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and spin-independent direct detection cross section. We show that both the relic density
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the neutral component of a scalar electroweak multiplet would comprise a subdominant

fraction of the observed DM relic density.

Keywords: Beyond Standard Model, Cosmology of Theories beyond the SM, Higgs

Physics

ArXiv ePrint: 1812.07829

Open Access, c© The Authors.

Article funded by SCOAP3.
https://doi.org/10.1007/JHEP08(2019)058

mailto:chaowei@bnu.edu.cn
mailto:dinggj@ustc.edu.cn
mailto:hexg@phys.ntu.edu.tw
mailto:mjrm@physics.umass.edu
https://arxiv.org/abs/1812.07829
https://doi.org/10.1007/JHEP08(2019)058


J
H
E
P
0
8
(
2
0
1
9
)
0
5
8

Contents

1 Introduction 1

2 Models 3

2.1 Septuplet 5

2.2 Quintuplet 7

3 Relic density 8

3.1 The single species case 9

3.2 Co-annihilation 10

3.3 Sommerfeld enhancement 12

4 Direct detection 14

5 Conclusions 16

A SU(2) group theory 16

B The renormalizable scalar potential of Higgs and a scalar multiplet 19

B.1 Integer isospin j 20

B.2 Half integer isospin j 22

C Self-interactions 23

1 Introduction

Determining the identity of the dark matter and the nature of its interactions is a forefront

challenge for astroparticle physics. A plethora of scenarios have been proposed over the

years, and it remains to be seen whether any of these ideas is realized in nature. One hopes

that results from ongoing and future dark matter direct and indirect detection experiments,

in tandem with searches for dark matter signatures at the Large Hadron Collider and

possible future colliders, will eventually reveal the identity of dark matter and the character

of its interactions.

A widely studied possibility of continuing interest is that dark matter consists of weakly

interacting massive particles (WIMPs). An array of realizations of the WIMP paradigm

have been considered, ranging from ultraviolet complete theories such as the Minimal

Supersymmetric Standard Model to simplified models containing a relatively small number

of degrees of freedom and new interactions. In the latter context, one may classify WIMP

dark matter candidates according to their spin and electroweak gauge quantum numbers.

The simplest possibility involves SU(2)L×U(1)Y gauge singlets. Null results from direct
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detection (DD) experiments and LHC searches place severe constraints on this possibility,

though some room remains depending on the specific model realization.

An alternative possibility is that the dark matter consists of the neutral component of

an electroweak multiplet, χ0. A classification of these possibilities is given in [1]. Those

favored by the absence of DD signals carry zero hypercharge (Y ), thereby preventing overly-

large WIMP-nucleus cross sections mediated by Z0 exchange. Tree-level stability of the χ0

requires imposition of a discrete Z2 symmetry unless the representation of the electroweak

multiplet is of sufficiently high dimension: d=5 for fermions and d=7 for scalars. These

scenarios with sufficiently high dimension representation go under the heading “minimal

dark matter”.

In this work, we consider features of scalar electroweak multiplet dark matter Φ, in-

cluding but not restricting our attention to minimal dark matter (as conventionally de-

fined). The phenomenology of scalar triplet dark matter, involving a multiplet transform-

ing as (1, 3, 0) under SU(3)C and electroweak symmetries, has been considered previously

in refs. [2–9]. Extensive studies for other electroweak multiplets of dimension n have been

reported in refs. [10–35]. The authors of ref. [34] considered the Inert Doublet model and

the n = 3, 5, 7 scalar electroweak multiplets and discussed the impact of non-vanishing

Higgs portal interactions on the relic density, spin-independent dark matter-nucleus cross

section, σSI , and indirect detection (ID) signals. Ref. [35] also considered the impact of

Higgs portal interactions on the relic density and σSI but did not analyze the implications

for indirect detection. The latter study also focused on a relatively light mass for the dark

matter candidate, for which it would appear to undersaturate the relic density.

In what follows, we revisit the topic of these earlier studies, taking into account several

new features that may require modifying some of the conclusions in refs. [34, 35]:

• We find that the scalar potentials V (H,Φ) given in refs. [34, 35] are not the

most general renormalizable potentials and that, depending on the representation

of SU(2)L×U(1)Y there exist one or more additional interactions that should be in-

cluded. For the Y = 0 representations, the Φ-H interaction relevant for both the

relic density and DD cross section involves an effective coupling λeff that is linear

combination of two of the three possible Higgs portal couplings. The specific linear

combination is representation dependent.

• We update the computation of σSI taking into account the nucleon matrix elements

of twist-two operators generated by gauge boson-mediated box graph contributions

as outlined in refs. [36–39]. We note that ref. [35] considered only the Higgs portal

contribution to σSI and did not include the effect of electroweak gauge bosons. We

find that the gauge boson-mediated box graph contributions are smaller in magnitude

that given in ref. [34], which used the expressions given in ref. [1]. In general, the

Higgs portal contribution dominates the DD detection cross section except for very

small values of λeff .

• The presence of a non-vanishing λeff can allow for a larger maximum dark matter

mass, M , to be consistent with the observed relic density than one would infer when
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considering only gauge interactions. For the cases we consider below, this maximum

mass be as larger as O(20) TeV for perturbative values of λeff .

• For moderate values of the Higgs portal couplings, the spin-independent cross section,

scaled by the fraction of the relic density comprised by Φ0, is a function λeff and M .

The present DD bounds on σSI generally require M . 5 TeV for perturbative values

of λeff — well below the maximum mass consistent with the observed relic density.

In what follows, we provide the detailed analysis leading to these conclusions. For

the structure of V (H,Φ) we consider Φ to be a general representation of SU(2)L×U(1)Y .

Previous studies have considered in detail electroweak singlets (n = 1), doublets (n = 2),

and triplets (n = 3). In all three cases, stability of the DM particle requires that one impose

a discrete symmetry on the Lagrangian. Going to higher dimension representations, it has

been shown in ref. [1] that for n = 4, stability of the neutral component also requires

imposition of a discrete symmetry, while for n = 5, the neutral component can only decay

through a non-renormalizable dimension five operator with coefficient suppressed by one

power of a heavy mass scale Λ. In the latter case, it is possible to ensure DM stability

on cosmological time scales by either imposing a discrete symmetry or by choosing Λ to

be well above the Planck scale. At n = 7, the first non-renormalizable, decay-inducing

operator appears at higher dimension, and DM stability at tree-level may be ensured even

without imposition of a discrete symmetry by choosing Λ below the Planck scale. It was

subsequently noted in refs. [40, 41], however, that there exists a dimension five operator

leading decay of the neutral component of the septuplet at one-loop level. For a Λ at the

Planck scale and septuplet mass of O(10) TeV, the septuplet would not be sufficiently stable

on cosmological time scales to provide for a viable DM candidate. Consequently, one must

again either choose a trans Planckian cutoff or impose a stabilizing discrete symmetry.

With the foregoing considerations in mind, we focus on the n = 5 and 7 cases for

purposes of illustrating the dark matter phenomenology. Since the group theory relevant to

construction of V (H,Φ) is rather involved, we provide a detailed discussion in appendices A

and B. In section 2, we start with a general formulation, followed by treatment of specific

model cases. Section 3 gives the calculation of the relic density, including the effects of

co-annihilation and the Sommerfeld enhancement. We compute σSI in section 4. We

summarize in section 5. Along the way, we point out where we find differences with

earlier studies.

2 Models

We consider the renormalizable Higgs portal interactions involving H and Φ for two illus-

trative cases. We restrict our attention to Φ being a complex scalar with Y = 0. The form

of the potential for Φ being a real representation of SU(2)L with Y = 0 is relatively simple.

The corresponding features have been illustrated in previous studies wherein Φ is either an

SU(2)L singlet or real triplet. Consequently, we focus on complex representations, using

the n = 5 and n = 7 examples, to illustrate the new features not considered in earlier work.
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To proceed, we first introduce some notation. It is convenient to consider both Φ and

the associated conjugate Φ, whose components are related to those of Φ as

Φj,m = (−1)j−mΦ∗j,−m , (2.1)

where j refers to the isospin of the scalar multiplet Φ. As we discuss in appendix A, Φ

and Φ transform in the same way under SU(2)L. The scalar multiplet Φ of integer isospin

can be either real or complex. If Φ is a real multiplet, there is a redundancy Φ = Φ such

that the constraint φj,m = (−1)j−mφ∗j,−m should be fulfilled. For complex multiplet, each

component represents a unique field, and it can be decomposed into two real multiplets

as follows

A =
1√
2

(
Φ + Φ

)
, B =

i√
2

(
Φ− Φ

)
. (2.2)

It is easy to verify that both A and B fulfill the realness condition A = A and B = B.

Therefore a general model with a complex multiplet Φ is equivalent to a model of two

interacting real multiplets A and B. Notice that a scalar multiplet Φ of half integer isospin

is always complex since the realness condition Φ = Φ can not be fulfilled anymore. As we

note below, under certain assumptions about the model parameters, the complex scalar

multiplets may reduce to a pair of degenerate real multiplets, allowing for a two-component

DM scenario. Since the case of the real triplet and singlet DM as singlet component DM

have been analyzed elsewhere, we do not consider higher dimensional real representations

here. Instead, we focus on the complex Y = 0 examples that, in principle, can embody

two-component real multiplet DM scenarios.

One may then proceed to build SU(2)L invariants by first coupling Φ, Φ, H, and H

pairwise into irreducible representations and finally into SU(2)L invariants. For example,(
ΦΦ
)

0
=

(−1)2j

√
2j + 1

Φ†Φ, (2.3)

which in general is a distinct invariant from (ΦΦ)0 except in special cases when Φ is a

real scalar multiplet satisfying Φ = Φ. We shall denote with (. . .)J a contraction into the

irreducible representation with isospin J throughout this paper. Note that for j = 1/2,

(ΦΦ)0 vanishes, so that there is only one quadratic invariant in this case as well. Quartic

interactions can be constructed in a variety of ways, such as(
(ΦΦ)J

(
Φ Φ

)
J

)
0
, J = 0, 1, . . . , 2j (2.4)

for Φ self-interactions or ((
HH

)
L

(
ΦΦ
)
L

)
0

(2.5)

with L = 0, 1 for the Higgs portal interactions. Note that there exists a third such inter-

action (
HH

)
0

(ΦΦ)0 (2.6)

that is distinct from the L = 0 operator in eq. (2.5) for Φ being a complex integer represen-

tation. We note that previous studies have not in generally included all three of the possible

Higgs portal interactions. The classification of the Φ self-interactions is more involved, and

it is most illuminating to consider them on a case-by-case basis.
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2.1 Septuplet

The interactions can be written as

V = +M2
A(Φ†Φ) +

{
M2
B(ΦΦ)0 + h.c.

}
− µ2H†H + λ(H†H)2 + λ1(H†H)(Φ†Φ) (2.7)

+ λ2

(
(HH)1(ΦΦ)1

)
0

+ [λ3(HH)0(ΦΦ)0 + h.c.] ,

where H is the Higgs doublet and Φ is a complex electroweak septuplet with

(ΦΦ)0 =
1√
7

3∑
m=−3

(−1)3−mφ3,mφ3,−m

=
1√
7

(
2φ3,3φ3,−3−2φ3,2φ3,−2 + 2Φ3,1φ3,−1−φ3,0Φ3,0

)
(2.8)

(HH)0 =
1√
2

[
(H+)∗H+ + (H0)∗H0

]
(2.9)

and

(HH)1 =

 (H0)∗H+

1√
2

[
(H0)∗H0 − (H+)∗H+

]
−(H+)∗H0

 (2.10)

(ΦΦ)1 =


1
14A

−
√

7
14

∑3
m=−3mφ

∗
3,mφ3,m

1
14B

 (2.11)

with

A = +
√

21φ∗3,−3φ3,−2 +
√

35φ∗3,−2φ3,−1 +
√

42φ∗3,−1φ3,0 +
√

42φ∗3,0φ3,1

+
√

35φ∗3,1φ3,2 +
√

21φ∗3,2φ3,3 (2.12)

B = −
√

21φ∗3,−2φ3,−3 −
√

35φ∗3,−1φ3,−2 −
√

42φ∗3,0φ3,−1 −
√

42φ∗3,1φ3,0

−
√

35φ∗3,2φ3,1 −
√

21φ∗3,3φ3,2 (2.13)

After electroweak symmetry breaking, wherein

ReH0 → (v + h) /
√

2 (2.14)

one obtains the Φ mass term

Lmass =
(
φ3,k φ

∗
3,−k

) M2
A + 1

2λ1v
2 + 1

4
√

42
kλ2v

2
√

7
7 (−1)k+1

{
2M2

B + 1√
2
λ3v

2
}

√
7

7 (−1)k+1
{

2M2∗
B + 1√

2
λ∗3v

2
}

M2
A + 1

2λ1v
2 − 1

4
√

42
kλ2v

2

( φ∗3,k
φ3,−k

)
(2.15)

By setting φ3,0 = (φ3;(0,+) + iφ3;(0,−))/
√

2, the neutral scalar mass matrix can be written as(
M2
A + 1

2λ1v
2 − 2√

7
Re(M2

B)− 1√
14

Re(λ3)v2 2√
7
Im(M2

B) + 1√
14

Im(λ3)v2

2√
7
Im(M2

B) + 1√
14

Im(λ3)v2 M2
A + 1

2λ1v
2 + 2√

7
Re(M2

B) + 1√
14

Re(λ3)v2

)
,

(2.16)
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in the basis (φ3;(0,+), φ3;(0,−))
T . Then we have the mass eigenvalues

M2
φ̂3;±k

= M2
A +

1

2
λ1v

2 ±

√∣∣∣∣2M2
B√
7

+
λ3v

2

√
14

∣∣∣∣2 +
k2λ2

2v
4

672
(2.17)

M2
φ̂3;(0,±)

= M2
A +

1

2
λ1v

2 ±
∣∣∣∣2M2

B√
7

+
λ3v

2

√
14

∣∣∣∣ (2.18)

where for each isospin projection k, the “±” denotes the upper or lower sign in eqs. (2.17),

(2.18) and where the notation φ̂3,±k indicates the mass eigenstate.

From these expressions we conclude that

• If λ2 is nonzero, there will be no dark matter as one may have M2
φ̂3;−k

< M2
φ̂3;(0,−)

for

k 6= 0. One needs λ2 ∼ 0, otherwise there may exist long-lived charged scalars.

• For λ2 = 0, we have two septuplet mass eigenstates that are linear combinations of

the real multiplets A and B introduced above:

SA =
1√
2



φ̂∗3,−3

iφ̂∗3,−2

φ̂∗3,−1

iφ̂3;(0,−)

φ̂3,−1

iφ̂3,−2

φ̂3,−3


SB =

1√
2



φ̂3,3

iφ̂3,2

φ̂3,1

iφ̂3;(0,+)

φ̂∗3,1
iφ̂∗3,2
φ̂∗3,3


(2.19)

The corresponding mass eigenvalues are

M2
SA,SB

= M2
A +

1

2
λ1v

2±
∣∣∣∣ 2√

7
M2

B +
1√
14
λ3v

2

∣∣∣∣ ,
where the lower (upper) sign corresponds to SA (SB).

• In general, the lightest of the neutral fields φ̂3;(0,+) and φ̂3;(0,−) denoted here as the real

scalar χ — will be the DM particle. Radiative corrections will give rise to the mass

splitting between the neutral and charged components. In the limit MA � MW,Z ,

one has MQ−M0 ≈ Q2∆M , with ∆M = (166± 1) MeV [1] being the mass splitting

between the Q=1 and 0 components. Note also that for vanishing MB and λ3 (as

well as vanishing λ2), SA and SB will be degenerate. In this case, one may choose

the mass eigenstates to be the real fields A and B introduced above, corresponding

to a two-component electroweak multiplet DM scenario.

From the full scalar potential, one may obtain dark matter self interactions

Lself
χ = −λ̃self χ

4 , (2.20)

which may be important in solving the core-cusp problem [42, 43]. The relevant terms are

2J∑
J=0

κk
(
(ΦΦ)k(Φ Φ)k

)
0

+
2J∑
k=0

{
κ′k ((ΦΦ)k(ΦΦ)k)0 + κ′′k

(
(Φ Φ)k(ΦΦ)k

)
0

+ h.c.
}

(2.21)
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Note that each component of (ΦΦ)j (j = 0, . . . , 6) is determined by

(ΦΦ)j,m =
∑
m1,m2

Cj,m3,m1;3,m2
φ3,m1φ3,m2 . (2.22)

From the property of Clebsch-Gordan coefficients:

Cj,mj1,m1;j2,m2
= (−1)j−j1−j2Cj,mj2,m2;j1,m1

. (2.23)

If j − j1 − j2 is an odd (even) integer, the corresponding contraction of two Φ fields

is antisymmetric (symmetric). Consequently, (ΦΦ)1, (ΦΦ)3 and (ΦΦ)5 vanish. For the

most general case leading to the mass-squared matrix in eq. (2.16), the expression for

the DM quartic self interaction is rather involved and not particularly enlightening. For

completeness, in appendix C we give an expression for the quartic interactions in terms of

φ3;(0,±), from which one can determine the DM self interaction by expressing the φ3;(0,±)

in terms of the mass eigenstates. To illustrate, we give here the result for the special case

of real M2
B and λ3 with 2

√
2M2

B + λ3v
2 < 0:

4λ̃self = +
1

7

[
κ0 + 2Re(κ′0) + 2Re(κ′′0)

]
+

4

21
√

5

[
κ2 + 2Re(κ′2) + 2Re(κ′′2)

]
+

6

77

[
κ4 + 2Re(κ′4) + 2Re(κ′′4)

]
+

100

231
√

13

[
κ6 + 2Re(κ′6) + 2Re(κ′′6)

]
, (2.24)

where the factor 4 comes from the fact that φ3,0 = (φ3;(0,+) + iφ3;(0,−))/
√

2. In general,

λ̃self depends on 12 free parameters in eq. (2.21). We defer an exploration of the possible

additional physical consequences of these independent interactions to future work.

2.2 Quintuplet

The analysis for the electroweak scalar quintuplet dark matter is similar to the septuplet

case. For purposes of completeness, we include some of the important features below. The

complex quintuplet scalar field with j = 2 and Y = 0 is denoted by

Φ =


φ2,2

φ2,1

φ2,0

φ2,−1

φ2,−2

 . (2.25)

The mass term and interactions of quintuplet are the same as those of the septuplet given

in eq. (6), where we set λ2 = 0 to ensure the presence of a stable neutral component. To

derive the mass eigenvalues we consider the contractions of the two scalar multiplets ΦΦ.

According to general decomposition rule, one has

(ΦΦ)0 =
φ2

2,0 − 2φ2,−1φ2,1 + 2φ2,−2φ2,2√
5

. (2.26)

– 7 –
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By setting φ2,0 = (α′ + iβ′)/
√

2, the mass matrix of the neutral scalars can be written as

1

2

(
α′ β′

)(M2
A+ 1

2λ1v
2+ 2√

5
ReM2

B−
1√
10

Re(λ3)v2 − 2√
5
Im(M2

B)+ 1√
10

Im(λ3)v2

− 2√
5
Im(M2

B)+ 1√
10

Im(λ3)v2 M2
A+ 1

2λ1v
2− 2√

5
ReM2

B+ 1√
10

Re(λ3)v2

)(
α′

β′

)
(2.27)

The mass eigenvalues are

M2
α′,β′ = M2

A +
1

2
λ1v

2 ±
∣∣∣∣ 2√

5
M2
B −

1√
10
λ3v

2

∣∣∣∣ . (2.28)

The self-coupling can be derived following the same strategy of the septuplet case, and

we give the results in appendix C.

3 Relic density

In this work, we assume that dark matter in the early Universe was in the local ther-

modynamic equilibrium. Decoupling occurred when its interaction rate drops below the

expansion rate of the Universe. The corresponding evolution of the dark matter number

density n, is governed by the Boltzmann equation:

ṅ+ 3Hn = −〈σvM/oller〉(n2 − n2
EQ) , (3.1)

where H is the Hubble constant, σvM/oller is the total annihilation cross section multiplied

by the M/oller velocity, vM/oller = (|v1−v2|2−|v1×v2|2)1/2, brackets denote thermal average

and nEQ is the number density at thermal equilibrium. It has been shown that

〈σvM/oller〉 = 〈σvlab〉 =
1

2
[1 +K2

1 (x)/K2
2 (x)]〈σvcm〉 , (3.2)

where x = m/T , Ki are the modified Bessel functions of order i.

In a general framework that includes co-annihilation, the dynamics depend on a set

of species {χi} with masses {mi} and number densities {ni}. It has been shown that the

total number density of all species taking part in the co-annihilation process, n ≡
∑

i ni,

obeys eq. (3.1). In this case 〈σvM/oller〉 can be written as [44, 45]

〈σvM/oller〉 =

∫∞
4m2

χ
dss3/2K1

(√
s
T

)∑N
ij β

2
ij
gigj
g2χ
σij(s)

8m4
χT
[∑N

i
gi
gχ

m2
i

m2
χ
K2

2

(
mi
T

)]2 (3.3)

where gi is the number of degrees of freedom, s is the Mandelstam variable, σij = σ(χiχj →
all), and the kinematic factor βf (s,mi,mj) is given by

βij =

√[
1− (mi +mj)2

s

] [
1− (mi −mj)2

s

]
. (3.4)

The number density of the dark matter at the end will be nχ = n. The relic density of the

dark matter today can be written as

Ωχh
2 =

1.66T 3
γ
√
g∗

Mplρcrit

(
Tχ
Tγ

)3 [∫ xf

0
dx〈σvM/oller〉(x)

]−1

(3.5)
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where ρcrit ≡ 1.05×10−5(h2) GeV/cm3 is the critical density, Mpl denotes the Planck mass,

Tγ and Tχ are the present temperatures of photon and dark matter, respectively. According

to entropy conservation in a comoving volume, the suppression factor (Tχ/Tγ)3 ≈ 1/20 [46].

3.1 The single species case

We first calculate the dark matter relic density assuming only a single species, i.e., including

no co-annihilation. To show the interplay between the Higgs portal and gauge interactions

in the annihilation dynamics, we compute the relic density analytically. For completeness,

we show the thermal average of various annihilation cross sections:

〈σv〉hh = λ2
eff


√
m2 −m2

h

32πm3
+

−4m2 + 5m2
h

256πm3
√
m2 −m2

h

〈v2〉

 (3.6)

〈σv〉t̄t = λ2
eff

{
m2
t (m

2 −m2
t )

3/2

4πm3(4m2 −m2
h)2

+ ∆1(t)〈v2〉

}
(3.7)

〈σv〉ZZ = λ2
eff

{√
m2 −m2

z(4m
4 − 4m2m2

z + 3m4
z)

8πm3(4m2 −m2
h)2

+ ∆2(Z)〈v2〉

}
(3.8)

〈σv〉WW = λ2
eff

{√
m2 −m2

w(4m4 − 4m2m2
w + 3m4

w)

8πm3(4m2 −m2
h)2

+ ∆2(W )〈v2〉

}

+ λeff

9g2v2

16πm2(4m2 −m2
h)

+
c2
ng

4

4πm2
(3.9)

where λeff is an effective coupling given by a linear combination of the independent Higgs

portal couplings. Assuming real M2
B and λ3 one has

λeff =

λ1 ±
√

2
7λ3 , septuplet

λ1 ∓
√

2
5λ3 , quintuplet

, (3.10)

where we have set λ2 = 0 as above; where the upper (lower) signs correspond to 2
√

2M2
B +

λ3v
2 being negative (positive); where the parameter

cn =
(n2 − 1)2

64
(3.11)

accounts for the effective couplings of the dark matter with the W boson; and where

∆1(t) =
m2
t

√
m2 −m2

t (−24m4 − 5m2m2
t + 2m2(m2

h + 18m2
t ))

32πm3(4m2 −m2
h)3

(3.12)

∆2(v) =
−64m8 + 176m6m2

v − 15m2
hm

6
v − 4m4(3m2

hm
2
v + 52m4

v) + 12m2(2m2
hm

4
v + 9m6

v)

64πm3(4m2 −m2
h)3
√
m2 −m2

v

(3.13)

The present relic density of the DM is simply given by ρχ = Mmnχ. The relic density

can finally be expressed in terms of the critical density

Ωh2 ≈ 1.07× 109GeV−1xF
Mpl
√
g∗(a+ 3b/xF )

, (3.14)

– 9 –
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Figure 1. Dark matter relic density as a function of the dark matter mass. The solid (red), dashed

(blue), and dot-dashed (green) curves correspond to λeff = 0, 2, 5, respectively. The horizontal line

is the observed relic density.

where a and b, which are given in eqs. (3.6)–(3.9), are expressed in GeV−2 and g∗ is the

effective degrees of freedom at the freeze-out temperature TF , xF = M/TF , which can be

estimated through the iterative solution of the equation

xF = ln

[
c(c+ 2)

√
45

8

g

2π3

MMpl(a+ 6b/xF )
√
g∗xF

]
, (3.15)

where c is a constant of order one determined by matching the late-time and early-time

solutions. It is conventional to write the relic density in terms of the Hubble parameter,

h = H0/100km s−1 Mpc−1. Observationally, the DM relic abundance is determined to be

Ωh2 = 0.1186± 0.0031 [47].

We plot in figure 1 the dark matter relic density as the function of dark matter mass.

The red, blue and green lines correspond, respectively, to λeff = 0, 2, and 5. The top (bot-

tom) panel gives the septuplet (quintuplet) case. To obtain the correct relic density, one has

M = 9.17 TeV for the septuplet and M = 4.60 TeV for the quintuplet by taking λeff = 0.

3.2 Co-annihilation

The mass splittings between the neutral and charged components of the septuplet is about

166 MeV [1], so the effect of co-annihilation should be considered. The relevant processes

are listed in table. 1.

The eq. (3.3) can be simplified as [44]

〈σvM/oller〉 =
∑
ij

Aij
n2

eq

(3.16)
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Figure 2. Contours of the dark matter relic density (Ωh2 = 0.1186) in the M−λeff plane. The solid

line (red) corresponds to the co-annihilation case, the long-dashed line (blue) represents the one-

species scenario. The short-dashed (black) line includes the Sommerfeld enhancement effect (see

section 3.3 below). The top (bottom) panel describes the septuplet (quintuplet) dark matter case.

Process Mediator

s− channel t− channel u-channel 4P

s+Qs−Q →W+W− h, Z, γ sQ−1 s−Q+1 4P

s+Qs−Q+1 →W+Z(γ) W+ sQ−1 s−Q 4P

s+Qs−Q → ZZ(γγ, Zγ) h sQ s−Q 4P

s+Qs−Q → f̄f h,W,Z, γ

s+Qs−Q → hh h s+Q s−Q 4P

s+Qs−Q → hZ(γ) Z s+Q s−Q

sQs−Q+1 → hW+ W sQ s−Q+1

Table 1. A complete set of process relevant to the co-annihilation of the scalar multiplet dark

matter. Here, 4P represents four point interactions, while, sQ denotes the component of the DM

mutliplet having charge Q.

where neq in the denominator is

neq =
T

2π2

∑
i

gim
2
iK2

(mi

T

)
, (3.17)

and Aij in the numerator can be written as

Aij =
T

64π4

∫
ds
√
sβijgigjWijK1

(√
s

T

)
, (3.18)

with Wij being a dimensionless Lorentz invariant, defined as Wij = 4EiEjσijvij .
1

1vij is defined by vij =
√

(pi · pj)2 −m2
im

2
j/EiEj [48], where Ei and pi are the Energy of four-momentum

of particle i.
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To illustrate the impact of including co-annihilation processes, we plot in figure 2

the value of λeff needed to reproduce the observed relic density as a function of the DM

mass. The upper (lower) panel corresponds to the septuplet (quintuplet) case. The dashed

blue line gives the result for single species annihilation case, while the solid red curve

indicates the result including co-annihilation. We observe that the presence of more species

initially in equilibrium with the DM requires a larger effective interaction strength to avoid

over-saturating the observed relic density. The reason can be seen from eq. (3.16), for

which the denominator can be approximated as neq ≈ (2j + 1)2n2
eq,s with j and neq,s

being, respectively, the total isospin of the multiplet and the number density of a single

component in equilibrium. As j increases, so does neq. On the other hand, the numerator

factor,
∑

ij Aij only accounts for the combinations of multiplet components that are able

to annihilate, and it does not grow as fast as neq with increasing j. Consequently, one

must (a) increase λeff (for fixed M); (b) decrease M (for fixed λeff); or (c) introduce some

combination of both in order to maintain the total cross section as compared to the single

species scenario. We refer the reader to ref. [49] for a similar discussion regarding the

n = 6, 8 scalar multiplet dark matter cases.

3.3 Sommerfeld enhancement

Now we investigate the effect of the non-perturbative electroweak Sommerfeld enhance-

ment [50–52], where the gauge bosons mediate an long-range effective force between the

annihilating DM particles. To that end, we first observe that in the SM, there is no true

phase transition between the electroweak symmetric phase and the broken phase, but the

cross over is located at Tc = 159±1 GeV [53]. Above this temperature, which can be trans-

lated to a critical dark matter mass Mc ≈ 3.2 TeV (assuming a freeze out temperature set

by xF ∼ 0.05 with TF ∼ Tc), electroweak symmetry is restored; W and Z bosons can be

taken as massless particles; and triple scalar couplings go to zero as they are proportional to

the vacuum expectation value (vev) of neutral component of the Higgs doublet. According

to the calculation performed in the last subsection, both the septuplet and the quintuplet

DM are heavier than Mc for a sizable λeff , so we take the massless gauge boson limit and

vanishing triple scalar coupling to evaluate the Sommerfeld enhancement.

Note that we do not consider here the impact of DM-DM bound states, which can lead

to an additional enhancement of the annihilation cross section for certain values of M . In

general, the impact of a bound state on DM annihilation dynamics is most pronounced

when the temperature is . EB, where EB is the binding energy. As analyzed in detail in

ref. [54], however, the Sommerfeld enhancement is plays the most significant role in setting

the relic density at temperatures well above EB. Thus, one would expect the presence of

the bound states to have a subdominant effect on the overall relic density. An exception

occurs in the case of the real scalar triplet, where the first bound state occurs for a triplet

mass near the value that leads to relic density saturation. For the higher dimensional

representations, the presence of bound states introduces some structure in the dependence

of Ωχ on M but does not affect the overall trend. Consequently, neglect of the bound state

effects appears to be reasonable in the present context, where we focus on the overall trends

as a function of M and λeff . We defer a detailed study of the bound state effect to future

– 12 –
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Figure 3. Sommerfeld enhancement factor for the quintuplet and septuplet as the function of

x(M/T ).

work, wherein we will also consider the effects of iterated di-Higgs exchange associated

with the quartic self-couplings in the presence of non-vanishing vevs.

To proceed, we consider the Coulomb potential associated with the electroweak gauge

bosons is given by [55]

V ≡ a

r
=

g2

32πr
[(2N + 1)2 + 1− 2n2 ] (3.19)

where N is the total isospin of the initial state containing two annihilating DM particles

and n is the dimension of the SU(2)L irreducible representation of the DM. Since DM only

annihilates into SM final states, one has N = 0, 1, 2, depending on the specific process.

Of these possibilities, which there exist more N = 0 final SM final states that those with

N = 0, 1, so we concentrate on the N = 0 case. Note that for n > 1, the corresponding

potential is attractive.

The Sommerfeld enhancement factor S = σ/σperturbative for the Coulomb potential

can be written as

S = −π a
β

1

1− exp(πaβ )
(3.20)

where β is the relative velocity between the annihilating particles (note that a < 0 for

N = 0 and n > 1). For a s-wave annihilation, one can use the Sommerfeld enhancement

averaged over the thermal distribution, defined as [56]

〈S〉 =
x3/2

2
√
π

∫
Sβ2 exp

(
−xβ2/4

)
dβ (3.21)

where x = M/T with T the temperature.

In figure 3 we show the thermal average of the Sommerfeld enhancement as the func-

tion of x. A numerical calculation gives 〈S〉 ∼ 3.4(septuplet), 2.1 (quintuplet) at x = xF ,

– 13 –
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which will be used in the calculation of the dark matter relic density. As can be seen

from eq. (3.19), a higher dimensional representation for the multiplet gives rise to a larger

enhancement factor. The resulting impact of the Sommerfeld enhancement is shown in fig-

ure 2, where the dotted black line corresponds to the case of including both co-annihilation

and Sommerfeld enhancement effects. As expected, the presence of this enhancement coun-

teracts the effect of coannihilation, allowing for a smaller value of λeff (for fixed M) or larger

value of M (for fixed λeff).

4 Direct detection

For conventional Higgs portal dark matter models, constraints from dark matter direct

detection are quite severe. The parameter space of these models is strongly constrained

by the limits obtained by the LUX [57], PandaX-II [58], and Xenon1T [59] experiments.

In what follows, we consider how the presence of the Higgs portal interactions affects the

interpretation of these experimental results. To that end, we consider all the terms in the

effective Lagrangian for low-energy DM interactions with SM particles relevant to the scalar

DM scenario considered in this paper. In the limit MDM �MW �Mq, one has [36–39]

Leff =
1

2
λeff

1

m2
h

Φ2
n,0q̄mqq +

fT
M2

Φ

Φn,0(i∂µ)(i∂ν)Φn,0Oqµν

where

Oqµν =
1

2
q̄i

(
Dµγν +Dνγµ −

1

2
gµν /D

)
q (4.1)

is the twist-two quark bilinear with coefficient function [60]

fT =
α2

2

8m2
W

n2 − (4Y 2 + 1)

4

{
ω lnω + 4 +

(4− ω)(2 + ω) arctan 2bω/
√
ω

bω
√
ω

}
(4.2)

and with ω = m2
W /m

2
Φ, bω =

√
1− ω/4.

We note that the interaction involving the twist two operator arises from the ex-

change of two massive electroweak gauge bosons between the DM and quarks inside the

nucleus. We also observe that this contribution differs from what appears in ref. [1], which

did not include the effect of the twist-two operator. However, we have confirmed using ex-

plicit calculation that the same computation of the two-boson exchange diagrams involving

fermionic rather than scalar DM yields the same result as given in refs. [36, 37]. To our

understanding, the authors of ref. [34] utilized the expressions in ref. [1] when computing

the spin-independent direct detection cross section. Consequently, our numerical results

given below differ from those of ref. [34].

For DM-nucleon scattering, the matrix element can be written as

Mif = 2m2
N

(
fN

λeff

m2
h

+
3

4
fT f

PDF
N

)
, (4.3)

where fN ≈ 0.287(0.284) [61] for proton(neutron); where fPDF
N = 0.526 [62] is the second

moment of the nucleon (proton or neutron) parton distribution function (PDF) evaluated at
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Figure 4. DM-nucleus scattering cross section as a function of the dark matter mass for n = 7.

The solid (red), dotted (blue), and dashed (green) lines correspond to λeff = 2, 1, 0 respectively.

The gray, purple and black long dashed lines give the exclusion limits of LUX, PandaX-II and

XENON1T respectively.

µ = MZ ; and where we have taken a normalization appropriate to non-relativistic nuclear

states. We note that the expression (4.2) for fT is µ-independent. Inclusion of NLO QCD

corrections in the DM-parton scattering amplitude will generate a µ-dependence in fT that

must compensate for the scale dependence of the PDF. We defer a detailed discussion of

this feature to ref. [60]. The spin-independent cross section then can be written as

σSI =
|Mfi|2

16π(mN +mΦ)2
=
µ2

4π

m2
N

m2
Φ

(
fN

λeff

m2
h

+
3

4
fT f

PDF
N

)2

(4.4)

where µ = mNM/(mN +M).

In figure 4, we plot as a function of M the cross section of the DM-proton cross

section, scaled by the fraction of the relic density corresponding to the value of M as

obtained in our computation of section 3. Taking the septuplet for illustration, the dashed

solid (red), dotted (blue), and dashed (green) lines correspond to λeff = 2, 1, 0 respectively.

The gray, purple and black long-dashed lines give the exclusion limits of LUX, PandaX-

II and XENON1T respectively. We observe that the Higgs portal interactions dominate

the scaled spin-independent cross section for a sizable λeff . The contribution of twist-2

effective operator, indicated by the λeff = 0 curve, becomes relatively sizable only for

heavy DM, though its impact still lies well below the sensitivity of the present direct

detection experiments. The situation is different in the evaluation of the relic abundance,

where the gauge interactions dominate the annihilation. As a result, one can easily find

the parameter space that may give rise to an observed relic abundance and a small direct

detection cross section. Conversely, including the effects of both co-annihilation and the

Sommerfeld enhancement, we observe that saturating the observed relic density and evading

the present direct detection limits require a rather small value of |λeff |. To illustrate,

consider the septuplet case. From figure 1 we see that obtaining the relic density requires
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M in the vicinity of 9 TeV for vanishing λeff . On the other hand, for λeff = 1, the present

direct detection results constrain M to be no larger than about one TeV — a value for

which the fraction of the relic density would lie well below the observed value. Looking

ahead to next generation direct detection experiments and assuming that the only thermal

WIMP is the neutral component of the septuplet, we conclude that the observation of a

non-zero signal would likely require the presence of a significant, non-zero λeff . In this case,

the septuplet would comprise at most only a modest fraction of the relic density, with the

remaining corresponding to a non-thermal and/or non-WIMP species.

5 Conclusions

In this paper we have revisited earlier analyses of scalar electroweak multiplet dark matter.

After presenting the most general, renormalizable potential for a electroweak multiplet

Φ that interacts with the SM Higgs doublet, we show that in general the Higgs portal

coupling depends on three independent parameters in the potential. In order to ensure

that the neutral component of Φ yields the lowest mass state, ensuring its viability as a

DM candidate, one of these couplings must be vanishingly small. The resulting dynamics

of DM annihilation and DM-nucleus scattering then depend on a single effective coupling,

λeff . After evaluating the DM relic abundance by considering effects of both co-annihilation

and Sommerfeld enhancement, we calculated for the first time the spin-independent direct

detection cross section by taking into account the contribution of the twist-2 effective

operators, which turns out to be important for a heavy scalar DM. Focusing on the

electroweak quintuplet and septuplet for illustration, we find that for λeff ∼ O(1) present

DM direct detection limits imply that the electroweak multiplet mass scale M most be .
1 TeV. In this case, the neutral electroweak multiplet scalar would comprise a subdominant

component of the DM relic density.

Acknowledgments

WC was supported in part by the Natural Science Foundation of China under Grant No.

11775025 and the Fundamental Research Funds for the Central Universities. GJD was

supported in part by the support of the National Natural Science Foundation of China

under Grant No 11522546. XGH was supported in part by the MOST (Grant No. MOST

106-2112-M-002-003-MY3), and in part by Key Laboratory for Particle Physics, Astro-

physics and Cosmology, Ministry of Education, and Shanghai Key Laboratory for Particle

Physics and Cosmology (Grant No. 15DZ2272100), and in part by the NSFC (Grant Nos.

11575111 and 11735010). MJRM was supported in part under U.S. Department of Energy

contract DE-SC0011095.

A SU(2) group theory

The Lie algebra of the SU(2) group is specified by

[Ji, Jj ] = iεijkJk, i, j, k = 1, 2, 3 . (A.1)
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SU(2) has only one Casimir operator

J2 = J2
1 + J2

2 + J2
3 . (A.2)

We can define familiar raising and lowering operators:

J± = J1 ± iJ2 . (A.3)

They satisfy the following commutation relation

[J3, J±] = ±J± . (A.4)

The eigenstate |j,m〉 can be labelled by the eigenvalues of J2 and J3:

J2|j,m〉 = j(j + 1)|j,m〉,
J3|j,m〉 = m|j,m〉 , (A.5)

where j can be any half integer, and m = −j,−j + 1, . . . , j − 1, j. The different states

within a multiplet can be generated by acting with the raising and lowering operators,

J±|j,m〉 =
√

(j ∓m)(j ±m+ 1)|j,m± 1〉 (A.6)

Consequently we have

〈j,m′|J+|j,m〉 =
√

(j −m)(j +m+ 1) δm′,m+1,

〈j,m′|J−|j,m〉 =
√

(j +m)(j −m+ 1) δm′,m−1 (A.7)

We can form a 2j + 1 representation by choosing the following 2j + 1 orthogonal states as

base vectors:



1

0

0

.

.

.

0

0


≡ |j, j〉,



0

1

0

.

.

.

0

0


≡ |j, j − 1〉, · · ·



0

0

0

.

.

.

0

1


≡ |j,−j〉 . (A.8)
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The representation matrices for the generators J+, J− and J3 are

J+ =



0
√

2j 0 0 . . . 0 0

0 0
√

2(2j − 1) 0 . . . 0 0

0 0 0
√

6(j − 1) . . . 0 0

. . . . . . . . . . . . . . . . . . . . .

0 0 0 0 . . .
√

2(2j − 1) 0

0 0 0 0 . . . 0
√

2j

0 0 0 0 . . . 0 0


, (A.9)

J− =



0 0 0 . . . 0 0 0√
2j 0 0 . . . 0 0 0

0
√

2(2j − 1) 0 . . . 0 0 0

0 0
√

6(j − 1) . . . 0 0 0

. . . . . . . . . . . . . . . . . . . . .

0 0 0 . . .
√

2(2j − 1) 0 0

0 0 0 . . . 0
√

2j 0


, (A.10)

J3 =



j 0 0 . . . 0 0

0 j − 1 0 . . . 0 0

0 0 j − 2 . . . 0 0

. . . . . . . . . . . . . . . . . .

0 0 0 . . . − j + 1 0

0 0 0 . . . 0 − j


(A.11)

The representation matrix for each group element of SU(2) can be expressed as

exp

(
i

3∑
k=1

αkJk

)
, (A.12)

where αk(k = 1, 2, 3) are real parameters and

J1 =
1

2
(J+ + J−) , J2 = − i

2
(J+ − J−) . (A.13)

It is well-known that SU(2) has a unique irreducible representation for each spin j. Hence

each representation should be equivalent to its complex conjugate representation. We find

the unitary transformation relating representation and its complex conjugate is

V =


0 0 . . . 0 1

0 0 . . . − 1 0

. . . . . . . . . . . . . . .

0 (−1)2j−1 . . . 0 0

(−1)2j 0 . . . 0 0

 , (A.14)

which fulfills Vik = (−1)i+1δi+k,2j+2. Note that the unitary transformation V reduces to

the familiar form for j = 1
2 ,

V =

(
0 1

−1 0

)
, for j =

1

2
. (A.15)
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One can easily check that

− V J∗±V −1 = J∓, −V J∗3V −1 = J3 , (A.16)

which leads to

− V J∗kV −1 = Jk, k = 1, 2, 3 . (A.17)

Consequently we have

V

(
exp

(
i

3∑
k=1

αkJk

))∗
V −1 = exp

(
i

3∑
k=1

αkJk

)
, (A.18)

which implies each representation and its complex conjugate are really equivalent, and the

similarity transformation is indeed given by V . As a result, for a SU(2) multiplet Φ in the

representation j with

Φ =



φj,j
φj,j−1

φj,j−2

.

.

.

φj,−j+1

φj,−j


, (A.19)

where the subscript denotes the eigenvalues of J2 and J3. The state Φ would transform in

the same way as Φ with

Φ = V Φ∗ =



φ∗j,−j
−φ∗j,−j+1

φ∗j,−j+2

.

.

.

(−1)2j−1φ∗j,j−1

(−1)2jφ∗j,j


. (A.20)

Note that it is very convenient to construct SU(2) invariant from Φ instead of Φ∗.

B The renormalizable scalar potential of Higgs and a scalar multiplet

If we extend the standard model by introducing a scalar electroweak multiplet Φ of isospin

j, the one-loop beta function of SU(2) gauge coupling for the Standard Model would be

modified into

β(g) =
g3

16π2

[
−19

6
+

1

9
j(j + 1)(2j + 1)

]
. (B.1)

We can see that β(g) remains negative only for j ≤ 3
2 . For j ≥ 2, it becomes positive and

hits the Landau pole. For instance adding a scalar multiplet with isospin j ≥ 5 will bring
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the Landau pole of SU(2) gauge coupling at Λ ≤ 10 TeV and it is even smaller Λ ≤ 180 GeV

for j ≥ 10. Therefore, perturbativity of gauge coupling at the TeV scale constraints the

isospin of the multiplet to be j ≤ 5.

Another bound on the size of a electroweak multiplet is set by perturbative unitarity of

tree-level scattering amplitude. In refs. [63, 64], the 2→ 2 scattering amplitudes for scalar

pair annihilations into electroweak gauge bosons have been computed and by requiring

zeroth partial wave amplitude satisfying the unitarity bound, it was shown that maximum

allowed complex SU(2) multiplet would have isospin j ≤ 7/2 and real multiplet would have

j ≤ 4. In the following, we shall report the most general renormalizable scalar potential

V (Φ) for Φ and the interaction potential V (Φ, H) between Φ and H. The hypercharge of

Φ is denoted by Y .

B.1 Integer isospin j

The electroweak multiplet Φ has 2j + 1 component fields, and the coupling of each com-

ponent of Φ to the Z boson is proportional to T3 − Q sin2 θW with the electric charge

Q = T3 + Y/2. If the hypercharge is nonzero Y 6= 0, the neutral component of Φ has

unsuppressed vector interaction with Z such that it can not be dark matter candidate

because of the constraints from direct detection. On the other hand, for Y = 0, the neutral

component of Φ could be potential dark matter candidate. We shall present the concrete

form of the scalar potentials V (Φ) and V (H,Φ) for different cases of Y = 0 and Y 6= 0.

• Complex Φ with Y 6= 0 and Y 6= ±2

V (Φ) = M2
ΦΦ†Φ +

2j∑
J=0

λJ
(
(ΦΦ)J (Φ Φ)J

)
0
,

V (H,Φ) = α(H†H)(Φ†Φ) + β
(
(HH)1(ΦΦ)1

)
0
, (B.2)

where only the terms of even J lead to nonzero contribution, H = iσ2H
∗ with σ2 being

Pauli matrix. The contraction
(
(ΦΦ)J (Φ Φ)J

)
0

is given by

(
(ΦΦ)J (Φ Φ)J

)
0

=
∑
m

C0,0
J ,m;J ,−m(ΦΦ)J ,m(Φ Φ)J ,−m , (B.3)

with

(ΦΦ)J ,m =
∑
m1,m2

CJ ,mj,m1;j,m2
φj,m1φj,m2 ,

(Φ Φ)J ,m =
∑
m1,m2

(−1)2j−m1−m2CJ ,mj,m1;j,m2
φ∗j,−m1

φ∗j,−m2
. (B.4)

Consequently the contraction (ΦΦ)J vanishes for odd J . Notice that all the inde-

pendent self interactions of Φ are included here while only two terms are considered

in [34, 35].
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• Complex Φ with Y = 2

V (Φ) = M2
ΦΦ†Φ +

2j∑
J=0

λJ
(
(ΦΦ)J (Φ Φ)J

)
0
,

V (H,Φ) = α(H†H)(Φ†Φ) + β
(
(HH)1(ΦΦ)1

)
0

+
[
µ
(
(HH)1Φ

)
0
δj,1 + h.c.

]
. (B.5)

We see that an additional term
(
(HH)1Φ

)
0

and its hermitian conjugate are allowed if

Φ is a isospin triplet with j = 1 and Y = 2. This term would disappear if one adopts a

Z2 symmetry under which all SM particles are Z2 even and extra scalar Φ is Z2 odd.

• Complex Φ with Y = −2

V (Φ) = M2
ΦΦ†Φ +

2j∑
J=0

λJ
(
(ΦΦ)J (Φ Φ)J

)
0
,

V (H,Φ) = α(H†H)(Φ†Φ) + β
(
(HH)1(ΦΦ)1

)
0

+
[
µ ((HH)1 Φ)0 δj,1 + h.c.

]
, (B.6)

• Complex Φ with Y = 0

V (Φ) = M2
ΦΦ†Φ +

[
M ′2Φ (ΦΦ)0+h.c.

]
+ δ0,j (mod 2)

[
µ1 (Φ(ΦΦ)j)0 + µ2

(
Φ(ΦΦ)j

)
0

+ h.c.
]

+

2j∑
J=0

λJ
(
(ΦΦ)J (Φ Φ)J

)
0

+

2j∑
K=0

{
λ′K ((ΦΦ)K(ΦΦ)K)0 + λ′′K

(
(ΦΦ)K(ΦΦ)K

)
0

+ h.c.
}
, (B.7)

V (H,Φ) =
[
µ3(HH)0Φδj,0 + µ4

(
(HH)1Φ

)
0
δj,1 + h.c.

]
+ α(H†H)(Φ†Φ) + β

(
(HH)1(ΦΦ)1

)
0

+
[
γ(HH)0(ΦΦ)0 + h.c.

]
. (B.8)

Notice that not all the interaction terms ((ΦΦ)K(ΦΦ)K)0 for K = 0, 2, . . . , 2j are in-

dependent from each other. For j = 0, 1, 2, there is only one independent interaction

(ΦΦ)0(ΦΦ)0. We find two independent contractions (ΦΦ)0(ΦΦ)0 and ((ΦΦ)2(ΦΦ)2)0

for j = 3, 4, 5. However, there are four independent interaction terms (ΦΦ)0(ΦΦ)0,

((ΦΦ)2(ΦΦ)2)0, ((ΦΦ)4(ΦΦ)4)0 and ((ΦΦ)6(ΦΦ)6)0 in the case of j = 10. For any

given isospin j, we can straightforwardly find all the independent contractions among

((ΦΦ)K(ΦΦ)K)0 with K = 0, 2, . . . , 2j. The same holds true for the contractions(
(ΦΦ)K(ΦΦ)K

)
0
.

• Real Φ with Y = 0

V (Φ) =
1

2
M2

ΦΦ†Φ + µ1 (Φ(ΦΦ)j)0 δ0,j (mod 2) +

2j∑
K=0

λK ((ΦΦ)K(ΦΦ)K)0

V (H,Φ) = µ2(HH)0Φδj,0 + µ3

(
(HH)1Φ

)
0
δj,1 + α(HH)0(ΦΦ)0 . (B.9)

As regards the quartic self interaction terms ((ΦΦ)K(ΦΦ)K)0 with K = 0, 2, . . . , 2j,

there is only one independent contraction (ΦΦ)0(ΦΦ)0 for j = 0, 1, 2. We find two

independent contractions (ΦΦ)0(ΦΦ)0 and ((ΦΦ)2(ΦΦ)2)0 for the case of j = 3, 4, 5.
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B.2 Half integer isospin j

Similar to previous section, we shall give the scalar potential invariant under the SM gauge

symmetry in the following.

• Generic Φ with Y 6= 0, Y 6= ±1 and Y 6= ±3

V (Φ) = M2
ΦΦ†Φ +

2j∑
J=1

λJ
(
(ΦΦ)J (Φ Φ)J

)
0
,

V (H,Φ) = α(H†H)(Φ†Φ) + β
(
(HH)1(ΦΦ)1

)
0
, (B.10)

where J should be odd otherwise the contraction (ΦΦ)J is vanishing.

• Φ with Y = 0

V (Φ) = M2
ΦΦ†Φ +

2j∑
J=1

λJ
(
(ΦΦ)J (Φ Φ)J

)
0

+

2j∑
K=1

{
λ′K ((ΦΦ)K(ΦΦ)K)0 + λ′′K

(
(ΦΦ)K(ΦΦ)K

)
0

+ h.c.
}
,

V (H,Φ) = α(H†H)(Φ†Φ) + β
(
(HH)1(ΦΦ)1

)
0

+
[
γ
(
(HH)1(ΦΦ)1

)
0

+ h.c.
]
. (B.11)

Both interaction terms ((ΦΦ)K(ΦΦ)K)0 and
(
(ΦΦ)K(ΦΦ)K

)
0

are vanishing for j = 1/2.

There is only one independent contraction ((ΦΦ)1(ΦΦ)1)0 for j = 3/2, 5/2, 7/2. We

find only two independent terms ((ΦΦ)1(ΦΦ)1)0 and ((ΦΦ)3(ΦΦ)3)0 in case of j = 9/2.

• Φ with Y = 1

V (Φ) = M2
ΦΦ†Φ +

2j∑
J=1

λJ
(
(ΦΦ)J (Φ Φ)J

)
0
,

V (H,Φ) = α(H†H)(Φ†Φ) + β
(
(HH)1(ΦΦ)1

)
0

+

{
γ1

(
(HΦ)j+ 1

2
(Φ Φ)j+ 1

2

)
0
δ0,j− 1

2
(mod 2)

+ γ2

(
(HΦ)j− 1

2
(Φ Φ)j− 1

2

)
0
δ0,j+ 1

2
(mod 2) + h.c.

}
+
{
κ1

(
(HH)1(Φ Φ)1

)
0

+ κ2

(
(HH)1(H Φ)1

)
0
δj, 1

2

+ κ3

(
(HH)1(H Φ)1

)
0
δj, 3

2
+ h.c.

}
. (B.12)
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• Φ with Y = −1

V (Φ) = M2
ΦΦ†Φ +

2j∑
J=1

λJ
(
(ΦΦ)J (Φ Φ)J

)
0
,

V (H,Φ) = α(H†H)(Φ†Φ) + β
(
(HH)1(ΦΦ)1

)
0

+

{
γ1

(
(HΦ)j+ 1

2
(Φ Φ)j+ 1

2

)
0
δ0,j− 1

2
(mod 2)

+ γ2

(
(HΦ)j− 1

2
(Φ Φ)j− 1

2

)
0
δ0,j+ 1

2
(mod 2) + h.c.

}
+
{
κ1 ((HH)1(Φ Φ)1)0 + κ2

(
(HH)1(H Φ)1

)
0
δj, 1

2

+ κ3

(
(HH)1(H Φ)1

)
0
δj, 3

2
+ h.c.

}
(B.13)

• Φ with Y = 3

V (Φ) = M2
ΦΦ†Φ +

2j∑
J=1

λJ
(
(ΦΦ)J (Φ Φ)J

)
0
,

V (H,Φ) = α(H†H)(Φ†Φ) + β
(
(HH)1(ΦΦ)1

)
0

+ δj, 3
2

[
γ
(
(HH)1(HΦ)1

)
0

+ h.c.
]
. (B.14)

• Φ with Y = −3

V (Φ) = M2
ΦΦ†Φ +

2j∑
J=1

λJ
(
(ΦΦ)J (Φ Φ)J

)
0
,

V (H,Φ) = α(H†H)(Φ†Φ) + β
(
(HH)1(ΦΦ)1

)
0

+ δj, 3
2

[γ ((HH)1(HΦ)1)0 + h.c.] . (B.15)

C Self-interactions

Starting from eq. (2.21) a direct calculation yields the self interactions among the neutral

fields φ3;(0,+) and φ3;(0,−)

1

4
[κ̃1 + 2Re(κ̃2) + 2Re(κ̃3)]φ4

3;(0,+)

− [2Im(κ̃2) + Im(κ̃3)]φ3
3;(0,+)φ3;(0,−)

+
1

2
[κ̃1 − 6Re(κ̃2)]φ2

3;(0,+)φ
2
3;(0,−)

+ [2Im(κ̃2)− Im(κ̃3)]φ3;(0,+)φ
3
3;(0,−)

+
1

4
[κ̃1 + 2Re(κ̃2)− 2Re(κ̃3)]φ4

3;(0,−) , (C.1)
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with

κ̃1 ≡
1

7
κ0 +

4

21
√

5
κ2 +

6

77
κ4 +

100

231
√

13
κ6 ,

κ̃2 ≡
1

7
κ′0 +

4

21
√

5
κ′2 +

6

77
κ′4 +

100

231
√

13
κ′6 ,

κ̃3 ≡ −
1

7
κ′′0 −

4

21
√

5
κ′′2 −

6

77
κ′′4 −

100

231
√

13
κ′′6 . (C.2)

In the most general case, the dark matter is linear combination of φ3;(0,+) and φ3;(0,−),

since the mass matrix for φ3;(0,+) and φ3;(0,−) shown in eq. (2.16) is not diagonal, the dark

matter self interactions can be easily extracted from eq. (C.1). In the limit of both M2
B

and λ3 are real, the lightest one of φ3;(0,+) and φ3;(0,−) is the DM candidate, accordingly

the self interaction can be read out straightforwardly.

For the electroweak scalar quintuplet φ2,0 = (φ2;(0,+) + iφ2;(0,−))/
√

2, the self interac-

tions among the neutral fields φ2;(0,+) and φ2;(0,−) read as

1

4
[κ̃1 + 2Re(κ̃2) + 2Re(κ̃3)]φ4

2;(0,+)

− [2Im(κ̃2) + Im(κ̃3)]φ3
2;(0,+)φ2;(0,−)

+
1

2
[κ̃1 − 6Re(κ̃2)]φ2

2;(0,+)φ
2
2;(0,−)

+ [2Im(κ̃2)− Im(κ̃3)]φ2;(0,+)φ
3
3;(0,−)

+
1

4
[κ̃1 + 2Re(κ̃2)− 2Re(κ̃3)]φ4

2;(0,−) , (C.3)

with

κ̃1 ≡
1

5
κ0 +

2

7
√

5
κ2 +

6

35
κ4 ,

κ̃2 ≡
1

5
κ′0 +

2

7
√

5
κ′2 +

6

35
κ′4 ,

κ̃3 ≡
1

5
κ′′0 +

2

7
√

5
κ′′2 +

6

35
κ′′4 . (C.4)
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