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SCALAR CURVATURES ON S2

WENXIONG CHEN AND WEIYUE DING

ABSTRACT. A theorem for the existence of solutions of the nonlinear elliptic
equation —Au + 2 = R(x)eu, x E S2, is proved by using a "mass center"
analysis technique and by applying a continuous "flow" in /i1(S2) controlled
by VÄ.

0. Introduction. Given a function R(x) on the two dimensional unit sphere
S2, one wishes to know when it can actually be the scalar curvature of some metric
g that is pointwise conformai to the standard metric go on S2. This is an interesting
problem in geometry (cf. [1]). In order to find an answer, people usually consider
the differential equation
(*) Au - 2 + R(x)eu = 0,        xeS2.
It is well known that if u is a solution of (*), then R(x) turns out to be the scalar
curvature corresponding to the metric g = eugo, which, obviously is pointwise
conformai to go-

There are some necessary conditions for the solvability of (*) pointed out by
Kazdan and Warner (cf. [2]), which show that not all smooth functions R(x) can
be achieved as such a scalar curvature. Then for which R can one solve (*)? This
has been an open problem for many years (cf. [3]).

Moser [4] proved that if R(x) = R(—x), for any x E S2, and R is positive some-
where, then (*) has a solution. Recently, Hong [5] considered the case where R is
rotationally symmetric and established some existence theorems. In our previous
paper [6], we generalized the results of Moser and Hong to the case where R pos-
sesses some kinds of generic symmetries, that is, R is invariant under the action of
some subgroups of the orthogonal transformation group in R3. Then it is natural
for one to ask, "What happens when R is not symmetric?" So far we know, there
have not yet been any existence results in this situation. This is the motivation for
this present paper.

In this paper, without any symmetry assumption on R, we find some sufficient
conditions so that (*) can be solved, which is independent of the results in [6]. To
find a solution of (*), we consider the functional

J(u) = \f   \Vu\2dA + 2 f   udA - 8rrln f   Reu dA
2 Js2 Js2 Js2

defined on
Ht = íuEH1(S2):   f   ReudA>o\
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366 WENXIONG CHEN AND WEIYUE DING

and seek critical points of J. It is easily seen that a critical point of J in //» plus
a suitable constant makes a solution of (*). Since J is bounded from below on
//», a natural idea is to seek a minimum of J. Unfortunately, it was shown (cf.
[5]) that inf/f, J can never be attained unless R is a constant. So one is led to
find saddle points of J. Under some appropriate assumptions on R, using a family
of transformations on H1(S2) and a continuous "flow" in //«, by a careful "mass
center" analysis, we prove the existence of a saddle point of J in //* and establish
the following

THEOREM.   Assume
(Ro)REC2(S2).
(Ri) There exist two points, say a and b, on S2, such that

R(a) = R(b) — m = maxR > 0,

and
sup    min    R(x) — v < m,
fc6r*efc(|o,i])

whereY = {h: h E C([0, l],S2), h(0) = a, h(l)=b}.
(R2) There is ho E Y such that min/,0([o,i]) R = v, and for any

xEJK = {xE ho([0,1]) : R(x) = i/},        AR(x) > 0.

(R3) There is no critical value of R in the interval (v,m).
Then problem (*) possesses at least one solution.

OUTLINE OF THE PROOF. Due to its complexity, we divide our proof into five
sections.

In §1, we find two families of separated points, say {<f\,a} and {<Pa,ô} with
Xe [0,1), satisfying

J(<P\,a), J(<P\,b) -* inf J,    as A -+ 1.

And under the condition (R{) prove that as A gets sufficiently close to 1, there
exists a "mountain pass" between the two points <pXa and <p\¿, i-e-

(0.1) p\ =  inf     max    J(u) > max{J(^A,a), J(<P\,b)}-
lELx uEl([Q,l\)

where Lx = {I: I E C([0,l],Hm), 1(0) = <P\,a,l(Y) = <px,b}- Now, by Ekeland's
variational principle (see [7]) there is a sequence {uk} in //* such that J(uk) —► p\,
J'(uk) —>■ 0, as k —* oo. If {ufc} possesses a strongly convergent subsequence, then
we have solved our problem.

When does the sequence {uk} converge strongly? In order to investigate this,
we verify, in §2 a modified (P.S.) condition for the functional J, that is

PROPOSITION 2.1. Assume {vk} C //,, J(vk) < ß < +oo, J'(vk) -+ 0, as
k —► oo, and |P(i>fc)| < 1 - 7 < 1. Let vk = vk - (l/4n) fs2vkdA. Then {vk}
possesses a strongly convergent subsequence in H,, whose limit vq verifies J'(vo) = 0
where P(u) stands for the mass center of the function eu^ defined on S2.

Due to Proposition 2.1, the key point to the solution of problem (*) lies in
controlling the behavior of the sequence {P(uk)}. To do this, we divide, according
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SCALAR CURVATURES ON S2 367

to the value of R, the sphere S2 into several areas, and try to find such a sequence
{uk} that {P(uk)} can reach none of the areas on the sphere.

Thus, we introduce in §3 a family of transformations on H1(S2) which leaves
the functionals

F(u) = 7¡f   |Vu|2dA4-2Í   udA    and    G(u) = f   eu dA
2 Js2 Js2 Js2

invariant.   With the help of this family of transformations, we obtain in §4 the
following propositions providing some useful information when P(uk) —► S2.

PROPOSITION 4.2. Suppose {vk} E //,, {J(vk)} is bounded; J'(vk) —► 0, and
P(vk) -»ce S2, as k —* oo. Then there exists a subsequence {vk{} of {vk}, and ai,
Ci, with ai —> 1, Çi —► Ç as i —+ oo such that fg2 |V(î;tCî — <Pai,(t)\2 —* O as i —► oo,
where ipx,<(x) = ln[(l — A2)/(l — A cos r(x,ç))2], with r(x,ç) the geodesic distance
between the two points x and c on S2.

PROPOSITION 4.3. Let {vk} C //*, J(vk) bounded, and J'(vk) -* 0, P(vk) -►
c E S2 with R(ç) > 0. Then there is a subsequence {vkt} of{vk} such that J(vki) —>
87rln47rÄ(c).

PROPOSITION 4.4.   Assume {uk}, {vk} in H* satisfying
(1) {J(uk)}, {J(vk)} are bounded; and J'(vk) —► 0, as k —> oo.
(2) fS2 |V(ufc - vk)\2 dA —> 0, as k-> oo.
(3) P(uk) ^nES2, P(vk) - c E S2, as k — oo.
Then n = c.

Condition (R2) enables us to establish the estimate

Px < — 87rln47r/y

for A sufficiently close to 1. Then for such A we prove

PROPOSITION 4.6. There exist a0, 60 > 0, such that for any {vk} in //«, if
J(vk) < Px+6o (ft = 1,2,...) andP(vk) —* ( E S2, as k —► oo then /2(c) > v + ao-

Finally, in §5, we utilize V/2 to construct a continuous "flow" in //». Based on
the results in the proceding sections, mainly in §4, and applying the "flow", we are
able to pick a sequence {uk} in H,, such that as k —> oo, J(uk) —* px0 (for some Ao
sufficiently close to 1), J'(uk) —* 0, and {P(uk)} is bounded away from the sphere
S2. Therefore we arrive at the conclusion that px0 ÏS a critical value of J, and
complete the proof of our Theorem.

REMARK 0.1. In the Theorem, if v < 0, then assumption (/22) can be omitted.
REMARK 0.2. Condition (Ri ) may be generalized as
(Ri) Let m = max^ R, M = Ä_1(m); M is not contractible in itself, but is

contractible on S2. Let

Y=\U=   (J   ht(M)
t€[0,l]

ht(-) is a deformation of M on S ;

h0(M) = M and hi(M) is a point on S2

and suppose that v — sup^p minx€f7 R(x) < m. Then by a similar argument as in
the proof of our Theorem, one can show that condition (Rq), (Ri), (R?) and (R3)
are sufficient for problem (*) to have a solution.

We assume (Rq)-(R3) throughout the paper.
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368 WENXIONG CHEN AND WEIYUE DING

1. Mountain pass. Consider the functional J defined on //*. For x, ç 6 S2,
X E [0,1), define

^(*)=^-Aœsr\s,c))2
where r(x,ç) is the geodesic distance between two points x and çonS2. A direct
computation shows that, as A —► 1,

J(<Px a) = -87rln /    Ré*^" dA -» -87rln47r/î(a) = -87rln47rm.
Js2

Similarly,

(1.1) J(<Px,b) —» -87rln47rm.

On the other hand, the inequality (cf. [5])

(1.2) /   eudA<47rexp( — /   |Vu|2dA 4--rW   udA]     VuEH^S2),
Js2 \lvnJs2 4tt/S2 /

leads to
J(u) > —87rln47rm    Vu E //*.

Therefore,

(1.3) inf J = -87rln47rm.
H.

(1.1) and (1.3) inform us that there are two separated points, say <px,a and <px,b,
in //» at which the values of J are as close to inf #, J as we wish. This phenomenon
would naturally lead one to expect that there might be a "mountain pass" between
the two separated points. In order to show this, we need the concept of mass center
introduced in [6]. Now let us first recall it.

For u E H1(S2), regard S2 as a rigid body with density eu^ at point x E S2,
denote the mass center of this rigid body by P(u). Then in an orthogonal coordinate
system x = (xi,x2,x3) in R3,

_ {JS2XieudA   fg2x2eudA  ¡s2x3eudA*
^ ~~ V  /s2eudA  '   ¡s2eudA  '   /s2 eu dA

This concept and its analysis played an important role in [6] and will be a powerful
tool in the following investigation.

Define Q(u) = P(u)/[P(u)\, and d(u) = \Q(u) - P(u)\, u E H^S2).

LEMMA 1.1.   There exists constant Co = C(\R\c*(s2))> suc^ that

(1.4) 1/  {R(x) - R(Q(u))}eu dA  <Co\fdJÜ) f   eu dA.
\Js2 Js2

PROOF. For simplicity, write Q = Q(u) = (Qi,Q2,Qz), and ST = Sr(Q) = {x E
S2: r(x,Q) < r}. Choose r = \/d(u). Since

f il-^2xlQl\eudA If   eu dA < I - \P(u)\ = d(u)

and
i-£>'<2^r2/4  VxeS2\Sr,
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SCALAR CURVATURES ON S2 369

we have

».f       eudA I f   eudA<4^/d(i
Js2\Sr I    JS2

Therefore,

I /  {R(x) - R(Q)}eu dA\<\f {R(x) - R(Q)}eu dA\ +   f       {R(x) - R(Q)}eu
Us2 I     \Jsr I     Js2\sr

<lmax\VR\-r + 8max\R\^d(:u)\f   eu dA < C0 \/d(ü) f   eu dA.

LEMMA 1.2.   LetuEH*, J(u) < ß, \P(u)\ < 1 --y < 1.  Then

f   |Vu|2dA<C(/3,7).
Js2

PROOF. Analogous to the proof of Proposition 1.2 in [6].
Define

Lx = {l:lE C([0, l],Ht),l(0) = <px,a,l(l) = <Px,b},
Px = inf     max    J(u).

lELxuEl([0,l])

For A sufficiently close to 1, Lx is nonempty. In fact, since R(a) = R(b) > 0, one
has /s2 Ref*.° dA, ¡g2 Re^b dA > 0 for A close to 1. Take

u\ = ln[(l - f)e^'" + te*™],        t E [0,1];

then /s2 Reu* dA > 0; hence lx = {u{:tE [0,1]} E Lx.

PROPOSITION 1.3  (MOUNTAIN PASS).   For X sufficiently close to I,

(1-5) pa > max{J(<px,a), J(<P\,b)}■

PROOF. We argue indirectly. Suppose there exists {A^}, Xk —* 1, such that

pxk < max{J(fxk,a), J(<P\k,b)},        ft = 1,2,....

Then by (1.1), one can find {ek}, ek —+ 0, and pxk < —87rln47rm + ek.   By the
definition of pk, there is lk E Lxk such that

(1.6) max  J < -87rln47rm + ek.
i*([o,i])

Let d0 > 0 be sufficiently small, so that if d(u) < d0, then

(1.7) CoVd(ü)< \(m-u).
By (Ri), this is possible.
Case (1). There exists fco such that if k > fco, then for any m on í^, d(u) < do-

Then by (1.6) and (Ri), one can pick some fc > fco so that

(1.8) max   J < -87rln27r(m 4- v).
U([o,i])

Fix such fc and set h(t) — Q(lk(t)), t E [0,1].   It is obvious that h([0,1]) is a
continuous curve on S2 joining a and b. Let ¿o E (0,1) satisfy

R(h(t0)) =   min  R.
h([0,l})
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370 WENXIONG CHEN AND WEIYUE DING

Then

(1.9) R(h(t0)) < v.

Write v = lk(t0), Q = Q(v) = h(t0). Then by (1.4) and (1.7)-(1.9),
- 87T In 27r(m + i/) > J(v)

>)- ¡   \Vv\2dA + 2¡   v dA - 8-Kln f   ev dA - 8rrln(Ä(Q) + C0 \/Kv))
2 Js2 Js2 Js2

> -87rln47r - 87rln±(iy + m) = -87rln27r(m 4- v),

a contradiction.
Case (2). There exists a subsequence of {lk} (still denoted by {lk}) such that

for any fc, one can pick out a uk E lk satisfying d(uk) > do- Then by Lemma 1.2,
we infer that /s2 |Vufe|2dA are bounded, which implies that the sequence {ük —
uk — (l/4w) fs2ukdA} is bounded in H1(S2) and hence possesses a subsequence
coverging weakly to an element, say uo, in H1(S2). Since uk E //», it is easy to
verify that ûk and the weak limit uo are in //*; consequently, J(uo) = inf//. J. This
is impossible because by (Ri) R is not constant, so inf//, J can never be attained.

The above argument shows that our hypothesis at the beginning of the proof is
false, so (1.5) must hold for A sufficiently close to 1.

2. A modified (P.S.) condition.

PROPOSITION 2.1. Assume {uk} C //*, J(uk) < ß < +oo, J'(uk) -* 0, as
fc —> oo, and also assume |.P(ufc)| < 1 — 7 < 1. Let ük = uk — (l/47r) fg2 ukdA.
Then {uk} possesses a strongly convergent subsequence in H1(S2) whose limit uo
verifies J'(uo) = 0.

PROOF. In the proof of Proposition 1.3, we have already seen that {ufe} c //*
and there is a subsequence of {ùk} (still denoted by {ùk}) converging weakly to «0
in//,.

Since for any constant C, J(u + C) = J(u), one concludes, from the definition
of J', that

(2.1) ./'(ùfe) = J'(uk) -* 0,    as fc ̂  00.

Hence
-Aüfc -  r     **-    ,. Reük =2 + o(l).¡s2Reu"dA v ;

Consequently,

(2.2)
f f    (    Reu' Reu'    )

ysJV(ul-u,)|2=87rys2|]¡-^-]¡-^)(uí-ñJ)dA + 0(l

(¡S2(üi-Ü^*{Js2

,S2JLC

Reü> Reü>
ls2 Re*<      Js2 Re->

The boundedness of {ûk} (in HX(S2)) and of J(ük) leads to

Reük dA > a > 0,        fc=l,2,...,

1/2
\2JA \

3 2dA)      +o(l).

I,
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SCALAR CURVATURES ON S2 371

which, together with (1.2), implies that, for any i,j — 1,2,..., the integrals

r   ¡RÇ^_RfÇVdA
JS2 I ¡S2 Reu<      ¡s2 Re"> f

are bounded. By the compact embedding HX(S2) ^ L2(S2), we have

Js
ùi — ùj)2 dA —► 0,    as t,y —► oo.

Now, it follows from (2.2) that

|V(ùj — ùj)[2 dA —► 0,    as i,j —► oo.
/.'s2

Consequently,
ùfe —► u0    in H1^2).

Therefore, by (2.1), J'(uo) = 0. This completes the proof.
Let Ao be so close to 1 that (1.5) is valid. Then by Ekeland's variational principle

(cf. [7], the proof for Mountain Pass Lemma), there is a sequence {uk} C //*
satisfying J(uk) —► px0 and J'(uk) —► 0 as fc —► oo. Set ük = uk — (l/47r) fs2 uk dA;
then from Proposition 2.1, we know that whether {ùfe} converges strongly in H1 (S2)
depends on the behavior of the mass center P(uk). Does {P(uk)} remain bounded
away from the sphere S21 This has now become a key point to the solution of
(*). In order to analyze this, we introduce in the following section a family of
transformations on HX(S2) which possesses some important properties and is very
useful in our later investigations.

3. A family of transformations on H^S2). Yet u E H^S2), ç E S2. Select
a spherical polar coordinate system x = (0, <p), 0 < 0 < it, 0 < <p < 2tt, so that
c — (0, <p). Define a family of transformations A^ by

AXtiu(0,(p) =uohx,í(6,<p) + 'ipx,í(6)
where 0 < A < 1, hx,ç(ô,<p) = (2tan-1(Atan(f?/2)),<p) is a conformai transforma-
tion on 52, and

A2
^ JO) = In-5-.

,? (cos2(0/2) 4- A2 sin2(0/2))2
The following propositions describe some important properties of Ax,(.

Proposition 3.1. Define

I(u) = \f   \Vu\2dA + 2¡   udA-8irlnf   eu
2 Js2 Js2 Js2

foruEH1(S2). Then

(3.1) I(Axju) = I(u),        XE (0,1], CES2;
and consequently, if u is a solution of the equation

(**) -Au + 2 = 26"
then Ax,(u is also a solution.

PROOF. (1)

f   eA'-udA= f * f*e^^'^^W^e^-^sinOdOdp.
Js2 Jo    Jo

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



372 WENXIONG CHEN AND WEIYUE DING

Let 0' = 2tan-1(Atan(0/2)), <p' = <p. Then e^'W sinOdO = sinO'dO'. Hence

(3.2) f   eA^udA= f     f  eu^e''f'Uin0'dO'dip'= f   eudA.
Js2 Jo    Jo Js2

(2)

f   \V(Ax,(u)\2dA= f   [\7(uohx,i)\2dA-2 f   ao^A,f|i   |V^A,?|2
Js2 Js2 Js2 Js2

= f   |Vu|2dA4-4 f   u o hx,<(e1p^< - 1) dA + f   |W>A,<-|2
Js2 Js2 Js2

= f   |Vu|2dA4-4 f   udA-if   uohX:idA+ f   |Vt¿>A,?|2.
Js2 Js2 Js2 Js2

Here we have employed the fact that ipx,c satisfies (cf. [5])

(3.4) -AíAa.c = 2e*x-< - 2.

Meanwhile, a direct computation shows

\ f   [\7iPx,,\2dA + 2 f   iPx,<dA = 0.
¿ JS2 Js2

Substitute this into (3.3) to get

(3.5) l-j^(Ax,cu)[2dA + 2J^(udA = j^ Q|Vu|24-2U) dA

which, in addition to (3.2), implies (3.1).
(3) Denote the dual pairing between H1(S2) and its dual space by (■, ■). Then

by the definition of the Gâteaux derivative and (3.1), one has

(I'(Ax,su), v) = lim j{I(Ax,,u + tv) - I(AXliu)}

(3.6) = lim j{I(AxAu + tv o ft"])) - J(AA,f u)}

= lim !{/(« 4- tv o fc-i) - /(«)} = (T(u),vo fc-J)

where h^1 is the inverse of /ia,ç-
If u is a solution of (**), then I'(u) = 0 and fg2 eu — 4ir. Consequently, by (3.6)

and (3.2), I'(Ax^u) = 0 and /s2 eAx^u = 47r, which implies Axt(u is also a solution
of (**). This completes our proof.

Proposition 3.2. Define

Jxs(u)= f   (l\Vu\2+2u)-8Trln f   Rohx^eu.
Js2 Js2

Then

(3.7) VvEH\S2),    (J'x,í(Ax,íu),v) = (J'(u),v°hx-*).
License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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Therefore

Proof.

(JXs(Ax,su),v)=  f   V(uohx,ç)Vv+ f   V^fV«
Js2 Js2

+ 2 f   v - f    of    A, u f   R°hx,,eA^uv.JS2        JS2 R o hx¿eA**u JS2

A direct computation leads to

/   V(uohxç)Vv=       ^7(uohxí)V(vohj;1()ohx,5=       VuV^o/i"1),
Js2 Js2 Js2

f   Rohx<eA^u = f   Reu,
Js2 Js2

f   RohXieA^uv= f   Reu(vohx\).
Js2 Js2

By (3.4),

/    Vipxc-Vv + 2 f   v = 2 f   e^v = 2       »oh"1
Js2 Js2 Js2 Js2

(J'Xti(Ax,,u),v) =  f   Vu\7(voh^) + 2 f   voh-^
Js2 Js2

-   . 81      f   Reu(voh-\)
¡s2Re-JS2 x^

= (J'(u),voh^).

This completes the proof.

PROPOSITION 3.3.   For any u e Ht, there exist X E (0,1] and ç E S2 such that

(3.8) P(Ax,su) = 0.

PROOF. Use the spherical polar coordinate system with pole c introduced at
the beginning of this section, and denote the corresponding orthogonal coordinate
system in R3 by (xi,xi,x3)ç. That is

xi = r sinf? cos<p,     X2 — r sinO sin ip,     x3 = r cosö.

In this system, let P(Ax,çu) — (ai(X),a2(X),a3(X))?.   We first show that for any
fixed c € S2, as A -* 0,

(3-9) (01(A), a2(A), a3(A))i - (0,0,-1),.

In fact,

ai(X)= f   x,oh-x\eu      f   eu,        ¿ = 1,2,3.
Js2 I Js2

It is easily seen that as A —► 0

Xi o ft"] -> 0,    in L2(S2),        i = 1,2,

2,30/1-^-1,    inL2(52).

Hence (3.9) is valid.
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374 WENXIONG CHEN AND WEIYUE DING

Set F(x) = P(Ai-tiiu) with x = tç, t E [0,1), ç e S2. Then F is a continuous
mapping from B3 = [0,1) x S2 —» B3.  (3.9) enables us to extend F continuously

_3
to B , the closure of B3, so that on dB3 = S2, F(x) = —x. By a well-known result
on topological degree, we have

deg(F, B3,0) = deg(-x, B3,0) ¿ 0.

So there exist t E [0,1), c e S2, such that F (te) = 0.  That is, (3.8) holds.  This
completes the proof.

PROPOSITION 3.4. Assume {uk} C //*, P(uk) —> Ç E S2. Choose Xk, cfc, such
that P(Axk,ikuk) = 0.  Then Xk —» 0 and çk —> <f as k —> oo.

PROOF. (1) Suppose there exists a subsequence {Afct} of {Afc} such that Xki —>
A0 > 0. Then passing to a subsequence, we have Afe —* A0 and ft —+ ç0, as fc —► oo
for some çp € S2.

Fix an orthogonal coordinate system a; = (xi,x2, x3) in R3. Then A0 > 0 implies
that, as fc —► oo,

(3.10) Xi o ÄJ1, (x) —► x¿ o ft^ (x),    uniformly for x G S2, i = 1,2,3.

Let P(AAfc,CkUfe) = (ak,a^,a^). Since

/   XieAx^ku" =z f   Xioh'1   eUk    and     /    eA^*Uk = f   eUk,
Js2 Js2 Js2 Js2

(3.10) leads to
L2 x¿ o /¡.71, eu*fc=Jsf_^Wg—     (1)

Is2 eUk

Applying Lemma 1.1 to the function x¿ o hx^     instead of R(x), we obtain, as
fc -> oo, of -^i,o /»Äo^Jf); that is F(^Afc,ÇtUfc) -* h\o,io(ï) € S2' obviously a
contradiction with our assumption P(Axk,ikuk) = 0. Hence, one must have

(3.11) Afe —* 0,    as fc —> oo.

(2) Suppose there exists a subsequence of {çk} (still denoted by {ek}) such that
?fc —* <To 7^ ?• Choose an orthogonal coordinate system x = (xi,X2,X3) in R3, such
that Ço = (0,0,1). Then it is easy to see that for 0 < e < r(f, çp), as fc —► oo,
X3 o hxl —* —1, uniformly on S2\S£(ço). Now by a similar argument as in step
(1), we arrive at a3 —► — 1, as fc —► 00, again a contradiction to P(Axk,ikuk) = 0.
This completes the proof.

4. Mass center analysis.

LEMMA 4.1.   All solutions of

(**) -Au + 2-2eu = 0,        xeS2,

are rotationally symmetric with respect to some axis and hence assume the form

^W=ln(l-Qco"sr(c,x))2     «**neIM>-
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PROOF. Suppose u is a solution of (**). Then eugo is a metric on S2 having
constant Gaussian curvature 1, where go is the standard metric of S2. By well-
known results in differential geometry, (S2,e"¡7o) is isometric to (S2,go); i.e., there
exists a diffeomorphism ip: S2 —> S2 such that <p*go = eugo- It follows that ip
is a conformai transformation of (S2,go). Since all conformai transformations of
(S2, go) are explicitly known, we see easily that u has to be rotationally symmetric
with respect to some axis.

Moreover, by a result of Hong (cf. [5, Lemma 3.1]), u must equal ipa^(x) with
aE [0,1) and CES2.

PROPOSITION 4.2. Suppose {uk} C //», {J(uk)} bounded, J'(uk) —> 0 and
P(uk) —+ Ç 6 S2, as k —► oo. Then there exists a subsequence {ukj} of {uk} and
corresponding {ai}, {c¿}, with a¿ —► 1, c¿ —► c as i —► oo such that

I,|V(ufci - <pa^<;,)\2'-> O,     as i -» oo.
's2

PROOF. (1) By Proposition 3.3, there exist Afc, çk E S2, such that P(Axk,(kuk) =
0. Let vk — Axk,ckuk, t>k = vk- (1/4tt) fs2 vk. By Lemma 1.1,

(4.2) J(uk) = I(uk) - 87Tln(/?(c) 4- o(l))

which implies the boundedness of {/(ufe)}. Taking (3.1) into account and by the
obvious fact I(u AC) = I(u) for any u E HX(S2) for any constant C, we see that

(4.3) I{vk) = I(uk).

Hence {I(vk)} are bounded. And apparently P(vk) = P(vk) = 0. Now, due to
Proposition 1.2 in [6], {vk} is bounded in H1(S2), so there exists a subsequence of
{vk} (still denoted by {vk}) converging weakly to vq E H1(S2). Obviously

(4.4) /   7j0 = 0.Js2

(2) Applying (3.7), we have

(45) Wtlft(«fc),») = VLœ.WtV) = (J'(uk),voh-lJ
= (J'(uk),wk)    VvEH^S2)

where

wk = »0/1'-/    voh,1Xk'(k      4irJS2 Afcl!

Since fg2 wk = 0 and /s2 |Vtüfc|2 = fg2 |V(p o hx^ík)\2 = fg2 \Vv\2 we infer
from (4.5) that

(4.6) \(J'xk,Sk(tk),v)\ < C\[J'(uk)\\ (|s2 |Vt;|2)

with some constant C independent of uk and v.
By Proposition 3.4, P(uk) —> c E S2 implies, as fc —> 00, (k —» c and Afe —> 0;

hence

(4.7) R°hXkifk^R(()    in L2(S2).
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And it follows that

(J'xk,Sk(vk),v) - (I'(v0),v),    as fc - oo, Vt; G H^S2).

On the other hand, by (4.6)

v/i*,í/,(í'*)>w) ~* °>    asfc^oo.

Therefore,

(4.8) (l'(v0),v)=0   VvEH1^2).

By Lemma 4.1, v0(x) = ipa<v(x) + C, for some constant C, a and n E S2. The
weak convergence of {vk} to vo and P(vk) = 0 imply P(wo) = 0, and it follow that
a = 0 and vo = const. Now, by (4.4), we obtain vq = 0.

(3) Due to (4.6), ||J'(ufc)|| -» 0 and vk — 0, we have

°(l) = (JL,ik(vk),vk)= f   |Vife|2-8rr
Js2

¡S2R°hxk,çkeikvk

JS2Rohxk,<ke*k

It is not difficult to see from (4.7) that the last term in the above equality vanishes
as fc —» oo since the boundedness of {J(uk)} and P(uk) —► ç imply R(ç) > 0 (cf.
[6]). Hence

(4.9) /   |VJs2
öfc|   —► 0,    as fc —» oo,

s2

which means ¿t-tO stronglv in H1(S2).
(4) By (4.9),

/   \V(u°hxk,ik+rl>x¡ík)\2^0.
Js2

It follows that /S2 |V(ufc 4- ipxk,çk ° ^xk,ik)\2 ~* 0> due to tne conformai invariance
of the integral /s2 |Vu|2. Let ak = (1 - A|)/(l 4- A2.). Then a straightforward
computation shows

^A*,ft ° hXk\ik(X) = -<P<*k,ik(x)-

Obviously afe —► 1, since Afe —» 0. This completes our proof.

PROPOSITION 4.3. Let {uk} C //* and assume {J(ufe)} ¿8 bounded, J'(uk) —>
0, and P(uk) —> ç E S2 as k —» oo. Then there is a subsequence {ukt} of {uk} such
that J(uk,) —* -87rln47T.R(c).

PROOF. By (4.2), (4.3) and (4.9), one can pick a subsequence {uk>} of uk such
that

J(uki) = I(uki) - 8wln(R(c) + o(l)) = I(vki) - 8wln(R(ç) + o(l))
-* 1(0) - 87TlnÄ(c) = -87rln47rÄ(c).

This completes the proof.

Proposition 4.4. Assume {uk}, {vk} c //*.
(1) {./(life)}, {J(vk)} bounded;
(2) fg2 |V(ufe - vk)\2 -* 0, as k -> oo;
(3) P(ufe) ->r)E S2, P(vk) -» f G S2, as fc -» oo.
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Then n = c.

PROOF. We argue indirectly. Suppose r¡ -fi ç.
By Proposition 4.2, one can pick a subsequence of {vk} (still denoted by {vk})

and corresponding {ak}, {çk} with ak —► 1, ffe —> ç such that

/    |V(t)fc -pat,?J|2 -»0,    asfc->oo.

From assumption (2)

(4.10) /    |V(ufe-^at,?J|2^0,    asfc^co.
Js2

Here we again used the notation ü = u — (l/47r) fg2 u.
Noting that P(u) = P(u) Vu G H1^2), fg2 \V<pak,ik\2 -+ oo and I(<pak,(k) =

—87rln47r; applying Lemma 2.2 in [5], we obtain, for any x E S2, i^f,

(4.11) .      <Pak,çk(x) —► -oo,     as fc —» 00.

Let s - \r(n,ç), Sk - {x E S£(n): uk(x) > 0}, u^ = max{ufe,0}; then by (4.10),

/   {\^(K-'Pck,<k)\2 + \uk-'Pcik,ck\2}^0,    asfc^oo.
Jsk

Now, the boundedness of fs \V<Pak,<k\2 and (4.11) imply the boundedness of
fSk(|Vü¡J"|2 4- ûfe2), hence of /^(^(l^ù* |2 4- |ü¡J"|2). Consequently, by Theorem
2.46 in [8], we infer that fs , , e"t are bounded. It follows, from P(uk) —* n G S2
and the proof of Lemma 1.1, that fs2eUk are bounded. Assumption (1) implies
fg2 |Vùfe|2 are bounded; hence there exists a subsequence {ùfc(} of {ufe} converging
weakly to some element uo € Hl(S2), which leads to P(ùki) —> P(uq). However,
it is evidently that P(uo) can never lie on S2. This contradicts n E S2, and the
proof is completed.

LEMMA 4.5.   If X is sufficiently close to 1, then

(4.12) Pa < -87rm47r¿A
Here wc assume v > 0.

PROOF. Using h0 in (R2), set

lx(t) = <Px,h0<t),        «6 [0,1].
Apparently, for A sufficiently close to 1, lx E Lx- We want to show that

max   J < —87rln47ri>.
ix([0,l])

Since J(<pa,ç) = — 87rln f 2 Re'Px^, it suffices to verify the inequality

(4.13) /    Re^^ > 4-kv   Vc G h0([0,1]).
Js2

Set Ns = {x E h0([0,1]): dist(x,K) < 6}, where K was defined in (R2) and
dist(-, •) stands for the geodesic distance on standard S2. By (R2), one can choose
a small 6 so that

(4.14) AR\N6 > 0.
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(1) ç G h0([0, 1])\N¿. In this case, there is an e > 0, such that

R(()>v + e   VçgM[0,1])VVV
Let A be sufficiently close to 1 so that d(px,c) < (e/2Cb)3. (Note that here d(ipX()
is independent of ç.) Then by Lemma 1.1, we have

/    Ref^-s > (R(ç) - e/2) f   e^ = 4n(R(c) - e/2) > 4ttu.
Js2 Js2

(2) c G Ng. Due to the continuity of J and the compactness of Ng, the closure
of Ng on S2, it suffices to show that for each ç E Ng there is a A(c) such that, as
1 > A > A(c), (4.13) holds. For this aim, again choose a spherical polar coordinate
system x(0, ib), 0 < 0 < nr, 0 < 4> < 2ir, so that ç = (0, ip). Then for any e > 0,

/,-—^{U^m1^ ¡:i>
+ 4ttR(ç)

= (l-X2){(l) + (ll)} + 43rR(ç)
> (1 - A2){(I) 4- (II)} 4- 47T/A

Thus one need only verify that

(4.15) (I) 4- (II) > 0 as A sufficiently close to 1.

In fact, for any fixed s, integral (II) is bounded for all A < 1. Using the second
order Taylor expansion of R at point c, taking into account that <pXç depends on
0 only, and by a direct calculation, we arrive at

fe {AR(ç)sin20 + o(82)}
(I)=7ry0    a-acosö)2—smf>de-

Let s be so small that
sin3 0 dOm^A*(^<r -Acosé»)2'

Then an integration by parts shows

re     sin3 OdO

/./o
+00,    as A

/0   (1-Acosé»)2

Therefore (4.15) holds, and the proof is completed.
Let Aq be so close to 1 that both (1.5) and (4.12) hold. We write p = pa0 and

L = LXo.
PROPOSITION 4.6.   There exist «o, ¿o > 0, such that for any {vk} in //,, if

J(vk) < ß + 6q (k = 1,2,...) and P(vk) —> ç G S2, as k —* oo; then

(4.16) R(c)>v + a0.

PROOF. Estimate (4.12) implies the existence of constants a0, 60 > 0, such that

(4.17) p 4- ¿o < -87rln47r(i/ 4- q0)-

By (1.2) and (1.4)

J(vk) > -8nln4n[R(Q(vk)) + Co</d(^)]-
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Clearly, as fc —> oo, both d(vk) -* 0 and R(Q(vk)) —► /2(c); hence

p 4- ¿o > lim J(vk) > -87rln47rJR(c),
TC

which, with (4.17), implies /2(c) > v 4- a0. This completes the proof.

5. Constructing a continuous "flow" in //, to complete the proof of
the Theorem. Let M = /2_1(m) = {x E S2 : R(x) = m). Choose e\ > 0, so that

(5.1) p>-8TTln4Tx(m-Si).

Define U¿ — {u E //» : R(Q(u)) < m — ei,d(u) < d}. Yet p0 = inff/, J =
—87rln47rm.

LEMMA 5.1 (A result of a continuous "flow"). There exist 6,d > 0 and a
continuous mapping T : //» —►//*, such that

(a) J(T(u))< J(u), VuG//.;
(b) T(J-^pcP 4-é)nC/d)c J-i^p-ô);
(c) T|j-i(aí0iA,0+5) = id, po4-¿ < p-r5;
(d) T(H.\Ud) c í/.Wd>

w/iere J   x (a, ß) stands for {u G //* : a < J(u) < ,0}.

PROOF. Analogous to the proof of Proposition 4.6 and by the definition of U¿,
it is easy to show that there are constants di,6i,e2 > 0, such that if 6 < ¿i, d < di,

(5.2) VuG J~1(po,p + 6)nUd,        Q(u) G R~x[u + e2,m - £i].

By (R3), there is a constant qi > 0, such that

(5.3) |V/2(x)|>ai,    VxG/2_1[^ + ^2/2,m-e1/2].

(1) Let u E //, such that Q(u) E i2_1[^ 4- £2/2, m - £i/2]. Let ¿;(u) be the
straight line passing through 0 which is perpendicular to the plane spanned by the
vectors Q(u) and VR(Q(u)). Define T(0,u) to be the rotation in R3 which takes
z(u) as its axis and which rotates along the direction VR(Q(u)) by angle 0.

Let u be fixed for a moment, and write x0 = Q(u), Tg — T(0,u). Consider

f(0)=(f   eA      (f   R(x)eu^To~1^ - (   R(x)eu^\

where Te~x is the inverse of Tg. Noting that Tg is an orthogonal transformation in
R3, we arrive immediately at

f(0) = (J   e")      • J  [R(Tgx) - R(x)]eu^.

The first order Taylor expansion of R at xo leads to

(5.4) R(Tex0) - R(xo) > è|V/2(x0)| • |Töx0 - x0|,

for Ô sufficiently small. Let

0(xo) = max{a: as 0 < a, (5.4) is valid},

Oo = inf{l9(xo) : x0 G R'1 [1/ 4- e2/2, m - £i/2]}.
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Then by the smoothness of R and the compactness of R  l [v 4- £2/2, m — £i/2], we
have Oo > 0. (5.4) and the continuity of R imply, as r sufficiently small,

(5.5) /2(Teox)-/2(x)>-i|V/2(xo)||Teoxo-xo|    Vx G Sr(x0).

Let r(xo) = max{s: as r < s, (5.5) holds}. Define

r0 = inf{r(x0) : x0 G /2_1 [v 4- £2/2, m - £i/2]}.

Then similarly, one has r0 > 0.
From the proof of Lemma 1.1, we see that there exists d2  > 0 such that if

d(u) < 0*2, then

/ccn Jsro (z0)e"  .    1 , |T7D|/s2\Sro(x0)e"     . CKi(5.6) —£- > -    and    max Vß-¡r-5- <—.
{     ' ¡s2 e"     ~ 2 S*   '      '       JS2 e«        - 16
Apparently, d2 is independent of xo-

Now, by (5.3), (5.5) and (5.6), noting that for any 0,x, l-T^xo — xo| > \Tgx — x|,
we obtain, for all 0 < Oq,

f(8)=  if   A      if [R(Tgx)-R(x)]eu+ f
\Js2   J    \Jsro(xa\ Js

(...)
S2\Sr0{x0)

(B.7) >i|V^o)|-|T,xo-x0|^^

-maxlV/2[/s2^(-0)|r^"X|e"
/s2eU

(2) Choose ¿2,^3 > 0 so small that

Û1
> Tg l^e^o - zol = a2|îex0 - x0|.

m . e-t>2/&* _ Cod1/3 >m- £i/2

where Co was defined in Lemma 1.1. Then by the inequality

J(u) > -8Trln4n[R(Q(u)) + Coy/djuj]
derived from (1.2) and (1.4), it is easy to verify that for all u E //,

(5.8) if J(u) < po 4- 62 and d(u) < d3, then R(Q(u)) > m - ei/2.
Let

G= IxEB3: ^-€R~1[u + e2/2,m-£1/2],l-\x\ < min{d2,d3} 1,

G' = IxEG: t^t ER'1[u + £2,m-£i],l- \x\ < -min{d2,d3}\ .
( m 2 J

_3 _3
Choose a C°° function g on B , satisfying 0 < g(x) < 1, Vx G B ;  g = 1, x G
G'; o = 0, x G ß3\G. Define

Ttu(x) = M(r_1(tan(P(u)),u)x),        t E [0,0o].

Note that P(u), Q(u) depend continuously on u (in the H1 (S2) topology) and R
is smooth. We see that T_1(0, u) depends continuously on u, while the continuity
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of T 1(0,u) with respect to 0 is obvious. Therefore T is a continuous map from
[0,é>o] x H1 (S2) to H1 (S2), and thus defines a continuous "flow" in HX(S2) which
is nonincreasing with respect to the functional J, that is

(5.9) J(Ttu)<J(u)    VuG/Z„,iG[O,0o].
In case P(u) ^ G, the above inequality holds obviously, since g(P(u)) = 0,

Ttu = u. And in case P(u) E G, by (5.7)

/   R(x)eTtU> f   R(x)eu    ViG[O,0o].
Js2 Js2

Moreover, since T_1(0,u) is an orthogonal transformation we have

If   \V(Ttu)\2 + 2f   Ttu=l-f   [Vu\2 + 2f   u,
¿ Js2 Js2 ¿ Js2 Js2

for any t E [O,0O], u E H^S2). Therefore (5.9) also holds.
If P(u) EG', by the definition of g

Ttu(x) = u(T-1(t,u)x).

Write J as
J(u) = I(u) - 87rln-

L2 Reu

Js2 e"
It is easily see that fg2 er,u = ¡g2 eu; hence I(Ttu) = I(u). By (5.7)

>a2\T(0o,u)Q(u)-Q(u)[ >a3>0.
/g2Z2(x)eT*°»      ¡S2 R(x)e"

IS2 eTe«u fs2 e

Consequently, there exists ¿3 > 0 such that

(5.10) J(Te0u) < J(u) - 63,    for all u E //„ P(u) E G'.
(3) Now define T(u) = Tg0u. Yet

6 < min{6i,62,63/2},        d < min{di,d2/2,d3/2}.
Then equation (5.9) implies (a). (5.10) implies (b), since by (5.2), for any u
G J~1(p0,ß + 6) r\Ud, P(u) G G'. (5.8) and the definition of G and off; imply (c).
Finally, noting that d(Ttu) = d(u), R(Q(Ttu)) > R(Q(u)) and by the definition of
Ud, we see that the conclusion (d) of the lemma is true. This completes the proof.

PROOF OF THE THEOREM. For simplicity, we write Ud in Lemma 5.1 by U,
and l([0,1]) by /, for / G L.

Choose /fe G L, fc = 1,2,..., such that max¡t J(u) < p + 6 and max(fc J —► p, as
fc —► 00. By (a) and (c) in Lemma 5.1,

(5.11) T(lk) = /fe G L    and    maxJ—>/i.

And by (b) and (d)

(5.12) J[hnu <p-6.
Now choose «fc G /fe, so that J(uk) — max;- J —» p. It can be shown that (cf. e.g.
[7], the proof for Mountain Pass Lemma by using Ekeland's variational principle)
there exist {vk} C //*, such that

(5.13) ||ufe - vk\\Hi —► 0,    J(vk) —^ p    and    J'(vk)-*0.
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By (5.12), Ufe G //*\<7. Thus there are only two possibilities:
(1) d(uk) > £o for some £o > 0, or
(2) P(uk) — Ç G S2, with R(ç) >m-£X.
In case (1), by (5.13), {P(vk)} is bounded away from the sphere S2. Then by

Proposition 2.1 and (5.13), {ùfe = Vk — (l/47r) fg2 Vk} converges strongly in //» to
some vq, that J'(vo) = 0 and J(vo) = p. Hence p is a critical value of J.

In case (2), by Proposition 4.4, P(vk) —» ç; then due to Proposition 4.3,

J(vk) -» -87rln47r/2(c),

that is,
p = -87rln47r/2(c).

By (5.1), —87rln47r/2(ç) < — 87rln47r(m — £i) < p, a contradiction. Therefore, p is a
critical value of J. This completes the proof of our Theorem.

The author would like to thank Professor J. L. Kazdan for discussions and sug-
gestions on this paper.
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