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SCALAR CURVATURES ON §2

WENXIONG CHEN AND WEIYUE DING

ABSTRACT. A theorem for the existence of solutions of the nonlinear elliptic
equation —Au + 2 = R(z)e*, = € S?, is proved by using a “mass center”
analysis technique and by applying a continuous “flow” in H'(S?) controlled
by VR.

0. Introduction. Given a function R(x) on the two dimensional unit sphere
52, one wishes to know when it can actually be the scalar curvature of some metric
g that is pointwise conformal to the standard metric go on S2. This is an interesting
problem in geometry (cf. [1]). In order to find an answer, people usually consider
the differential equation
(%) Au~2+ R(z)e* =0, z€S§%

It is well known that if u is a solution of (), then R(x) turns out to be the scalar
curvature corresponding to the metric ¢ = e%“gg, which, obviously is pointwise
conformal to gg.

There are some necessary conditions for the solvability of (%) pointed out by
Kazdan and Warner (cf. [2]), which show that not all smooth functions R(z) can
be achieved as such a scalar curvature. Then for which R can one solve (x)? This
has been an open problem for many years (cf. [3]).

Moser [4] proved that if R(z) = R(—z), for any = € S2, and R is positive some-
where, then (*) has a solution. Recently, Hong [5] considered the case where R is
rotationally symmetric and established some existence theorems. In our previous
paper [B], we generalized the results of Moser and Hong to the case where R pos-
sesses some kinds of generic symmetries, that is, R is invariant under the action of
some subgroups of the orthogonal transformation group in R3. Then it is natural
for one to ask, “What happens when R is not symmetric?” So far we know, there
have not yet been any existence results in this situation. This is the motivation for
this present paper.

In this paper, without any symmetry assumption on R, we find some sufficient
conditions so that (%) can be solved, which is independent of the results in [6]. To
find a solution of (*), we consider the functional

J(u) = 1/ ;Vu|2dA+2/ udA—8rln [ Re“dA
2 S2 82 S2
defined on

H, = {uGHl(S2): / Re”dA>0}
82
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366 WENXIONG CHEN AND WEIYUE DING

and seek critical points of J. It is easily seen that a critical point of J in H, plus
a suitable constant makes a solution of (x). Since J is bounded from below on
H,, a natural idea is to seek a minimum of J. Unfortunately, it was shown (cf.
[5]) that infgy_ J can never be attained unless R is a constant. So one is led to
find saddle points of J. Under some appropriate assumptions on R, using a family
of transformations on H!(S?) and a continuous “flow” in H.,, by a careful “mass
center” analysis, we prove the existence of a saddle point of J in H, and establish
the following

THEOREM. Assume
(Ro) R € C*(S?).
(Ry) There exist two points, say a and b, on S?, such that

R(a) = R(b) =m ‘:‘r%aixR >0,

and
sup min R(z)=v <m,
SR entio )
where T = {h: h € C([0,1],52), h(0) = a, h(1) = b}.
(R2) There is hg € T’ such that miny,((0,1)) B = v, and for any

z € K ={z€ho([0,1]): R(z) = v}, AR(z) > 0.

(R3) There is no critical value of R in the interval (v, m).
Then problem (x) possesses at least one solution.

OUTLINE OF THE PROOF. Due to its complexity, we divide our proof into five
sections.

In §1, we find two families of separated points, say {©x .} and {p s} with
A €(0,1), satisfying

J(@)\,a)a'](so)\,b) "“’i}I{lfJ, as A — 1.

And under the condition (R;) prove that as A gets sufficiently close to 1, there
exists a “mountain pass” between the two points ¢y o and ), i.e.
0.1 = inf J(u) > J o .
(0.1) pr= inf  max J(u) > max{J(pxa),J(Pr)}
where L, = {I: 1 € C([0,1], H.), 1(0) = ©r4,l(1) = prp}. Now, by Ekeland’s
variational principle (see [7}) there is a sequence {uy} in H. such that J(ug) — px,
J'(ug) — 0, as k — oo. If {ux} possesses a strongly convergent subsequence, then
we have solved our problem.

When does the sequence {ux} converge strongly? In order to investigate this,
we verify, in §2 a modified (P.S.) condition for the functional J, that is

PROPOSITION 2.1. Assume {vg} C H., J(vx) < B < 400, J'(vx) — 0, as
k — oo, and |P(vk)] < 1 — v < 1. Let v = vg — (1/4n) fsz vedA. Then {0}
possesses a strongly convergent subsequence in H., whose limit vy verifies J'(vg) = 0
where P{u) stands for the mass center of the function e*(® defined on S?.

Due to Proposition 2.1, the key point to the solution of problem () lies in
controlling the behavior of the sequence {P(ux)}. To do this, we divide, according
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SCALAR CURVATURES ON §? 367

to the value of R, the sphere S? into several areas, and try to find such a sequence
{ux} that {P(ug)} can reach none of the areas on the sphere.
Thus, we introduce in §3 a family of transformations on H!(S?) which leaves

the functionals

1

Flu) = —/ IVul? dA + 2/ wdA and Gu) = / ¢ dA

2 Jg2 g2 s2
invariant. With the help of this family of transformations, we obtain in §4 the
following propositions providing some useful information when P(ux) — S2.

PROPOSITION 4.2. Suppose {vx} C H., {J(vg)} is bounded; J'(vy) — 0, and
P(vg) — ¢ € S%, as k — 0o0. Then there exists a subsequence {vk,} of {vg}, and o,
G, with oy = 1, ¢ — ¢ as ¢ — oo such that fs2 |V (vk; = Qo )|? = 0 as i — oo,
where ©y(2) = In[(1 — A%)/(1 — Acos r(z,¢))?], with r(z,¢) the geodesic distance
between the two points x and ¢ on S2.

PROPOSITION 4.3. Let {vi} C Hs, J(vk) bounded, and J'(vg) — 0, P(vg) —
¢ € 8% with R(¢) > 0. Then there is a subsequence {vi,} of {vx} such that J(vg,) —
8mlndnR(¢).

PROPOSITION 4.4. Assume {uk}, {vi} tn H, satisfying

(1) {J(ug)}, {J(vk)} are bounded; and J'(vg) — 0, as k — 0.
(2) [s2 IV(uk —vk)|*dA — 0, as k — oo.

(3) P(ug) = n € 8%, P(vg) = ¢ € 5%, as k — oo.

Then np = ¢.

Condition (Rz) enables us to establish the estimate
Uy < —8rlndmy
for A sufficiently close to 1. Then for such A we prove

PROPOSITION 4.6. There exist g, §o > 0, such that for any {vg} in H., if
J(vi) S ur+8o (k=1,2,...) and P(vg) — ¢ € 8%, as k — oo then R(¢) > v+ ap.

Finally, in §5, we utilize VR to construct a continuous “flow” in H,. Based on
the results in the proceding sections, mainly in §4, and applying the “flow”, we are
able to pick a sequence {uy} in H,, such that as k — 0o, J(ux) — u», (for some Ag
sufficiently close to 1), J'(ux) — 0, and {P(uk)} is bounded away from the sphere
82, Therefore we arrive at the conclusion that Ux, 1s a critical value of J, and
complete the proof of our Theorem.

REMARK 0.1. In the Theorem, if v < 0, then assumption (R;) can be omitted.

REMARK 0.2. Condition (R;) may be generalized as

(R;) Let m = maxgz R, M = R~Y(m); M is not contractible in itself, but is
contractible on S2. Let

hi(+) is a deformation of M on S?;

Fr={U= h{(M
U t{ )ho(M)=Mandh1(M)isapointonS2

te(0,1]

and suppose that v = supy - mingey R(z) < m. Then by a similar argument as in

the proof of our Theorem, one can show that condition (Rp), (R1), (R2) and (R3)
are sufficient for problem (*) to have a solution.
We assume (Rp)-(R3) throughout the paper.
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368 WENXIONG CHEN AND WEIYUE DING

1. Mountain pass. Consider the functional J defined on H,. For z, ¢ € S?,
A €[0,1), define
1-2
1 - Acosr(z,¢))?
where r(z,¢) is the geodesic distance between two points z and ¢ on S2. A direct
computation shows that, as A — 1,

orclz) = ln(

J{pxa) = —87in Re¥*¢ dA — —8rlndnR(a) = —8nlndwm.
SZ

Similarly,
(1.1) J(prp) — —8rlndrm.
On the other hand, the inequality (cf. [5])

1 1
1.2 “dA < 4 — 2 — 1(s?
(1.2) /826 < 7rexp<167r/52|Vu| dA+47r/S2udA> Yu e H*(5%),

leads to
J(u) > —8rlndrm Vu € H..

Therefore,
(1.3) inf J = —87lndmm.

(1.1) and (1.3) inform us that there are two separated points, say @y . and ©j s,
in H, at which the values of J are as close to infg, J as we wish. This phenomenon
would naturally lead one to expect that there might be a “mountain pass” between
the two separated points. In order to show this, we need the concept of mass center
introduced in [6]. Now let us first recall it.

For u € H'(S?), regard S? as a rigid body with density e*(®) at point z € S2,
denote the mass center of this rigid body by P(u). Then in an orthogonal coordinate
system z = (z,z2,z3) in R3,

P( )_ fszzleudA f52$2€udA fszz3e“dA>
= Jo2€¥dA W [o.e*dA T [g,e*dA

This concept and its analysis played an important role in [6] and will be a powerful

tool in the following investigation.
Define Q(u) = P(u)/|P(u)], and d(uv) = |Q(u) — P(u)], u € H'(S?).

LEMMA 1.1. There exists constant Co = C(|R|c1(s2)), such that
{R(z) — R(Q(u))}e* dA‘ < Cy \s/d(u)/ et dA.
S§2 S2

PROOF. For simplicity, write @ = Q(u) = (Q1,Q2,Q@3), and S, = 5,(Q) = {z €
S?%: r(z,Q) < r}. Choose r = ¢/d(u). Since

/52\5, (1 B Z”Qz) ¢"dA / /S e"dA < 1~ |P(u)] = d(u)

1

(1.4)

and
1- ZIin‘ > 72/4 Vz € S2\S,,

i
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SCALAR CURVATURES ON §? 369

we have
/ e* dA // e dA < 43/d(u).
S2\S, s?

Therefore,
l | (R - R@)e" dA‘ < ‘ / (R - R@)erd Al .
< {I%%X|VR| -r+8n§az.x|R|W} /82 U dA < COW/SQ eudA.

LEMMA 1.2. Letu€ H,, J(u) <3, |P(u)|<1—~v<1. Then
[ 1vuP da < 0(6,7)
S?

PROOF. Analogous to the proof of Proposition 1.2 in [6].
Define

/ {R(z) - R(Q)}e"
S2\S,

Ly ={l: 1€ C([0,1}, Hy),(0) = px 4, (1) = pxrp},

= inf J(u).
Hx llerixuerlr(l[aé),(l]) (u)

For A sufficiently close to 1, Ly is nonempty. In fact, since R(a) = R(b) > 0, one
has [o, Re®>= dA, [s, Re®>» dA > 0 for A close to 1. Take

vl = In[(1 — t)eP e + te?> ], te|0,1];
then fg, Re dA > 0; hence Iy = {u}: t € [0,1]} € L.
PROPOSITION 1.3 (MOUNTAIN PASS). For A sufficiently close to 1,
(1.5) pa > max{J(©x,a), J(©r,)}-
PROOF. We argue indirectly. Suppose there exists {Ax}, Ay — 1, such that
txr, < max{J(oxr,.a),J(©rcp)} k=12,....

Then by (1.1}, one can find {er}, ex — 0, and px, < —8wlndnm + €. By the
definition of u, there is [y € L), such that

(1.8) max J < ~8xlndmrm + .

1 ([0,1})
Let do > 0 be sufficiently small, so that if d(u) < dg, then
(1.7) CoV/d(u) < 3(m —v).

By (R;), this is possible.

Case (1). There exists ko such that if k¥ > ko, then for any u on lx, d(u) < do.
Then by (1.6) and (R;), one can pick some k& > kg so that
(1.8) max J < —8xln2n(m + v).

Le([0,1])
Fix such k and set h(t) = Q(lk(t)), t € [0,1]. Tt is obvious that A([0,1]) is a
continuous curve on S? joining a and b. Let to € (0,1) satisfy
R(h(tp)) = min R.
(h(to)) hin,
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370 WENXIONG CHEN AND WEIYUE DING

Then
(1.9) R(h(to)) < v.
Write v = lk(t5), @ = Q(v) = h(tp). Then by (1.4) and (1.7)-(1.9),

—8rin2r(m+v) > J(v)

%/ |Vo|2dA + 2/ vdA — 87rln/ e’ dA — 8nln(R(Q) + Co v/ d(v))
s? 2 s?

> —8nlndr — 87ng (v + m) = —8rIn2r(m + v),

v

a contradiction.

Case (2). There exists a subsequence of {lx} (still denoted by {lc}) such that
for any k, one can pick out a uy € I satisfying d(ug) > do. Then by Lemma 1.2,
we infer that [, |Vug|? dA are bounded, which implies that the sequence {@x =
ug — (1/47) [go ux dA} is bounded in H'(S?) and hence possesses a subsequence
coverging weakly to an element, say ug, in H!(S?). Since ux € H., it is easy to
verify that 4, and the weak limit ug are in H,; consequently, J(ug) = infgy, J. This
is impossible because by (R;) R is not constant, so infy, J can never be attained.

The above argument shows that our hypothesis at the beginning of the proof is
false, so (1.5) must hold for A sufficiently close to 1.

2. A modified (P.S.) condition.

PROPOSITION 2.1. Assume {ux} C H., J{ug) < 8 < 400, J'(ux) — 0, as
k — o0, and also assume |P(ux)] < 1 —~ < 1. Let dix = ug — (1/4n) [g, ux dA.
Then {uy} possesses a strongly convergent subsequence tn H'(S?) whose limit ug
verifies J'(up) = 0.

PROOF. In the proof of Proposition 1.3, we have already seen that {i,} C H.
and there is a subsequence of {4} (still denoted by {@x}) converging weakly to ug
in H,.

Since for any constant C, J(u + C) = J{u), one concludes, from the definition
of J’, that

(2.1) J’('&k) = J’(uk) — 0, as k — oo.
Hence 8
T -
—Alp — - Re% =2 1).
Uk fsz Troir dA e +o(1)
Consequently,
(2.2)

Re®i Reti
V ~ _ ~ 2 _ _ ~ _ ~
/52 Vi~ = 87T/5:2 {f32 Re%  fg; Re% } (i = t;)dA + ol1)
Ret Reti

2 1/2 1/2
< — — —| dA i; — ;)2 dA 1).
< & (/;2 f32 Ret%i fS2 ReYi ) (Lz (u uj) ) + 0( )

The boundedness of {i} (in H!(S?)) and of J(ix) leads to

/ Re® dA > a >0, k=1,2,...,
82
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SCALAR CURVATURES ON §? 371

which, together with (1.2), implies that, for any 7,5 = 1,2,..., the integrals

/ { Re™ Reﬁf~.}2dA
s2 | fg2 Re™  [g, Re¥

are bounded. By the compact embedding H!(82%) «— L?(S?), we have

/ (t; — 17,]-)2 dA — 0, as1,7 — oo.
32
Now, it follows from (2.2) that
/ |V (% — u;)[*dA — 0, asi,j — oo.
82

Consequently,
i — up in H'(S?).
Therefore, by (2.1), J/(ug) = 0. This completes the proof.

Let Ap be so close to 1 that (1.5) is valid. Then by Ekeland’s variational principle
(cf. [7], the proof for Mountain Pass Lemma), there is a sequence {ux} C H.
satisfying J(ux) — pr, and J'(ug) — 0 as k — 0o. Set itp = up — (1/47) [q2 ux dA;
then from Proposition 2.1, we know that whether {4y} converges strongly in H!(S?)
depends on the behavior of the mass center P(ux). Does {P(u)} remain bounded
away from the sphere S?? This has now become a key point to the solution of
(*). In order to analyze this, we introduce in the following section a family of
transformations on H!(S2%) which possesses some important properties and is very
useful in our later investigations.

3. A family of transformations on H!(S2%). Let u € H*(5?), ¢ € S%. Select
a spherical polar coordinate system z = (8,9), 0 < 6§ < 7, 0 < ¢ < 27, so that
¢ = (0, ). Define a family of transformations A, . by
A)\,gu(aa (P) =uo hA,g (07 QO) + 1/),\,5 (0)

where 0 < A < 1, hy (0, p) = (2tan~!(Atan(6/2)), ) is a conformal transforma-
tion on S2, and
/\2
(cos2(8/2) + A2sin®(6/2))2°
The following propositions describe some important properties of A, ..
PROPOSITION 3.1. Define
1

rw=3 [ [vuPaa+s [ wia-smm [ o
2 §2 S2 S2
for u € H(S?). Then

1/1,\,(; (9) =In

(3.1) I{Aycu) = I(u), r€e(0,1], ¢ € 8%
and consequently, if u 13 a solution of the equation
(%%) —Au+2=2e"
then Ay cu 1s also a solution.
PROOF. (1)

2
/ eArst g4 ___/ 7r/7r e (2tan™! (A tan(6/2)),9) g¥x ¢ (6) sin 8 df dep.
s2 o Jo
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372 WENXIONG CHEN AND WEIYUE DING

Let ¢/ = 2tan~1(Atan(8/2)), ¢’ = . Then €¥*s(?) sin 6 df = sin §’ d¢’. Hence

2 T
(3.2) / ersu dA=/ / e"(g/""’)sine’d0'd<p’=/ e dA.
S2 0 0 S§2

(2)

(3.3)
/ IV(A,\,gu)|2dA=/ |V(uoh,\,§)|2dA—2/ uohMAwA,ﬁ/ |Vl
S2 S2 S2 S2

:/ |Vu|2dA-+-4/ wo hy(e¥>s —1)dA+/ |Vaha ¢
S§2 S§2 S2

=/ |Vu|2dA-+-4/ udA—4/ u0h,\,§dA+/ |V’¢)A,g|2~
§2 s2 52 §2

Here we have employed the fact that ¢, . satisfies (cf. [5])
(3.4) —Apy, = 2e¥s — 2,

Meanwhile, a direct computation shows

l/ |V¢A,§|2dA+2/ Pa o dA = 0.
2 /g2 P

Substitute this into (3.3) to get

(3.5) 1/ |V(AMu)|2dA+2/ A gudA=/ <1|\7u|2+2u> dA
2 Jg2 ' sz g2 \2

which, in addition to (3.2), implies (3.1).

(3) Denote the dual pairing between H!(S?) and its dual space by (-,-). Then
by the definition of the Gateaux derivative and (3.1), one has

1
(I'(Axcu),v) = tll_I}(l) ?{I(A,\’gu +tv) — I(A) cu)}
(3.6) = lim %{I(A,\,g(u +tvohil)) - I(Ay )}
1 -1 -1
= th_r}(l) ?{I(u+tv0h,\y§) ~I(u)} = (I'(u),v o hy )

where h;,lg is the inverse of h) .

If u is a solution of (x*), then I'(u) = 0 and [, ¢* = 47. Consequently, by (3.6)
and (3.2), I'(Ax cu) = 0 and [g, ers¥ = 4r, which implies A (u is also a solution
of (¥x). This completes our proof.

PROPOSITION 3.2. Define
Ie(u) =/ (1|Vul? + 2u) —87r1n/ Roh, ..
s2 §2

Then
(3.7) Vo€ HY(S?), (J} (Axu),v) = (J'(u),v0h}L).
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PROOF.
(s(Arguho) = [ Vluwehag Vot / Vs Vo
s2 o
87
N R Axcu .
+2~/S2 v fsz Ro h)\,geA*vSu o o h,\,ge v

A direct computation leads to

V(uohye)Vv= V(uoh,\yg)V(voh;lg)oh,\,g = [ VuV(vohy}),
S2 §2 ! S2 ’
/ Rohy et =/ Re",
52 52
Ro hy efrsty = Re"(voh;};).
52 52 '
By (3.4),

Vi/);wg-Vvﬁ-?/ U=2/ e"’*va=2/ voh}lg.
52 s2 82 82 ’

(Ji,g (Az\,§u)’ v) = /

S2

Therefore
VuV(vohyy)+2 /52 vohyt
8m
B Js2 Re® Jg2
= (J'(u),v o hy ).

Re*(vo h;lg)

This completes the proof.
PROPOSITION 3.3. For any u € H., there exist X € (0,1] and ¢ € S? such that
(3.8) P(Axcu) =0.

PROOF. Use the spherical polar coordinate system with pole ¢ introduced at
the beginning of this section, and denote the corresponding orthogonal coordinate
system in R3 by (z;,21,73),. That is

zy =rsinf cosp, 1z =rsinfsiny, z3=r cosb.

In this system, let P{Aj u) = (a1(A),a2(A),a3(A)),. We first show that for any
fixed ¢ € 8%, as A — 0,

(39) (al(/\)7 (12(/\), (13(/\))§ - (0’ 0’_1)§‘

In fact,
a,-()\)z/ z,'ohl(lge"// e, 1=1,2,3.
s? ' s?

It is easily seen that as A — 0
ziohy;—0, inL*S?), =12,
gzohy — —1, in L*(S?).

Hence (3.9) is valid.
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374 WENXIONG CHEN AND WEIYUE DING

Set F(z) = P(Aj—scu) with 2 = t¢, t € [0,1), ¢ € S2. Then F is a continuous
mapping from B3 = [0,1) x §?2 — B3, (3.9) enables us to extend F' continuously
to B°, the closure of B3, so that on 9B3 = §2, F(z) = —z. By a well-known result
on topological degree, we have

deg(F, B%,0) = deg(—z, B%,0) # 0.

So there exist ¢ € [0,1), ¢ € S?, such that F(t¢) = 0. That is, (3.8) holds. This
completes the proof.

PROPOSITION 3.4. Assume {ux} C H., P(ux) — ¢ € S%. Choose A, ¢k, such
that P(Ax, ¢, ux) =0. Then Ay — 0 and ¢x — ¢ as k — oo.

PROOF. (1) Suppose there exists a subsequence {Ag, } of {Ag} such that Ag, —
Ao > 0. Then passing to a subsequence, we have Ay — Ag and ¢x — ¢g, as k — oo
for some ¢y € S2.

Fix an orthogonal coordinate system z = (z;, z2, z3) in R3. Then Ag > 0 implies
that, as k — oo,

(3.10)  =ziohy!  (z) - ziohy! (z), uniformly for z € §%, i=1,2,3.

Let P(Ax, . uk) = (a%,a%, ak). Since

Tt ekt = i © h,\lg e“* and ek Uk = etx,
s? s Fook s? 2

(3.10) leads to

ak = fsz I 0 hAo S0

(2 f32 e‘uk
Applying Lemma 1.1 to the function z; o h;l < instead of R(z), we obtain, as
k — oo, af — z;0 k3! (S); that is P(Ax, g uk) — hy, . (§) € S2, obviously a
contradiction with our assumption P(A, (. ux) = 0. Hence, one must have

+o(l).

(3.11) Ak — 0, ask — oo.

(2) Suppose there exists a subsequence of {¢c} (still denoted by {¢x}) such that
¢k — ¢o # ¢. Choose an orthogonal coordinate system z = (z;,z2,z3) in R3, such
that go = (0,0,1). Then it is easy to see that for 0 < ¢ < 7(, ), as k — oo,
z3 0 hy /\k e uniformly on $?\S.(¢y). Now by a similar argument as in step
(1), we arrive at a¥ — —1, as k — oo, again a contradiction to P(Aj, ¢, ux) = 0.
This completes the proof.

4. Mass center analysis.

LEMMA 4.1. All solutions of

(%) ~Au+2-2"=0, z€S5?
‘are rotationally symmetric with respect to some azxis and hence assume the form
1-o? .
ac(z)=1In ° with a € [0,1).

(1 —acosr(¢,x))?
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SCALAR CURVATURES ON §2 375

PROOF. Suppose u is a solution of (x*). Then e%gy is a metric on S? having
constant Gaussian curvature 1, where gy is the standard metric of S%2. By well-
known results in differential geometry, (S2,e%go) is isometric to (S2, go); i.e., there
exists a diffeomorphism ¢: §2 — S§? such that p*go = e%gg. It follows that ¢
is a conformal transformation of (S2,gg). Since all conformal transformations of
(82, go) are explicitly known, we see easily that u has to be rotationally symmetric
with respect to some axis.

Moreover, by a result of Hong (cf. [5, Lemma 3.1]), » must equal pq ((z) with
a€[0,1) and ¢ € S2.

PROPOSITION 4.2. Suppose {ux} C H., {J(uk)} bounded, J'(ux) — 0 and
P(ux) — ¢ € S2, as k — 0o0. Then there exists a subsequence {ux,} of {ux} and
corresponding {a;}, {¢}, with oy — 1, ¢; — ¢ as 1 — oo such that

[V = ) =0, asi - oo
S2
PROOF. (1) By Proposition 3.3, there exist Ag, ¢x € S?, such that P(Ay,  uk) =
0. Let v = A,\k,gkuk, Uk = v — (1/47) fS2 vg. By Lemma 1.1,
(4.2) J{ug) = I(ug) — 8rin(R(¢) + o(1))

which implies the boundedness of {I{u)}. Taking (3.1) into account and by the
obvious fact I(u + C) = I(u) for any u € H'(S?) for any constant C, we see that

(4.3) I(V) = I(uk)-

Hence {I(7x)} are bounded. And apparently P(9x) = P(vg) = 0. Now, due to
Proposition 1.2 in [B}], {0x} is bounded in H!(S?), so there exists a subsequence of
{Dx} (still denoted by {©x}) converging weakly to vy € H!(S?%). Obviously

(4.4) / vo = 0.
32
(2) Applying (3.7), we have

s) (86,80 = (g (0),) = (" (k)00 B 2,)
= (J'(uk),wx) VYve H(S?)

where
1
_ -1 L -1
Wk = Uoh)\k,s‘k A Szvoh)\k,s‘k'

Since [, wx = 0 and fg, [Vwel® = [ V(v o k3! )I? = [q.|Vv|? we infer
from (4.5) that

1/2
(46) (Uhosn(oe)0) < € [ 1907)

with some constant C independent of u; and v.

By Proposition 3.4, P(ux) — ¢ € S? implies, as k — 00, ¢¢ — ¢ and Ay — 0;
hence
(4.7) Rohy, o — R(¢) in L%(S?).
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And it follows that
(Fae.ee (Tr)sv) = (I'(v0),v), as k— oo, Vv € H'(S?).
On the other hand, by (4.6)
(Jrp.ce W), v) = 0, as k — oo.
Therefore,
(4.8) (I'(vg),v) =0 Yve H'Y(S?).

By Lemma 4.1, v9(z) = @a,5(z) + C, for some constant C, o and n € S?. The
weak convergence of {¥x} to vp and P(9x) = 0 imply P(vg) = 0, and it follow that
a =0 and vy = const. Now, by (4.4), we obtain vg = 0.

(3) Due to (4.6), ||J'(ux)|| — 0 and 9 — 0, we have

fS2 Ro h)\k,ckevkﬁk
sz Ro h/\k,s‘kevk

It is not difficult to see from (4.7) that the last term in the above equality vanishes
as k — oo since the boundedness of {J(ux)} and P(ux) — ¢ imply R(¢) > 0 (cf.
[6]). Hence

o(1) = (5, ., (%), %) = /

Vf)k 2 8w
|
S2

(4.9) / |Vig|? = 0, ask — oo,
S2

which means ¥y — 0 strongly in H!(S?).
(4) By (4.9),
S§2 |V(uohn,g + wk,§k)|2 — 0.
It follows that [g, |V(uk + ¥, © by, )|* — 0, due to the conformal invariance
of the integral [, |Vu|®. Let ax = (1 — A})/(1+ Af). Then a straightforward
computation shows
Yk, © h;kl,g,c (z) = “Pa.sk (z).

Obviously ay — 1, since Ay — 0. This completes our proof.

PROPOSITION 4.3. Let {ux} C H. and assume {J(ux)} ts bounded, J'(ux) —
0, and P(ux) — ¢ € S? ask — oco. Then there is a subsequence {ux,} of {ux} such
that J(uk,) — —8nlndw R(s).

PROOF. By (4.2), (4.3) and (4.9), one can pick a subsequence {ug,} of ux such
that
J(uk,) = I(ug,) — 8nln(R(¢) + o(1)) = I(0x,) — 8xIn(R(s) + o(1))
— 1(0) — 87InR({¢) = —8nrlndn R(¢).
This completes the proof.

PROPOSITION 4.4. Assume {ux}, {vi} C Hs.
(1) {J(ur)}, {J(vk)} bounded

(2) fg2 |V (uk —vi)|> =0, as k — oo;

(3) P(ug) —» ne€ S?, P(vg) —» ¢ €52, as k — oo.
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Then n = ¢.

PROOF. We argue indirectly. Suppose n # ¢.
By Proposition 4.2, one can pick a subsequence of {vg} (still denoted by {vg})
and corresponding {ax}, {¢x} with ax — 1, ¢x — ¢ such that

/ |V(vk — Pay.ce)l> =0, ask— oo.

S2

From assumption (2)

(4.10) / |V (iik — Gag.e )2 — 0, ask— oo.
S2

Here we again used the notation & = u — (1/47) [g, u
Noting that P(@) = P(u) Yu € H*(S?), [, |Vg0ak,gk| — 00 and I{Pgy ) =
—87ln4~; applying Lemma 2.2 in [5], we obtaln, forany z € S2, z # ¢,

(4.11) . Paxelz) = —00, ask — oo.
Let € = ir(n,¢), Sk = {z € Se(n): uk(z) > 0}, & = max{i,0}; then by (4.10),
/ {IV ‘bak,§k)|2+|a;: _Saakys‘kp} _'Ov as k — oo.

Now, the boundedness of fSk |V@Pay.ce|? and (4.11) imply the boundedness of
Js. (Vad? + @}?), hence of fss(n)(IVﬂ;fl2 + |%f]?). Consequently, by Theorem
2.46 in (8], we infer that fSe(n) ¢™ are bounded. It follows, from P(ux) - ne S?

and the proof of Lemma 1.1, that fg, e% are bounded. Assumption (1) implies
Jg2 |Viig|? are bounded; hence there exists a subsequence {dy, } of {x} converging
weakly to some element ug € H(S?), which leads to P(ix,) — P(uo). However,
it is evidently that P(ug) can never lie on S2. This contradicts n € S2, and the
proof is completed.

LEMMA 4.5. If X is sufficiently close to 1, then
(4.12) ux < —8mlndrw.
Here we assume v > 0.
PROOF. Using kg in (R2), set
IA(t) = @x ko) t € [0,1].
Apparently, for X sufficiently close to 1, [, € L,. We want to show that

max J < —8rlndry.
Ly ((0,1])

Since J(pa,¢) = —87ln [, g2 Re?™ s, it suffices to verify the inequality

(4.13) Re®*s > 4nv Y € ho([0, 1)).

S2
Set N5 = {z € ho([0,1]): dist(z, K) < &}, where K was defined in (R;) and
dist(-, -) stands for the geodesic distance on standard S%. By (R;), one can choose
a small 6 so that
(4.14) AR|n, > 0.
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(1) ¢ € ho([0,1])\Ns. In this case, there is an € > 0, such that
R(¢) 2 v+e V¢ € ho([0,1])\Ns.

Let A be sufficiently close to 1 so that d(p, ) < (€/2Cp)3. (Note that here d(py ()
is independent of ¢.) Then by Lemma 1.1, we have

/ Re¥>s > (R{¢) — 6/2)/ e¥rs =4mw(R(¢) — €/2) > 4.
52 e

(2) ¢ € N5. Due to the continuity of J and the compactness of N, the closure
of N5 on S§2, it suffices to show that for each ¢ € N;s there is a A(¢) such that, as

1> A > A(¢), (4.13) holds. For this aim, again choose a spherical polar coordinate
system z(6,¢), 0 <8 <7, 0 <9 < 27, so that ¢ = (0,%). Then for any € > 0,

27 27
Ore — (1 \2 )} siné / /
R (1-A {/ / 1—/\0050 df dyp +

)
+ 47 R(¢)

)

)

= (1= 22){(D) + (1)} + 47 R(s)
> (1= 2H{(D) + (1)} + 47v.

Thus one need only verify that
(4.15) (I) + (II) > 0 as A sufficiently close to 1.

In fact, for any fixed ¢, integral (II} is bounded for all A < 1. Using the second
order Taylor expansion of R at point ¢, taking into account that ¢, . depends on
8 only, and by a direct calculation, we arrive at

/ {AR(¢)sin® § + o(6?)}

(1= hcos0)? sin 8 df.

Let € be so small that
T € sin®@do
>~ .
Nz 2 AR(g)/() (1 — Xcosf)?

Then an integration by parts shows
/E sin® 9 df +00, asAi—1
— — 1.
o (1 —)Xcosf)? ’

Therefore (4.15) holds, and the proof is completed.
Let Aq be so close to 1 that both (1.5) and (4.12) hold. We write u = uy, and
L=1Ly,

PROPOSITION 4.6. There exist ag, b > 0, such that for any {vy} in H., if
J(w) < pu+6g (k=1,2,...) and P(vg) — ¢ € S?, as k — 00; then

(4.16) R(¢) 2 v + ap.
PROOF. Estimate (4.12) implies the existence of constants ag, 6o > 0, such that
(4.17) U+ 6y £ —8mlndr(v + o).

By (1.2) and (1.4)
J(vg) > —8nlndn[R(Q(vk)) + Co v/ d(vk)].
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Clearly, as k — oo, both d{vx) — 0 and R(Q(vx)) — R(¢); hence
p+o 2> @.J(vk) > —8wlndnR(s),

which, with (4.17), implies R(¢) > v + ap. This completes the proof.

5. Constructing a continuous “flow” in H, to complete the proof of
the Theorem. Let M = R~!(m) = {z € §%: R(z) = m}. Choose £1 > 0, so that

(5.1) > —8rlndw(m — g;).

Define Uy = {u € H.: R(Q(u)) < m —¢1,d(u) < d}. Let yo = infgy, J =
—8mlndmm.

LEMMA 5.1 (A result of a continuous “flow”). There exist 6,d > 0 and a
continuous mapping T : H. — H., such that

(a) J(T(u) < J(u), Yu € H.;

(b) T(JHpo, pt +8) NUa) C T (o, p — 6);

(C) TlJ"(uo,uo+6) =id, po +6 < p—9;

(d) T(H\Uy) € H\Us,
where J = (o, B) stands for {u € Hy: a < J(u) < B}.

PROOF. Analogous to the proof of Proposition 4.6 and by the definition of Uy,
it is easy to show that there are constants dy, 61,2 > 0, such that if 6 < 61, d < dy,

(5.2) Yu € JHuo, u+6) N Uy, Q(u) € R v +e9,m —¢].
By (R3), there is a constant ay > 0, such that
(5.3) IVR(z)| > a1, Vr€ R '[v+ey/2,m—e1/2.

(1) Let u € H. such that Q(u) € R™[v + €2/2,m — €1/2]. Let z(u) be the
straight line passing through 0 which is perpendicular to the plane spanned by the
vectors Q(u) and VR(Q(u)). Define T'(6,u) to be the rotation in R® which takes
z(u) as its axis and which rotates along the direction VR(Q(u)) by angle 6.

Let u be fixed for a moment, and write z¢o = Q(u), Ty = T(0,u). Consider

f(6)= (/S2 e")—l < 5 R(z)e*(Ts ') . R(x)eu(z))

where T ! is the inverse of Ty. Noting that Ty is an orthogonal transformation in
R3, we arrive immediately at

£(6) = ( /S ] e")_l : /S [B(Tyz) - R(z))e"®).

The first order Taylor expansion of R at zg leads to
(5.4) R(Tozo) — R(20) 2 5|VR(20)| - [Tozo — zol,
for 6 sufficiently small. Let
© 8(20) = max{a: as § < «a,(5.4) is valid},
o = inf{f(zo): 10 € R™[v +€2/2,m — €,/2]}.
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Then by the smoothness of R and the compactness of R™![v +€2/2,m — ¢, /2], we
have 6y > 0. (5.4) and the continuity of R imply, as r sufficiently small,
(5.5) R(Ty,z) — R(z) > 1|VR(20)|[Toz0 — 20| Vz € S,(20).
Let r(zo) = max{s: as r < s, (5.5) holds}. Define
ro = inf{r(zo): 70 € R~} v +&2/2,m — €, /2]}.

Then similarly, one has rg > 0.
From the proof of Lemma 1.1, we see that there exists do > 0 such that if
d{u) < dg, then

u

Js,y 20
)

Apparently, ds is independent of zg.
Now, by (5.3}, (5.5) and (5.6), noting that for any 6, z, [Tgzo — zo| > |ToT — z|,
we obtain, for all § < 6y,

o= ([, ) { / R R [ o )}

U

J e

(5.6) e ST
S2

—_

fsm(xo) €
fsz e
sz\Sro(zo) [Ty — x|e*

fs? et

(84
> 1—é|Tozo — 20| = a2|Tyzo — 0]

v

1
Z|VR(1‘0)| | Tz — 0|

— max |VR)|
S?2

(2) Choose 82,d3 > 0 so small that
m-e %2/87 _ Codé/3 >m—e/2
where Cy was defined in Lemma 1.1. Then by the inequality
J(u) > —8rIndr[R(Q(w)) + Co ¥/d(u)]
derived from (1.2) and (1.4), it is easy to verify that for all v € H.
(5.8) if J(u) < po + 62 and d(u) < dz, then R(Q(u)) > m —e;/2.
Let

G= {z € B%: % ER Yv+ey/2,m~e1/2,1—|z| < min{dg,dg}},

1
G’ = {SE eqG: % GR_I[V'f'EQ,m—El],l - Il‘l < §min{d2,d3}}.

Choose a C* function g on B°, satisfying 0 < g(z) < 1, Vz € B.g=1z¢
G g=0,z€ FS\G. Define
Tiu(z) = w(T~(tan(P(u)), u)z), t €10, 6o

Note that P(u), Q(u) depend continuously on u (in the H'(S?) topology) and R
is smooth. We see that T~!(6,u) depends continuously on u, while the continuity
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of T~1(6,u) with respect to 8 is obvious. Therefore T is a continuous map from
[0,80] x H(S?) to H'(S?), and thus defines a continuous “flow” in H'(S?) which
is nonincreasing with respect to the functional J, that is

(5.9) J(Tiw) < J(u) VYue€ H,,t€|0,6p).

In case P(u) ¢ G, the above inequality holds obviously, since g(P(u)) = 0,
Tiu = u. And in case P(u) € G, by (5.7)

R(z)e™* > | R(z)e* Vte€ (0,0
s? s?
Moreover, since T~1(8,u) is an orthogonal transformation we have

l/ |V('au)|2+2/ Ttu=1/ |Vu|2+2/ u,
2 82 SZ 2 82 82

for any t € [0,0), u € H'(S?). Therefore (5.9) also holds.
If P(u) € G', by the definition of g

Tou(z) = w(T™ (¢, u)z).

Write J as
J52 Re*

Jore®
It is easily see that [y, e™* = [, e*; hence I(T;u) = I(u). By (5.7)

fsz R(z)eToou _ fsz R(z)e

J{u) = I(u) — 8nln

" > 0alT(00, w)Q(u) — Q)| > a3 > 0.

f82 eTsou fS'2 el
Consequently, there exists 3 > 0 such that
(5.10) J(Toou) < J(u) — 63, forallue€ H,, P(u) €G'.

(3) Now define T (u) = Tg,u. Let
) <min{61,6g,63/2}, d<min{d1,d2/2,d3/2}.

Then equation (5.9) implies (a). (5.10) implies (b), since by (5.2), for any u
€ J Yuo,u+6)NUy, P(u) € G'. (5.8) and the definition of G and of g imply (c).
Finally, noting that d{T,u) = d(u), R(Q(Tiv)) > R(Q(u)) and by the definition of
Uy, we see that the conclusion (d) of the lemma is true. This completes the proof.

PROOF OF THE THEOREM. For simplicity, we write U in Lemma 5.1 by U,
and [({0,1]) by {, for l € L.

Choose Iy € L, k = 1,2,..., such that max;, J(u) < g+ 6 and max,;, J — u, as
k — o0o. By (a) and (c¢) in Lemma 5.1,
(5.11) T() =l el and maxJ — p.

: P

And by (b) and (d)
(5.12)  Jlpy <u-é.

Now choose uy € I, so that J(ux) = max;, J — p. It can be shown that (cf. e.g.

[7], the proof for Mountain Pass Lemma by using Ekeland’s variational principle)
there exist {vg} C H., such that

(5.13) ||uk bt ’Uk”Hl — O, J(Uk) — U and Jl(’l)k) — 0.
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By (5.12), ug € H,\U. Thus there are only two possibilities:
(1) d{ug) > €g for some €9 > 0, or
(2) P(ug) — ¢ € §%, with R(¢) > m —¢;.

In case (1), by (5.13), {P(vx)} is bounded away from the sphere S2. Then by
Proposition 2.1 and (5.13), {@x = vx — (1/4n) [g, v} converges strongly in H, to
some vp, that J'(vg) = 0 and J(vg) = u. Hence u is a critical value of J.

In case (2), by Proposition 4.4, P(vx) — ¢; then due to Proposition 4.3,

J(vg) — —8wlndwR(s),

that is,
u = —8rlndrR(¢).

By (5.1), —8nindwR(¢) < —8wlndm(m — €1) < p, a contradiction. Therefore, u is a
critical value of J. This completes the proof of our Theorem.

The author would like to thank Professor J. L. Kazdan for discussions and sug-
gestions on this paper.
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