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Scalar field equation in the presence of signature change
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We consider the (massless) scalar field on a two-dimensional manifold with metric that changes
signature from Lorentzian to Euclidean. Requiring a conserved momentum in the spatially homo-
geneous case leads to a particular choice of propagation rule. The resulting mix of positive and
negative frequencies depends only on the total (conformal) size of the spacelike regions and not on
the detailed form of the metric. Reformulating the problem using junction conditions, we then show
that the solutions obtained above are the unique ones which satisfy the natural distributional wave
equation everywhere. We also give a variational approach, obtaining the same results from a natural
Lagrangian.

PACS number(s): 04.20.Cv, 02.40.Hw

I. INTRODUCTION

In previous work [1] we argued that signature change of
a spacetime metric should lead to particle production by
determining the junction conditions on the scalar Geld. A
detailed consideration of quite general propagation rules
was given in [2), where the presence of symmetry was in-
voked to demand a conserved momentum, thus singling
out the propagation rule proposed in [1]. In this paper
we give a mathematically cleaner presentation of the re-
sult that a conserved momentum leads to a particular
junction condition on the scalar field. We also propose a
generalization using distributional language which could
be applied in a more general setting.

In Sec. II we establish our notation and then introduce
our homogeneous signature-changing model in Sec. III.
In Sec. IV we show that the added physical requirement
that momentum be conserved determines, using Stokes'
theorem, the propagation of the scalar Geld across a sur-
face of signature change. In Sec. V we reformulate the
theory in terms of distributions, deriving the natural dis-
tributional wave equation without invoking any symme-
try, and show that solutions of this wave equation au-
tomatically satisfy the propagation condition above. In
Sec. VI we again reformulate the theory, this time using
a variational approach, and show that a natural choice of
action is equivalent to the distributional wave equation
of the previous section. The results in Secs. V and VI
do not require the assumption used in Sec. IV that the

momentum be conserved, but instead derive momentum
conservation as a consequence of the theory. Finally, in
Sec. VII we discuss our results, contrasting the various
formulations.

II. NOTATION

We Grst review the usual theory of the massless scalar
field equation in the absence of signature change using
the language of differential forms. We set up our for-
malism on an n-dimensional manifold and then apply it
to a particular two-dimensional model. Associated with
any closed (n —1)-form n there is an integral conserved
quantity obtained from Stokes' theorem, namely

0=

It is therefore useful to express the theory in terms of
forms.

The Lagrangian 8 for the massless scalar field with
respect to an arbitrary metric g p is given by

(2)

where w denotes the Hodge dual, from which one derives
the wave equation

or, in tensor language, U4 = 0. By virtue of (3), the
(n —1)-form
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0=
V

n (CO C —~IIB 4) dg

is closed (dK = 0) for any two solutions C and CI of
(3). In tensor language, the associated conserved quan-
tity is just the symplectic product (from which the Klein-
Gordon product is constructed), namely

and their complex conjugates, where A: takes on suitable
discrete values so that periodic boundary conditions (in
x) obtain. Solutions of (3) are thus well-behaved func-
tions of T even where 6 = 0, at least in the sense of
one-sided limits. Note that these are just the usual pos-
itive and negative frequency solutions for 6 ( 0 and
(anti)analytic functions of x + ia for 6 & 0 as expected.

where n is the unit normal and dZ the volume element
on BV. Finally, associated with any Killing vector X
there is a conserved current given by the closed form

J~ =i~ dC h *dC + d4 hi~ *d4

where i ~ denotes interior product, so that for exam-
ple i,~(d4) = d@(X) = A (Ci). In tensor language,J = T Xb is conserved due to the conservation of the
stress-energy tensor V' T = 0 and Killing's equation
V (~Xb) = 0.

IV. STOKES' THEOREM

Now consider a manifold M with a preferred hyper-
surface E that partitions M into two manifolds (with
boundary) M+, and suppose that the n-forms cr+ are
defined on M . I et V be an arbitrary region of M, let
V+ denote the intersections V 6 M+, and let (OV)+ =
BV 0 (M+ —Z). Then we may use Stokes' theorem (1) in
M+ to write

III. SIGNATURE CHANGE

Consider the manifold M = R x H with metric nV

V)—

(12)

ds = f(t) dt + g(t) dx

=g(h(t)dt +dx )

where x is periodic, h = f/g, g is everywhere positive,
and we assume that f (and hence h) has at least one
and at most countably many isolated roots (to, ti, ...).
For the remainder of this section, we will assume that
f has only one root, which occurs at t = 0, and that
sgn(f) = sgn(t). Note that the vector 4 = 0 is a Killing
vector. The Hodge dual operator associated with this
metric is given by

where an assumption has been made about the relative
orientation of E. Consequently, if o.+ are closed on M+
and the pullbacks of o. to E agree, then the standard ar-
guments can be applied to generate conserved quantities
associated with the form o, defined to be o.+ on M+.

We now assume that Z corresponds to the surface of
signature change at t = 0 in the model of Sec. III, and
that the wave equation (3) [with w as defined in (8)] is
satisfied on M+. In order for the (integral) momentum
associated with the Killing vector 8 to be conserved, we
need J~ to satisfy the additional condition above, namely
that the pullbacks from M+ to K agree. But away from
t=0

where e = +1 according to the choice of orientation of
the volume forms in U+:= (kt & 0}.

Introduce new "time" parameters v for t ( 0 and o. fort) Oby

Q—hdt,

2

1 = e+
/

' —C,
/ Q/]hundt

+2e sgn(h) — dx
e, e„

v I&I

whose pullback to Z is 2e+sgn(h)C', C', z dx. With the
natural requirement that 4 be continuous at Z, the con-
dition at a surface of signature change thus becomes

so that, away from t = 0, the metric takes the form

ds = g (sgn(h) dT + dx ) (10)

where T is & or 0 as appropriate. Note that while the
conformal "time" parameter T is continuous, it is not C
related to t (because t is not a C function of T) and thus
cannot be used as a coordinate in a region that includes
t=0.

Away from t = 0, it is easy to find a (complex) basis
of solutions of (3) using conformal coordinates, namely

C,
/

= —eC, (14)

where e = e /e+ is the relative orientation of M+. As
shown in [2], these requirements uniquely determine the
propagation of a solution of (3) across K.

It is interesting to note that although (14) implies that
the pullback condition is also satisfied for K, so that
Klein-Gordon products are automatically conserved, the
converse is not true.

ika —i
~
kI~

ika —kyar

(h &0),

(h&0),

A related discussion of the divergence theorem in the pres-
ence of signature change appears in [3] which points out that
conservation of matter does not then follow from the junction
conditions imposed on the spacetime.
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V. DISTRIBUTIONS

The massless wave equation for a 0-form CI on a smooth
manifold M with a non-degenerate metric may be written

(15)

+d4 = e sgn(h) —8 4 /~hundt . (24)
~ ( B@dx

If 8&4'/g~h[ is bounded as t ~ 0+ then, since 4 is as-
sumed continuous, +dC is regularly discontinuous at E
and

where

(16)
aC . ae)

[*d4]~ A dt = e+ lim + e lim dx h dt.
(' "v'I"I ' ' v'I~I)

in terms of the Hodge map * defined by the metric. We
wish to extend the theory of the massless scalar field to
manifolds that admit a metric that changes signature.
We sketch here how this may be achieved using a distri-
butional language and refer to [4] for further mathemati-
cal details. We naturally require that (15) be satisfied on
U+ = M+ —E, and we shall assume that C is continuous
on M and denote 4~ + by 4+.

We shall call a p-form F on M regularly discontinuous
if the restrictions F+ = F~ + are smooth and the (1-
sided) limits F+~~ = lim, ~o+ F exist. The discontinuity
of F is the tensor distribution on Z defined by

(25)

Then (22) implies

[*dc] ddt = o, (26)

which provides junction conditions for regularly discon-
tinuous solutions of the equations

d~dC~ + =0. (27)

Furthermore, these junction conditions are identical to
(14).

[F].=F
I

(17)

Denote by O+ the Heaviside distributions with support
in U+ and such that

dO" =+8
where 8 is the hypersurface Dirac distribution with sup-
port on Z. Now introduce, as a distribution on M,

E = 0+F++0 F

VI. VARIATIONAL APPROACH

S[C] = — d@+ n, *dC++—1

2 U+ 2
dC h *d4 (28)

It is not mandatory to use distributions to generate
junction conditions. We ofFer a variational approach that
yields the same results for regularly discontinuous forms.
Consider the action

It follows that

dE = O+dF+ + O dF + h n. [F],. (2o)

where the fields and metric are piecewise continuous and
the appropriate Hodge maps are understood in the re-
gions U . Consider field variations C —+ 4+ + b@+

We readily deduce the consequences of requiring dE to
be the zero distribution. By evaluating dE on a set of
test vectors with support in U+ we deduce

dFi + =0

d(bC+) h *d4+ +

b4+*dC+ +

d(SC ) h *dC

as expected. Similarly it follows that

8 n, [F], = o. (22)

(23)

In order to derive the junction conditions for matching
derivatives at Z we shall only admit solutions such that
ader is regularly discontinuous at Z so that [ader]~ is well
defined. We seek distributional solutions to

(29)

using Stokes' theorem in U+. Now postulate that bS =
0 for all field variations of compact support. Choosing
support entirely in U+ yields (27). Now let the variation
have compact support on any domain that includes Z and
assume that +dC is regularly discontinuous with respect
to Z. Then the continuity of 4 allows us to write b4 =
b4+ = bC so that

where E is defined as above with F~ ~ = +d4'~
ed@+. Using (8) we see that 64 (*dC+ —*dC ) = 0. (30)

The properties of these distributions will be discussed more
fully in [4].

Since bC is arbitrary we conclude that the pullback of
the form [+dC']y. to the hypersurface Z must vanish. If E
is given by @ = 0 then this may be expressed in terms of
a restriction
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(31)

as before.
The above argument can be generalized to other Geld

theories. We plan to discuss the junction conditions for
spinor fields in a discontinuous or degenerate metric else-
where; see also the recent work of Romano [5]. We also
observe that hypersurface sources are readily accommo-
dated within this language by considering actions of the
form

where the source is described by the hypersurface action
density A.

VII. DISCUSSION

It is important to distinguish between the assumptions
made in our three derivations of the matching condition
(14). The first derivation based on Stokes' theorem used
conservation of momentum in the presence of a Killing
vector but did not make use of a particular form of the
wave equation at the surface of signature change. On the
other hand, the second derivation assumes a particular
distributional form for the wave equation on the whole
manifold, while the third assumes a particular form for
the action; neither makes any assumptions about symme-
tries. The latter two derivations can therefore be applied
in more general spacetimes provided. one is willing to ac-
cept either (15) as being the correct wave equation or
(28) as being the correct action. We plan to apply this
approach to an explicit imbedding of the trousers space-
time in three-dimensional Minkowski space.

If we assume that f in (7) has precisely 2 (simple)
roots corresponding to the T values T,. and Tf, and that
f ( 0 as ]t[ ~ oo, so that our spacetime is asymptotically
Lorentzian, then, as claimed in [1] and shown in detail
in [2], the above solutions, satisfying the condition (14)
and continuity, correspond to the relationship

" e+'~"] & = u'"e+']"] * cosh(kAT)
A; k

+u'"„e '~ "~ * i sinh([k[AT)

between basis solutions at early and at late times. The
mixing of positive and negative frequencies, and hence
particle production, is controlled by the last term.

We note an interesting freedom in the derivations of
the junction conditions presented above. In all three

derivations, the choice of Hodge map in the regions sepa-
rated by Z is fixed only up to a relative sign. Physically,
this corresponds to different choices of time orientation
in one or more regions. For the example just considered
with two surfaces of signature change, there are 8 differ-
ent choices of orientations. Since our (classical) theory
is invariant under a global change of time orientation,
this number is immediately reduced to 4. (However, one
might want on physical grounds to use different boundary
conditions depending on the global choice of time orienta-
tion. ) Furthermore, it can easily be shown [2] that chang-
ing the "time" orientation of the middle, Euclidean region
results only in an unimportant phase factor in (33), so
that there is no need to worry about which "time" ori-
entation to pick in this region. (Specifically, the second
term picks up a minus sign. ) Equation (33) corresponds
physically to a model with asymptotic "in" and "out"
regions. The only remaining distinct choice corresponds
to both Lorentzian regions being to the future (or past)
of the Euclidean region, corresponding to two universes
sharing a common big bang or big crunch.

A related case of interest is a paraboloid, e.g. , with the
induced metric obtained from embedding it in Minkowski
three-space with the rotation axis being the time axis.
Deleting the point on the axis yields a manifold with
topology R x S and a metric of the form (7), but with only
one signature change: from an initial Euclidean region to
a final Minkowskian region. This picture is reminiscent of
quantum cosmology, and is related to the models recently
considered by Ellis et al. [6) and Hayward [7]. Note that
there will be now be an extra regularity condition at the
axis which will affect the observed particle spectrum at
late times.

Finally, we note that our junction condition (14) holds
regardless of which way the signature changes, although
our derivation [and in particular (25)] made use of spe-
cific assumptions about sgn(h). The calculation is easily
generalized to a degenerate metric of the form (7) which
does not change signature; this merely changes ths rela-
tive sign in (14).
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