

Hence we have

$$
\begin{aligned}
& A_{a} X=-G A_{a^{* *}} X+s_{a^{* *}}(X) V, \quad s_{a}(X)=-g\left(A_{a^{* *}} X, V\right)=-v\left(A_{a^{* *}} X\right) \\
& A_{a^{*}} X=-H A_{a^{* *}} X+s_{a^{* *}}(X) W, \quad s_{a^{*}}(X)=-g\left(A_{a^{* *}} X, W\right)=-w\left(A_{a^{* *}} X\right), \\
& A_{a^{* * *}} X=F A_{a^{* *}} X-s_{a^{* *}}(X) U, \quad s_{a^{* * *}}(X)=g\left(A_{a^{* *}} X, U\right)=u\left(A_{a^{* *}} X\right)
\end{aligned}
$$

Also, by means of $(3.3)_{(\mathrm{v})}$ we have

$$
\begin{aligned}
\theta \bar{\nabla}_{X} N_{a}= & -A_{a^{* * *}} X-s_{a^{* * *}}(X) N \\
& +\sum_{b=1}^{q}\left\{s_{a^{* * *} b}(X) N_{b}+s_{a^{* * *} b^{*}}(X) N_{b^{*}}+s_{a^{* * *} b^{* *}}(X) N_{b^{* *}}\right. \\
& \left.\quad+s_{a^{* * *} b^{* * *}}(X) N_{b^{* * *}}\right\}
\end{aligned}
$$

which yields

$$
\begin{aligned}
& \bar{\nabla}_{X} N_{a}= H A_{a^{* * *}} \\
& \begin{aligned}
- & \sum_{b=1}^{q}\left\{s_{a^{* * *}}(X) s_{a^{* * *}}(X) W+g\left(A_{a^{* * * *}}+s_{a^{* * *} b^{*}}(X) N_{b^{* *}}-s_{a^{* * *} b^{* *}}(X) N_{b^{*}}\right.\right. \\
& \left.-s_{a^{* * *} b^{* * *}}(X) N_{b}\right\}, \\
\bar{\nabla}_{X} N_{a^{* *}}= & F A_{a^{* * *}} X-s_{a^{* * *}}(X) U+g\left(A_{a^{* * *}} X, U\right) N \\
& -\sum_{b=1}^{q}\left\{s_{a^{* * *}}(X) N_{b^{*}}-s_{a^{* * *} b^{*}}(X) N_{b}+s_{a^{* * *} b^{* *}}(X) N_{b^{* * *}}\right. \\
& \left.\quad-s_{a^{* * *} b^{* * *}}(X) N_{b^{* *}}\right\}, \\
\bar{\nabla}_{X} N_{a^{*}}=- & G A_{a^{* * *}} X+s_{a^{* * *}}(X) V-g\left(A_{a^{* * *}} X, V\right) N \\
& +\sum_{b=1}^{q}\left\{s_{a^{* * *} b}(X) N_{b^{* *}}-s_{a^{* * *} b^{*}}(X) N_{b^{* * *}}-s_{a^{* * *} b^{* *}}(X) N_{b}\right. \\
& \left.+s_{a^{* * *} b^{* * *}}(X) N_{b^{*}}\right\} .
\end{aligned}
\end{aligned}
$$

Thus we have

$$
\begin{aligned}
& A_{a} X=-H A_{a^{* * *}} X+s_{a^{* * *}}(X) W, s_{a}(X)=-g\left(A_{a^{* * *}} X, W\right)=-w\left(A_{a^{* * *}} X\right) \\
& A_{a^{*}} X=G A_{a^{* * *}} X-s_{a^{* * *}}(X) V, s_{a^{*}}(X)=g\left(A_{a^{* * *}} X, V\right)=v\left(A_{a^{* * *}} X\right) \\
& A_{a^{* *}} X=-F A_{a^{* * *}} X+s_{a^{* * *}}(X) U, s_{a^{* *}}(X)=-g\left(A_{a^{* * *}} X, U\right)=-u\left(A_{a^{* * *}} X\right) .
\end{aligned}
$$

Finally, applying ϕ, ψ and θ to (3.3) $)_{\text {(ii) }}$, respectively and using (1.4), (1.6), (1.7), (2.1), (2.4) and (3.1), we have

$$
\begin{aligned}
\bar{\nabla}_{X} N_{a^{*}}= & -F A_{a} X+s_{a}(X) U-g\left(A_{a} X, U\right) N \\
& +\sum_{b=1}^{q}\left\{s_{a b}(X) N_{b^{*}}-s_{a b^{*}}(X) N_{b}+s_{a b^{* *}}(X) N_{b^{* * *}}-s_{a b^{* * *}}(X) N_{b^{* *}}\right\}, \\
\bar{\nabla}_{X} N_{a^{* *}}= & -G A_{a} X+s_{a}(X) V-g\left(A_{a} X, V\right) N \\
& +\sum_{b=1}^{q}\left\{s_{a b}(X) N_{b^{* *}}-s_{a b^{*}}(X) N_{b^{* * *}}-s_{a b^{* *}}(X) N_{b}+s_{a b^{* * *}}(X) N_{b^{*}}\right\}, \\
\bar{\nabla}_{X} N_{a^{* * *}}= & -H A_{a} X+s_{a}(X) W-g\left(A_{a} X, W\right) N \\
& +\sum_{b=1}^{q}\left\{s_{a b}(X) N_{b^{* * *}}+s_{a b^{*}}(X) N_{b^{* *}}-s_{a b^{* *}}(X) N_{b^{*}}-s_{a b^{* * *}}(X) N_{b}\right\},
\end{aligned}
$$

thus comparing the above three equations with $(3.3)_{(\text {iii }},(3.3)_{(\mathrm{iv})}$ and $(3.3)_{(\mathrm{v})}$, we obtain

$$
\begin{aligned}
& A_{a^{*}} X=F A_{a} X-s_{a}(X) U, \quad s_{a^{*}}(X)=g\left(A_{a} X, U\right)=u\left(A_{a} X\right) \\
& A_{a^{* *}} X=G A_{a} X-s_{a}(X) V, \quad s_{a^{* *}}(X)=g\left(A_{a} X, V\right)=v\left(A_{a} X\right) \\
& A_{a^{* * *}} X=H A_{a} X-s_{a}(X) W, \quad s_{a^{* * *}}(X)=g\left(A_{a} X, W\right)=w\left(A_{a} X\right)
\end{aligned}
$$

Summing up, we have:
Lemma 3.1. Let M be an $(n+3)$-dimensional contact three $C R$-submanifold of $S^{4 m+3}$ with contact three $C R$-dimension $(p-1)$. Then the following relationships (3.16) and (3.17) are established on M, where $p=4 m-n$.

$$
\begin{aligned}
A_{a} X & =-F A_{a^{*}} X+s_{a^{*}}(X) U=-G A_{a^{* *}} X+s_{a^{* *}}(X) V \\
& =-H A_{a^{* * *}} X+s_{a^{* * *}}(X) W \\
A_{a^{*}} X & =F A_{a} X-s_{a}(X) U=G A_{a^{* * *}} X-s_{a^{* * *}}(X) V \\
& =-H A_{a^{* *}} X+s_{a^{* *}}(X) W \\
A_{a^{* *}} X & =-F A_{a^{* * *}} X+s_{a^{* * *}}(X) U=G A_{a} X-s_{a}(X) V \\
& =H A_{a^{*}} X-s_{a^{*}}(X) W \\
A_{a^{* * *}} X & =F A_{a^{* *}} X-s_{a^{* *}}(X) U=-G A_{a^{*}} X+s_{a^{*}}(X) V \\
& =H A_{a} X-s_{a}(X) W
\end{aligned}
$$

(i) $\quad s_{a}(X)=-u\left(A_{a^{*}} X\right)=-v\left(A_{a^{* *}} X\right)=-w\left(A_{a^{* * *}} X\right)$,
(ii) $s_{a^{*}}(X)=u\left(A_{a} X\right)=v\left(A_{a^{* * *}} X\right)=-w\left(A_{a^{* *}} X\right)$,
(iii) $s_{a^{* *}}(X)=-u\left(A_{a^{* * *}} X\right)=v\left(A_{a} X\right)=w\left(A_{a^{*}} X\right)$,
(iv) $s_{a^{* * *}}(X)=u\left(A_{a^{* *}} X\right)=-v\left(A_{a^{*}} X\right)=w\left(A_{a} X\right)$.

Because of Lemma 3.1 and the facts that F, G, H are skew-symmetric and $A_{a}, A_{a^{*}}, A_{a^{* *}}, A_{a^{* * *}}$ are symmetric, (3.16) yields

$$
\begin{align*}
& g\left(\left(A_{a} F+F A_{a}\right) X, Y\right)=s_{a}(X) u(Y)-s_{a}(Y) u(X), \\
& g\left(\left(A_{a} G+G A_{a}\right) X, Y\right)=s_{a}(X) v(Y)-s_{a}(Y) v(X), \tag{3.18}\\
& g\left(\left(A_{a} H+H A_{a}\right) X, Y\right)=s_{a}(X) w(Y)-s_{a}(Y) w(X), \\
& g\left(\left(A_{a^{*}} F+F A_{a^{*}}\right) X, Y\right)=s_{a^{*}}(X) u(Y)-s_{a^{*}}(Y) u(X), \\
& g\left(\left(A_{a^{*}} G+G A_{a^{*}}\right) X, Y\right)=s_{a^{*}}(X) v(Y)-s_{a^{*}}(Y) v(X), \tag{3.19}\\
& g\left(\left(A_{a^{*}} H+H A_{a^{*}}\right) X, Y\right)=s_{a^{*}}(X) w(Y)-s_{a^{*}}(Y) w(X), \\
& g\left(\left(A_{a^{* *}} F+F A_{a^{* *}}\right) X, Y\right)=s_{a^{* *}}(X) u(Y)-s_{a^{* *}}(Y) u(X), \\
& g\left(\left(A_{a^{* *}} G+G A_{a^{* *}}\right) X, Y\right)=s_{a^{* *}}(X) v(Y)-s_{a^{* *}}(Y) v(X), \tag{3.20}\\
& g\left(\left(A_{a^{* *}} H+H A_{a^{* *}}\right) X, Y\right)=s_{a^{* *}}(X) w(Y)-s_{a^{* *}}(Y) w(X), \\
& g\left(\left(A_{a^{* * *}} F+F A_{a^{* * *}}\right) X, Y\right)=s_{a^{* * *}}(X) u(Y)-s_{a^{* * *}}(Y) u(X), \\
& g\left(\left(A_{a^{* * *}} G+G A_{a^{* * *}}\right) X, Y\right)=s_{a^{* * *}}(X) v(Y)-s_{a^{* * *}}(Y) v(X), \tag{3.21}\\
& g\left(\left(A_{a^{* * *}} H+H A_{a^{* * *}}\right) X, Y\right)=s_{a^{* * *}}(X) w(Y)-s_{a^{* * *}}(Y) w(X) .
\end{align*}
$$

It is also clear from (3.14) and (3.17) that

$$
\begin{align*}
& s_{a}(\xi)=s_{a^{*}}(\xi)=s_{a^{* *}}(\xi)=s_{a^{* * *}}(\xi)=0, \\
& s_{a}(\eta)=s_{a^{*}}(\eta)=s_{a^{* *}}(\eta)=s_{a^{* * *}}(\eta)=0, \tag{3.22}\\
& s_{a}(\zeta)=s_{a^{*}}(\zeta)=s_{a^{* *}}(\zeta)=s_{a^{* * *}}(\zeta)=0 .
\end{align*}
$$

On the other hand, we can take an orthonormal basis

$$
\left\{e_{i}\right\}_{i=1, \ldots, 4 l+6}, \quad l:=(n-3) / 4
$$

of tangent vectors to M in such a way that

$$
\begin{gather*}
e_{l+1}:=F e_{1}, \ldots, e_{2 l}:=F e_{l}, \quad e_{2 l+1}:=G e_{1}, \ldots, e_{3 l}:=G e_{l} \\
e_{3 l+1}:=H e_{1}, \ldots, e_{4 l}:=H e_{l} \tag{3.23}
\end{gather*}
$$

(3.24) $e_{4 l+1}:=U, e_{4 l+2}:=V, e_{4 l+3}:=W, e_{4 l+4}:=\xi, e_{4 l+5}:=\eta, e_{4 l+6}:=\zeta$.

Replacing X by $F e_{i}$ in $(3.17)_{(\mathrm{i})}$, we have

$$
s_{a}\left(F e_{i}\right)=-g\left(A_{a^{*}} F e_{i}, U\right)=-g\left(A_{a^{* *}} F e_{i}, V\right)=-g\left(A_{a^{* * *}} F e_{i}, W\right),
$$

which together with $(2.7),(3.19),(3.20)$ and (3.21) implies

$$
s_{a}\left(F e_{i}\right)=-s_{a^{*}}\left(e_{i}\right)=-w\left(A_{a^{* *}} e_{i}\right)=v\left(A_{a^{* * *}} e_{i}\right)
$$

But it follows from $(3.17)_{(i i)}$ that

$$
s_{a^{*}}\left(e_{i}\right)=-w\left(A_{a^{* *}} e_{i}\right)=v\left(A_{a^{* * *}} e_{i}\right),
$$

which and the above equation imply

$$
\begin{equation*}
s_{a}\left(F e_{i}\right)=0, \quad s_{a^{*}}\left(e_{i}\right)=0, \quad i=1, \ldots, l . \tag{3.25}
\end{equation*}
$$

Similarly, replacing X by $G e_{i}$ and $H e_{i}$ in $(3.17)_{(\mathrm{i})}$, respectively, we also have

$$
\begin{aligned}
& s_{a}\left(G e_{i}\right)=-g\left(A_{a^{*}} G e_{i}, U\right)=-g\left(A_{a^{* *}} G e_{i}, V\right)=-g\left(A_{a^{* * *}} G e_{i}, W\right) \\
& s_{a}\left(H e_{i}\right)=-g\left(A_{a^{*}} H e_{i}, U\right)=-g\left(A_{a^{* *}} H e_{i}, V\right)=-g\left(A_{a^{* * *}} H e_{i}, W\right),
\end{aligned}
$$

which together with (2.7), (3.19), (3.20) and (3.21) yields

$$
\begin{aligned}
& s_{a}\left(G e_{i}\right)=w\left(A_{a^{*}} e_{i}\right)=-s_{a^{* *}}\left(e_{i}\right)=-u\left(A_{a^{* * *}} e_{i}\right) \\
& s_{a}\left(H e_{i}\right)=-v\left(A_{a^{*}} e_{i}\right)=u\left(A_{a^{* *}} e_{i}\right)=-s_{a^{* * *}}\left(e_{i}\right)
\end{aligned}
$$

But it follows from $(3.17)_{(i i i)}$ and $(3.17)_{(i v)}$ that

$$
s_{a^{* *}}\left(e_{i}\right)=w\left(A_{a^{*}} e_{i}\right)=-u\left(A_{a^{* * *}} e_{i}\right), \quad s_{a^{* * *}}\left(e_{i}\right)=-v\left(A_{a^{*}} e_{i}\right)=u\left(A_{a^{* *}} e_{i}\right),
$$

which and the above equation give
(3.26) $s_{a}\left(G e_{i}\right)=0, \quad s_{a}\left(H e_{i}\right)=0, \quad s_{a^{* *}}\left(e_{i}\right)=0, \quad s_{a^{* * *}}\left(e_{i}\right)=0 \quad i=1, \ldots, l$.

Next, replacing X by $F e_{i}, G e_{i}$ and $H e_{i}$ in (3.17) (ii) , respectively, we have

$$
\begin{aligned}
& s_{a^{*}}\left(F e_{i}\right)=u\left(A_{a} F e_{i}\right)=v\left(A_{a^{* * *}} F e_{i}\right)=-w\left(A_{a^{* *}} F e_{i}\right), \\
& s_{a^{*}}\left(G e_{i}\right)=u\left(A_{a} G e_{i}\right)=v\left(A_{a^{* * *}} G e_{i}\right)=-w\left(A_{a^{* *}} G e_{i}\right), \\
& s_{a^{*}}\left(H e_{i}\right)=u\left(A_{a} H e_{i}\right)=v\left(A_{a^{* * *}} H e_{i}\right)=-w\left(A_{a^{* *}} H e_{i}\right)
\end{aligned}
$$

from which together with (2.7), (3.18), (3.20) and (3.21),

$$
\begin{aligned}
& s_{a^{*}}\left(F e_{i}\right)=s_{a}\left(e_{i}\right)=w\left(A_{a^{* * *}} e_{i}\right)=v\left(A_{a^{* *}} e_{i}\right), \\
& s_{a^{*}}\left(G e_{i}\right)=-w\left(A_{a} e_{i}\right)=s_{a^{* * *}}\left(e_{i}\right)=-u\left(A_{a^{* *}} e_{i}\right), \\
& s_{a^{*}}\left(H e_{i}\right)=v\left(A_{a} e_{i}\right)=-u\left(A_{a^{* * *}} e_{i}\right)=-s_{a^{* *}}\left(e_{i}\right)
\end{aligned}
$$

$\operatorname{But}(3.17)_{(\mathrm{i})},(3.17)_{(\mathrm{iii})}$ and $(3.17)_{(\mathrm{iv})}$ yield

$$
s_{a}\left(e_{i}\right)=-v\left(A_{a^{* *}} e_{i}\right)=-w\left(A_{a^{* * *}} e_{i}\right),
$$

which together with the above equation and (3.26) gives

$$
\text { (3.27) } s_{a}\left(e_{i}\right)=0, \quad s_{a^{*}}\left(F e_{i}\right)=0, \quad s_{a^{*}}\left(G e_{i}\right)=0, \quad s_{a^{*}}\left(H e_{i}\right)=0, \quad i=1, \ldots, l .
$$

Replacing X by $F e_{i}, G e_{i}$ and $H e_{i}$ in $(3.17)_{(\text {iii) }}$, respectively, we have

$$
\begin{aligned}
& s_{a^{* *}}\left(F e_{i}\right)=-u\left(A_{a^{* * *}} F e_{i}\right)=v\left(A_{a} F e_{i}\right)=w\left(A_{a^{*}} F e_{i}\right), \\
& s_{a^{* *}}\left(G e_{i}\right)=-u\left(A_{a^{* * *}} G e_{i}\right)=v\left(A_{a} G e_{i}\right)=w\left(A_{a^{*}} G e_{i}\right), \\
& s_{a^{* *}}\left(H e_{i}\right)=-u\left(A_{a^{* * *}} H e_{i}\right)=v\left(A_{a} H e_{i}\right)=w\left(A_{a^{*}} H e_{i}\right),
\end{aligned}
$$

from which together with (2.7), (3.18), (3.19) and (3.21),

$$
\begin{aligned}
& s_{a^{* *}}\left(F e_{i}\right)=-s_{a^{* * *}}\left(e_{i}\right)=w\left(A_{a} e_{i}\right)=-v\left(A_{a^{*}} e_{i}\right), \\
& s_{a^{* *}}\left(G e_{i}\right)=w\left(A_{a^{* * *}} e_{i}\right)=s_{a}\left(e_{i}\right)=u\left(A_{a^{*}} e_{i}\right) \\
& s_{a^{* *}}\left(H e_{i}\right)=-v\left(A_{a^{* * *}} e_{i}\right)=-u\left(A_{a} e_{i}\right)=s_{a^{*}}\left(e_{i}\right) .
\end{aligned}
$$

Thus (3.25), (3.26) and (3.27) give

$$
\begin{equation*}
s_{a^{* *}}\left(F e_{i}\right)=0, \quad s_{a^{* *}}\left(G e_{i}\right)=0, \quad s_{a^{* *}}\left(H e_{i}\right)=0, \quad i=1, \ldots, l \tag{3.28}
\end{equation*}
$$

Finally, replacing X by $F e_{i}, G e_{i}$ and $H e_{i}$ in (3.17)(iv), respectively, we have

$$
\begin{aligned}
& s_{a^{* * *}}\left(F e_{i}\right)=u\left(A_{a^{* *}} F e_{i}\right)=-v\left(A_{a^{*}} F e_{i}\right)=w\left(A_{a} F e_{i}\right), \\
& s_{a^{* * *}}\left(G e_{i}\right)=u\left(A_{a^{* *}} G e_{i}\right)=-v\left(A_{a^{*}} G e_{i}\right)=w\left(A_{a} G e_{i}\right), \\
& s_{a^{* * *}}\left(H e_{i}\right)=u\left(A_{a^{* *}} H e_{i}\right)=-v\left(A_{a^{*}} H e_{i}\right)=w\left(A_{a} H e_{i}\right),
\end{aligned}
$$

from which together with (2.7), (3.18), (3.19), and (3.20),

$$
s_{a^{* * *}}\left(F e_{i}\right)=s_{a^{* *}}\left(e_{i}\right), \quad s_{a^{* * *}}\left(G e_{i}\right)=-s_{a^{*}}\left(e_{i}\right), \quad s_{a^{* *}}\left(H e_{i}\right)=s_{a}\left(e_{i}\right) .
$$

Hence (3.25), (3.26) and (3.27) imply

$$
\begin{equation*}
s_{a^{* * *}}\left(F e_{i}\right)=0, \quad s_{a^{* * *}}\left(G e_{i}\right)=0, \quad s_{a^{* * *}}\left(H e_{i}\right)=0, \quad i=1, \ldots, l . \tag{3.29}
\end{equation*}
$$

4. An integral formula on the compact contact three $\boldsymbol{C R}$-submanifold

Let M be as in $\S 2$ and put

$$
T:=\nabla_{U} U+\nabla_{V} V+\nabla_{W} W+(\operatorname{div} U) U+(\operatorname{div} V) V+(\operatorname{div} W) W
$$

and take the same orthonormal basis $\left\{e_{i}\right\}_{i=1, \ldots, 4 l+6}(l=(n-3) / 4)$ of tangent vectors to M as given in (3.23) and (3.24), where div $U=\sum_{i=1}^{4 l+6} g\left(e_{i}, \nabla_{e_{i}} U\right)$. Since F is skew-symmetric and A is symmetric, (3.11) implies

$$
\begin{equation*}
T=F A U+G A V+H A W . \tag{4.1}
\end{equation*}
$$

We note that T is a global function on M. Now, for later use we shall compute $\operatorname{div} T=\sum_{i=1}^{4 l+6} g\left(e_{i}, \nabla_{e_{i}} T\right)$.

First of all, differentiating both side of (4.1) covariantly and using (3.8)(3.11), we have

$$
\begin{aligned}
\nabla_{X} T= & \left(\nabla_{X} F\right) A U+F\left(\nabla_{X} A\right) U+F A \nabla_{X} U \\
& +\left(\nabla_{X} G\right) A V+G\left(\nabla_{X} A\right) V+G A \nabla_{X} V \\
& +\left(\nabla_{X} H\right) A W+H\left(\nabla_{X} A\right) W+H A \nabla_{X} W,
\end{aligned}
$$

that is,

$$
\begin{aligned}
\nabla_{X} T= & g(A U, \xi) X-g(A U, X) \xi-g\left(A^{2} U, X\right) U+u(A U) A X+F\left(\nabla_{X} A\right) U \\
& +F A F A X+g(A V, \eta) X-g(A V, X) \eta-g\left(A^{2} V, X\right) V+v(A V) A X \\
& +G\left(\nabla_{X} A\right) V+G A G A X+g(A W, \zeta) X-g(A W, X) \zeta-g\left(A^{2} W, X\right) W \\
& +w(A W) A X+H\left(\nabla_{X} A\right) W+H A H A X
\end{aligned}
$$

which and (3.13) give

$$
\begin{align*}
\nabla_{X} T= & 3 X-g(A U, X) \xi-g(A V, X) \eta-g(A W, X) \zeta \tag{4.2}\\
& +\{u(A U)+v(A V)+w(A W)\} A X-g\left(A^{2} U, X\right) U-g\left(A^{2} V, X\right) V \\
& -g\left(A^{2} W, X\right) W+F A F A X+G A G A X+H A H A X+F\left(\nabla_{X} A\right) U \\
& +G\left(\nabla_{X} A\right) V+H\left(\nabla_{X} A\right) W .
\end{align*}
$$

Thus, from (2.6), (2.7) and (2.9)-(2.17), we have

$$
\begin{aligned}
& \operatorname{div} T \\
&= 3(n+2)+\operatorname{tr} A\{u(A U)+v(A V)+w(A W)\} \\
&-g\left(A^{2} U, U\right)-g\left(A^{2} V, V\right)-g\left(A^{2} W, W\right) \\
&+\sum_{i=1}^{n+3} g\left(F A F A e_{i}+G A G A e_{i}+H A H A e_{i}, e_{i}\right) \\
&+\sum_{i=1}^{l}\left\{g\left(\left(\nabla_{F e_{i}} A\right) e_{i}-\left(\nabla_{e_{i}} A\right) F e_{i}, U\right)+g\left(\left(\nabla_{G e_{i}} A\right) e_{i}-\left(\nabla_{e_{i}} A\right) G e_{i}, V\right)\right. \\
& \quad+g\left(\left(\nabla_{H e_{i}} A\right) e_{i}-\left(\nabla_{e_{i}} A\right) H e_{i}, W\right)+g\left(\left(\nabla_{H e_{i}} A\right) G e_{i}-\left(\nabla_{G e_{i}} A\right) H e_{i}, U\right) \\
&\left.\quad+g\left(\left(\nabla_{F e_{i}} A\right) H e_{i}-\left(\nabla_{H e_{i}} A\right) F e_{i}, V\right)+g\left(\left(\nabla_{G e_{i}} A\right) F e_{i}-\left(\nabla_{F e_{i}} A\right) G e_{i}, W\right)\right\} \\
&+g\left(\left(\nabla_{W} A\right) V-\left(\nabla_{V} A\right) W, U\right)+g\left(\left(\nabla_{U} A\right) W-\left(\nabla_{W} A\right) U, V\right) \\
&\left.+g\left(\left(\nabla_{V} A\right) U-\left(\nabla_{U} A\right) V\right), W\right)+g\left(\left(\nabla_{\zeta} A\right) \eta-\left(\nabla_{\eta} A\right) \zeta, U\right) \\
&\left.+g\left(\left(\nabla_{\xi} A\right) \zeta-\left(\nabla_{\zeta} A\right) \xi, V\right)+g\left(\left(\nabla_{\eta} A\right) \xi-\left(\nabla_{\xi} A\right) \eta\right), W\right),
\end{aligned}
$$

which together with (3.7), (3.22) and (3.25)-(3.29) implies

$$
\begin{aligned}
& \operatorname{div} T \\
& =3(n+2)+\operatorname{tr} A\{u(A U)+v(A V)+w(A W)\} \\
& -g\left(A^{2} U, U\right)-g\left(A^{2} V, V\right)-g\left(A^{2} W, W\right) \\
& +\sum_{i=1}^{n+3} g\left(F A F A e_{i}+G A G A e_{i}+H A H A e_{i}, e_{i}\right) \\
& +\sum_{a=1}^{q}\left\{s_{a}(W) u\left(A_{a} V\right)-s_{a}(V) u\left(A_{a} W\right)+s_{a^{*}}(W) u\left(A_{a^{*}} V\right)\right. \\
& -s_{a^{*}}(V) u\left(A_{a^{*}} W\right)+s_{a^{* *}}(W) u\left(A_{a^{* *}} V\right)-s_{a^{* *}}(V) u\left(A_{a^{* *}} W\right) \\
& \left.+s_{a^{* * *}}(W) u\left(A_{a^{* * *}} V\right)-s_{a^{* * *}}(V) u\left(A_{a^{* * *}} W\right)\right\} \\
& +\sum_{a=1}^{q}\left\{s_{a}(U) v\left(A_{a} W\right)-s_{a}(W) v\left(A_{a} U\right)+s_{a^{*}}(U) v\left(A_{a^{*}} W\right)-s_{a^{*}}(W) v\left(A_{a^{*}} U\right)\right. \\
& +s_{a^{* *}}(U) v\left(A_{a^{* *}} W\right)-s_{a^{* *}}(W) v\left(A_{a^{* *}} U\right) \\
& \left.+s_{a^{* * *}}(U) v\left(A_{a^{* * *}} W\right)-s_{a^{* * *}}(W) v\left(A_{a^{* * *}} U\right)\right\} \\
& +\sum_{a=1}^{q}\left\{s_{a}(V) w\left(A_{a} U\right)-s_{a}(U) w\left(A_{a} V\right)+s_{a^{*}}(V) w\left(A_{a^{*}} U\right)-s_{a^{*}}(U) w\left(A_{a^{*}} V\right)\right. \\
& +s_{a^{* *}}(V) w\left(A_{a^{* *}} U\right)-s_{a^{* *}}(U) w\left(A_{a^{* *}} V\right) \\
& \left.+s_{a^{* * *}}(V) w\left(A_{a^{* * *}} U\right)-s_{a^{* * *}}(U) w\left(A_{a^{* * *}} V\right)\right\},
\end{aligned}
$$

that is,

$$
\begin{align*}
\operatorname{div} T= & 3(n+2)+\operatorname{tr} A\{u(A U)+v(A V)+w(A W)\} \\
& -\|A U\|^{2}-\|A V\|^{2}-\|A W\|^{2} \\
& +\sum_{i=1}^{n+3} g\left(F A F A e_{i}+G A G A e_{i}+H A H A e_{i}, e_{i}\right) \tag{4.3}
\end{align*}
$$

On the other hand, using (2.9)-(2.17) and (3.13), we can easily verify that

$$
\begin{aligned}
& \sum_{i=1}^{n+3} g\left(F A F A e_{i}, e_{i}\right)=\frac{1}{2}\|F A-A F\|^{2}-\operatorname{tr} A^{2}+\|A U\|^{2}+1 \\
& \sum_{i=1}^{n+3} g\left(G A G A e_{i}, e_{i}\right)=\frac{1}{2}\|G A-A G\|^{2}-\operatorname{tr} A^{2}+\|A V\|^{2}+1 \\
& \sum_{i=1}^{n+3} g\left(H A H A e_{i}, e_{i}\right)=\frac{1}{2}\|H A-A H\|^{2}-\operatorname{tr} A^{2}+\|A W\|^{2}+1
\end{aligned}
$$

that is,

$$
\begin{aligned}
& \sum_{i=1}^{n+3} g\left(F A F A e_{i}+G A G A e_{i}+H A H A e_{i}, e_{i}\right) \\
= & \frac{1}{2}\left(\|F A-A F\|^{2}+\|G A-A G\|^{2}+\|H A-A H\|^{2}\right) \\
& -3 \operatorname{tr} A^{2}+\|A U\|^{2}+\|A V\|^{2}+\|A W\|^{2}+3,
\end{aligned}
$$

which and (4.3) yield

$$
\begin{align*}
\operatorname{div} T= & 3\{\rho-(n+1)(n+3)\}+\operatorname{tr} A\{u(A U)+v(A V)+w(A W)\} \\
& +\frac{1}{2}\left(\|F A-A F\|^{2}+\|G A-A G\|^{2}+\|H A-A H\|^{2}\right) \\
& -3(\operatorname{tr} A)^{2}-3 \sum_{a=1}^{q}\left\{\left(\operatorname{tr} A_{a}\right)^{2}-\operatorname{tr} A_{a}^{2}+\left(\operatorname{tr} A_{a^{*}}\right)^{2}-\operatorname{tr} A_{a^{*}}^{2}\right. \tag{4.4}\\
& \left.+\left(\operatorname{tr} A_{a^{* *}}\right)^{2}-\operatorname{tr} A_{a^{* *}}^{2}+\left(\operatorname{tr} A_{a^{* * *}}\right)^{2}-\operatorname{tr} A_{a^{* * *}}^{2}\right\} .
\end{align*}
$$

Thus we have:
Lemma 4.1. Let M be an $(n+3)$-dimensional compact, minimal contact three $C R$-submanifold of $S^{4 m+3}$ with contact three $C R$-dimension $(p-1)$. If the scalar curvature ρ is greater or equal to $(n+1)(n+3)$, then

$$
\begin{gather*}
F A=A F, \quad G A=A G, \quad H A=A H \tag{4.5}\\
A_{a}=A_{a^{*}}=A_{a^{* *}}=A_{a^{* * *}}=0, \quad a=1, \ldots, q \tag{4.6}
\end{gather*}
$$

5. The proof of main theorem

For the submanifold M given in Lemma 4.1, it is clear from (4.6) that its first normal space is contained in $\operatorname{Span}\{N\}$ which is invariant under parallel translation with respect to the normal connection ∇^{\perp} with the aid of $(3.3)_{(\mathrm{i})}$ and (3.17). Thus we may apply Erbacher's reduction theorem ([3]) and this yields that there is an ($n+4$)-dimensional totally geodesic unit sphere S^{n+4} such that $M \subset S^{n+4}$. Here we note that $n+4=\operatorname{dim} S^{n+4}$ is of the type $4(l+1)+3$. Moreover, since the tangent space $T_{x} S^{n+4}$ of the totally geodesic submanifold S^{n+4} at $x \in M$ is $T_{x} M \oplus \operatorname{Span}\{N\}, S^{n+4}$ is an invariant submanifold of $S^{4 m+3}$ with respect to the Sasakian three structure $\{\xi, \eta, \zeta\}$ (that is, ξ, η and ζ are all tangent to S^{n+4}, and $\phi\left(T_{x} S^{n+4}\right) \subset T_{x} S^{n+4}, \psi\left(T_{x} S^{n+4}\right) \subset T_{x} S^{n+4}$ and $\theta\left(T_{x} S^{n+4}\right) \subset T_{x} S^{n+4}$ for any $\left.x \in S^{n+4}\right)$ because of (2.1) and (2.4). Hence the submanifold M given in Lemma 4.1 can be regarded as a real hypersurface of S^{n+4} which is a totally geodesic invariant submanifold of $S^{4 m+3}$.

Tentatively we denote S^{n+4} by M^{\prime} and by i_{1} the immersion of M into M^{\prime} and i_{2} the totally geodesic immersion of M^{\prime} into $S^{4 m+3}$. Then, from the Gauss equation (3.1), it follows that

$$
\begin{equation*}
\nabla_{i_{1} X}^{\prime} i_{1} Y=i_{1} \nabla_{X} Y+h^{\prime}(X, Y)=i_{1} \nabla_{X} Y+g\left(A^{\prime} X, Y\right) N^{\prime} \tag{5.1}
\end{equation*}
$$

where h^{\prime} denotes the second fundamental form of M in M^{\prime}, A^{\prime} the corresponding shape operator and N^{\prime} a unit normal vector field to M in M^{\prime}. Since $i=i_{2} \circ i_{1}$, we have

$$
\begin{align*}
\bar{\nabla}_{i_{2} \circ i_{1} X} i_{2} \circ i_{1} Y & =i_{2} \nabla_{i_{1} X}^{\prime} i_{1} Y+\bar{h}\left(i_{1} X, i_{1} Y\right) \\
& =i_{2}\left(i_{1} \nabla_{X} Y+g\left(A^{\prime} X, Y\right) N^{\prime}\right), \tag{5.2}
\end{align*}
$$

because M^{\prime} is totally geodesic in $S^{4 m+3}$. Comparing (5.2) with (3.2), we can easily see that

$$
\begin{equation*}
N=i_{2} N^{\prime}, \quad A=A^{\prime} \tag{5.3}
\end{equation*}
$$

Since M^{\prime} is an invariant submanifold of $S^{4 m+3}$, for any $X^{\prime} \in T M^{\prime}$,

$$
\begin{equation*}
\phi i_{2} X^{\prime}=i_{2} \phi^{\prime} X^{\prime}, \quad \psi i_{2} X^{\prime}=i_{2} \psi^{\prime} X^{\prime}, \quad \theta i_{2} X^{\prime}=i_{2} \theta^{\prime} X^{\prime} \tag{5.4}
\end{equation*}
$$

are valid, where $\left\{\phi^{\prime}, \psi^{\prime}, \theta^{\prime}\right\}$ is the induced Sasakian three structure of M^{\prime}. Thus it follows from (2.4) that

$$
\begin{aligned}
\phi i X & =\phi i_{2} \circ i_{1} X=i_{2} \phi^{\prime} i_{1} X=i_{2}\left(i_{1} F^{\prime} X+u^{\prime}(X) N^{\prime}\right) \\
& =i F^{\prime} X+u^{\prime}(X) i_{2} N^{\prime}=i F^{\prime} X+u^{\prime}(X) N \\
\psi i X & =\psi i_{2} \circ i_{1} X=i_{2} \psi^{\prime} i_{1} X=i_{2}\left(i_{1} G^{\prime} X+v^{\prime}(X) N^{\prime}\right) \\
& =i G^{\prime} X+v^{\prime}(X) i_{2} N^{\prime}=i G^{\prime} X+v^{\prime}(X) N \\
\theta i X & =\theta i_{2} \circ i_{1} X=i_{2} \theta^{\prime} i_{1} X=i_{2}\left(i_{1} H^{\prime} X+w^{\prime}(X) N^{\prime}\right) \\
& =i H^{\prime} X+w^{\prime}(X) i_{2} N^{\prime}=i H^{\prime} X+w^{\prime}(X) N .
\end{aligned}
$$

Comparing those equations with (2.4), we have $F=F^{\prime}, u^{\prime}=u ; G=G^{\prime}$, $v^{\prime}=v$ and $H=H^{\prime}, w^{\prime}=w$. Hence M is a real hypersurface of S^{n+4} which
satisfies $F^{\prime} A^{\prime}=A^{\prime} F^{\prime}, G^{\prime} A^{\prime}=A^{\prime} G^{\prime}$ and $H^{\prime} A^{\prime}=A^{\prime} H^{\prime}$. Now applying the theorem(cf. Theorem 10 in [8]) due to the second author, we can conclude:

Theorem. Let M be an $(n+3)$-dimensional compact, minimal, contact three $C R$-submanifold of $(p-1)$ contact three $C R$-dimension in $S^{4 m+3}$. If the scalar curvature is greater or equal to $(n+1)(n+3)$, then

$$
M=S^{4 r+3}(a) \times S^{4 s+3}(b), \quad a^{2}+b^{2}=1, \quad r+s=(n-3) / 4
$$

References

[1] A. Bejancu, Geometry of CR-submanifolds, D. Reidel Publishing Company, Dordrecht, Boston, Lancaster, Tokyo, 1986.
[2] B. Y. Chen, Geometry of Submanifolds, Marcel Dekker Inc., New York, 1973.
[3] J. Erbacher, Reduction of the codimension of an isometric immersion, J. Diff. Geom. 5 (1971), 333-340.
[4] S. Ishihara and M. Konish, Differential geometry of fibred spaces, Study Group of Differential Geometry, Tokyo, 1973.
[5] T. Kashiwada, A note on a Riemannian space with Sasakian 3-structure,Natur. Sci. Rep. Ochanomizu Univ. 22 (1971), 1-2.
[6] Y. Y. Kuo On almost contact 3-structure, Tohoku Math. J. 22 (1970), 325-332.
[7] J.-H. Kwon and J. S. Pak, On contact three CR-submanifolds of a $(4 m+3)$-dimensional unit sphere, Comm. Korean Math Soc. 13 (1998), no. 3, 561-577.
[8] J. S. Pak, Real hypersurfaces in quaternionic Kaehlerian manifolds with constant Q sectional curvature, Kodai Math. Sem. Rep. 29 (1977), no. 1-2, 22-61.
[9] K. Yano, Integral formulas in Riemannian geometry, Marcel Dekker Inc., New York, 1970.
[10] K. Yano and M. Kon, CR submanifolds of Kaehlerian and Sasakian manifolds, Birkhäuser, Boston-Basel-Stuttgart, 1983.

Hyang Sook Kim
Department of Computational Mathematics
School of Computer Aided Science
Institute of Basic Science
Inje University
Gimhae 621-749, Korea
E-mail address: mathkim@inje.ac.kr
Jin Suk Pak
Graduate School of Education
Daegu University
Gyeongsan 712-714, Korea
E-mail address: jspak@knu.ac.kr

