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Scalar imaging velocimetry is here applied to experimental turbulent flow scalar field data to yield

the first fully resolved, non-intrusive laboratory measurements of the spatio-temporal structure and

dynamics of the full nine-component velocity gradient tensor field ¹u(x,t), as well as the pressure

gradient field ¹p(x,t), in a turbulent flow. Results are from turbulent flows at outer scale Reynolds

numbers in the range 3,000<Red<4,200, with Taylor scale Reynolds numbers Rel'45. These

give a previously inaccessible level of detailed experimental access to the spatial structure in the

velocity gradient tensor field at the small scales of turbulent flows, and through the much longer

temporal dimension of these four-dimensional data spaces allow access to the inertial range of scales

as well. Sample spatio-temporal data planes and probability distributions spanning more than 75

advection time scales (ln/U) are presented for various dynamical fields of interest, including the

three components of the velocity field u(x,t), the nine components of the velocity gradient tensor

field ¹u(x,t) through the full vector vorticity field v i(x,t) and tensor strain rate field « i j(x,t), the

kinetic energy dissipation rate field F(x,t) [ 2n«:«(x,t), the enstrophy field 1
2v•v(x,t), the

enstrophy production rate field v•«•v(x,t), and the pressure gradient field ¹p(x,t). Continuity

tests show agreement with the zero divergence requirement that exceeds the highest values reported

from single-point, invasive, multi-probe measurements. Distributions of strain rate eigenvalues as

well as alignments of the strain rate eigenvectors with both the vorticity and scalar gradient vectors

are in agreement with DNS results, as are distributions of the measured helicity density fields

u•v(x,t). Results obtained for the true kinetic energy dissipation rate field show good agreement,

up to 14th-order, with previous inertial range structure function exponents measured by Anselmet

et al. @J. Fluid Mech. 140, 63 ~1984!# at much higher Reynolds numbers. In addition, probability

distributions scaled on inner variables show good agreement among buoyant and non-buoyant

turbulent flow cases, further suggesting that these results are largely indicative of the high Reynolds

number state of the inner scales of fully developed turbulent flows. © 1996 American Institute of

Physics. @S1070-6631~96!01707-2#

I. INTRODUCTION

The lack of a method for measuring fully resolved, four-

dimensional vector velocity fields u(x,t) in turbulent flows

has to date presented a fundamental obstacle to the study of

their spatial structure and temporal dynamics, and thus to the

development of models for the small scales of turbulent

flows. Practical turbulent shear flows are characterized by

enormous spatial and temporal complexity over a wide range

of length scales, from the local outer scale d to the local

inner scale ln } d•Red
23/4 , where Red is the local outer scale

Reynolds number (ud/n) and d and u are the length and

velocity scales characterizing the local mean shear in the

flow. This complexity, and in particular the range of length

and time scales over which it occurs, precludes any direct

numerical simulations ~DNS! of the full Navier-Stokes equa-

tions in high Reynolds number turbulent flows. Numerical

simulations can then at best determine the fluid motion only

at relatively large scales, but even this requires that the dy-

namical interactions between these large scale motions and

the motion at smaller scales be modeled. Large eddy simu-

lations ~LES! of this type thus require subgrid scale models

which, at a minimum, properly reproduce the interscale en-

ergy transfer and other relevant dynamical interactions be-

tween the large and small scales in the underlying velocity

gradient fields.

It is widely accepted that any general model of these

interactions must be based on the physical structure and dy-

namics of the velocity gradient fields ¹u(x,t) over the full

range of turbulent length scales. However, even in the case

of incompressible turbulent flow, relatively little is known

about the spatial structure and temporal dynamics of the ve-

locity gradient fields. Laboratory experiments capable of di-

rectly yielding useful information on the detailed structure

and dynamics of the velocity gradient fields at fine scales

have been few. This has largely restricted investigations of

the three-dimensional spatial structure of the full velocity

gradient tensor in turbulent flows to direct numerical simu-

lations of the full equations of fluid motion. Though such

simulations have provided considerable insight, they remain

largely limited to simple flows such as homogeneous isotro-

pic or sheared turbulence, in periodic domains, at relatively

low Reynolds numbers. In practice, these simulations also

often omit certain physical features of real turbulent flows. In

shear flow simulations, for example, the Reynolds numbers,

and thus the achievable range of outer to inner scales, area!Corresponding author. Electronic mail: wdahm@engin.umich.edu
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restricted by computational limitations. Additionally, the dif-

ficulties in defining upstream and downstream boundary con-

ditions have typically precluded rigorous simulations of spa-

tially developing flows, with efforts instead being focused on

time evolving flows, which may demonstrate very different

large scale dynamics and entrainment properties. As a result

of these experimental and computational limitations, the fine

structure and dynamics of the velocity field u(x,t), and in

particular of the more dynamically insightful vorticity and

strain rate fields v(x,t) and «(x,t), in real, inhomogeneous,

anisotropic turbulent shear flows at even moderately high

outer scale Reynolds numbers have remained largely inac-

cessible to direct study.

Here we apply the scalar imaging velocimetry technique,

developed in Ref. 1 and in a companion paper ~Ref. 2 here-

after referred to as Part I!, to obtain the first laboratory mea-

surements of the space- and time-varying vector velocity

field u(x,t), as well as the full velocity gradient tensor field

¹u(x,t), in a turbulent shear flow. The scalar field data

z(x,t) used are the fully resolved, four-dimensional mea-

surements of Southerland and Dahm.3,4 The resulting veloc-

ity gradient tensor fields offer a level of insight into the small

scale structure and dynamics of turbulent flows which has

previously been unavailable to experiments. Among the re-

sults presented are sample spatio-temporal data planes, as

well as probability distributions, for the full vector vorticity

field ¹ 3 u(x,t), the full tensor strain rate field «(x,t), the

enstrophy field 1
2v•v(x,t), the enstrophy production rate

field v•«•v~x,t!, the kinetic energy dissipation rate field

F(x,t), and the pressure gradient field ¹p(x,t). These mea-

surements are also used to examine the local alignments of

the vorticity and scalar gradient vector fields with the eigen-

vectors of the strain rate tensor field, as well as to investigate

the helicity density distribution, and inertial range scaling

exponents up to 16th-order. Collectively, these measure-

ments provide a level of detailed access to the structure and

dynamics of turbulent flows that has previously been avail-

able only through direct numerical simulations under simpli-

fied turbulence conditions.

The presentation is organized as follows. Section II

gives a brief description of the scalar imaging measurements,

focusing on the issues of resolution and differentiability of

the measured scalar fields. The application of scalar imaging

velocimetry to actual turbulent flow scalar field data is re-

ported in Section III C; the results given in that section are

used to investigate the detailed spatial structure, temporal

dynamics and associated statistics of various dynamical

fields at the small scales of turbulent flows. Concluding re-

marks are given in Section IV.

II. SCALAR IMAGING MEASUREMENTS

The scalar imaging velocimetry technique1,2 is motivated

by the demonstrated experimental capability for obtaining

fully resolved, four-dimensional measurements of the fine

TABLE I. Characteristics of the three data sets used in the present study,

together with the spatial and temporal separations in the resulting four-

dimensional scalar field data spaces. The data were collected in the far-field

of an axisymmetric turbulent jet. Red and RelT
are the outer scale and

Taylor scale Reynolds numbers, respectively. Nz is the number of z-planes

in each three-dimensional data volume. The in-plane grid spacing is

Dx5Dy , and the interplane spacing is Dz . The interplane temporal spacing

Dt is the time between adjacent measurement planes in the z-direction,

while DT is the temporal spacing between successive measurements of

z(x,t) at the same spatial point.

Data set Red RelT
Nz Dx ,Dy(mm) Dz(mm) Dt(ms) DT(ms)

R0420 3,000 41 7 108 90 8.87 62.1

R0628 3,200 42 6 116 120 8.87 53.2

R0811 4,200 48 6 107 110 8.87 53.2

TABLE II. Resolution characteristics of the experimental scalar field mea-

surements. The strain-limited molecular diffusion scale lD represents the

finest length scale on which gradients can be sustained in the scalar field.

The smallest scalar field temporal scale is given by lD /U , where U is the

mean streamwise velocity in the jet at the measurement location. The re-

maining quantities in the table are normalized with these reference scales.

The quantities Dx , Dy , Dz and DT are all less than ;0.5, indicating that

the data are simultaneously differentiable in all three spatial dimensions and

time. The in-plane temporal separations Dtx and Dty demonstrate that the

measurement of z at adjacent points in x and y is effectively simultaneous,

while the significantly larger interplane spacing Dt necessitates corrections

in the method of z-differentiation of the data, as discussed in Section II B.

Data set lD(mm) lD /U(ms) Dx ,Dy Dz Dtx ,y Dt DT

R0420 303 152 0.356 0.297 ,0.0003 0.058 0.409

R0628 289 136 0.401 0.415 ,0.0003 0.065 0.391

R0811 239 85 0.447 0.460 ,0.0005 0.104 0.627

FIG. 1. Schematic showing the structure of the experimental scalar field

measurements. A sequence of N z two-dimensional planes, parallel in the

z-direction, forms the three-dimensional data volumes as shown. Measure-

ment of these volumes is repeated in time to yield the final four-dimensional

data space, which consists of over three billion individual point measure-

ments of the scalar field.
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scale structure of Sc @ 1 conserved scalar fields z(x,t) on the

inner scales of turbulent flows.3–5 The ability to determine

the time derivative ]z(x,t)/]t , scalar gradient ¹z(x,t), and

Laplacian ¹2z(x,t) fields from these fully resolved measure-

ments leaves as the only unknowns in the exact conserved

scalar transport equation the components of the velocity field

u(x,t). This section gives a brief description of the scalar

FIG. 2. An example of a three-dimensional data volume obtained using the

scalar imaging diagnostic described in Section II A and Southerland and

Dahm ~Refs. 3 and 4!. Shown here is the scalar field z(x,t) from Case

R0806. This full 2563 volume demonstrates the extent to which this mea-

surement technique yields information on the three-dimensional spatial

structure of the scalar field.

FIG. 3. ~a! The scalar energy dissipation rate ¹z–¹z and ~b! the Laplacian

¹2z fields corresponding to the scalar field z(x,t) shown in Fig. 2. These

are obtained via central differencing on z(x,t) and indicate the high resolu-

tion and signal quality attained by these measurements.

FIG. 4. The scalar field z(x,t) at eight adjacent time steps, from the data set

R0811 ~Refs. 3 and 4!. By reducing Nz , the number of z-planes per data

volume in the measurement, the time step DT between these planes is kept

sufficiently small to permit time differentiation of the scalar field.

FIG. 5. ~a! The scalar field z(x,t) at three successive instants in time, from

the time series of Fig. 4. Also shown ~b! is the time derivative field

]z(x,t)/]t for the center plane. This time derivative is obtained through a

central difference on the two adjacent planes shown.
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field measurement technique, addresses the resolution and

differentiability of the resulting data, and presents sample

fully resolved, four-dimensional scalar field imaging results.

A. Four-dimensional scalar field imaging

The measurement technique and the resulting data used

here have been described in detail in Southerland and

Dahm.3–5 Briefly, the data are from laser induced fluores-

cence measurements of Sc @ 1 scalar mixing in the self-

similar far field of an axisymmetric turbulent jet in water.

The concentration field z(x,t) of the conserved, dynamically

passive, laser fluorescent dye carried by the jet fluid is mea-

sured repeatedly in time at a large number of points within a

small, three-dimensional spatial volume. The measurement

location is 235 jet nozzle diameters ~1.15 m! downstream of

the jet exit and 13 cm off of the jet centerline. Each two-

dimensional measurement plane spans 2.5 3 2.5 cm, which

may be compared with the local jet width d551 cm. A sche-

matic depicting the structure of the measured scalar fields is

presented as Fig. 1. The imaging planes are formed by re-

peatedly sweeping a collimated laser beam in a raster fashion

throughout the measurement volume, and the resulting fluo-

rescence from the dyed jet fluid is imaged onto a two-

dimensional 2563256 high speed photodiode array. The

beam is swept by a pair of low-inertia mirrors, which are

driven by galvanometric scanners slaved to the imaging ar-

ray timing. The array output was acquired serially at an 8-bit

digital depth and continuously written in real time, at sus-

FIG. 6. ~a! The scalar field z(x,t) in three parallel z-planes, and ~b! the

z-derivative field ]z(x,t)/]t for the center plane. The center plane here is

the same as that in Fig. 5. The z-derivative is calculated using information

from the adjacent planes shown, and incorporates the time derivative infor-

mation of Fig. 5 as described in Section II B.

FIG. 7. The in-plane components of the scalar gradient field ¹z , for the

center plane of Figs. 5 and 6. ~a! The ]z/]x component. ~b! The ]z/]y

component.

FIG. 8. ~a! The scalar energy dissipation rate field ¹z–¹z and ~b! the La-

placian field ¹2z corresponding to the center plane of Figs. 5 and 6. The

time derivative field ]z/]t , the components of the scalar gradient field ¹z

and the Laplacian field ¹2z as shown in Figs. 5, 6, 7 and 8 provide the

inputs to the scalar imaging velocimetry technique presented in Section III.
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tained rates of up to 142 planes/s, to a 3.1 gigabyte disk bank

to produce the four-dimensional, spatio-temporal data struc-

tures as shown in Fig. 1. The resulting fluorescence intensity

measurements are subsequently converted to the true dye

concentration. Each measurement thus produces the scalar

field z(x,t) at over 3 billion points in space and time, repre-

senting in excess of 50,000 individual 2562 data planes. The

specific parameters for the data used are given in Tables I

and II.

B. Resolution and differentiability

All spatial and temporal differentiation of the experi-

mental scalar field measurements is performed using linear

central difference operators. Quantification of the resolution

characteristics of these four-dimensional scalar field mea-

surements is made in terms of reference length and time

scales l* and t*. We use for these reference scales the mo-

lecular diffusion length scale lD5ln•Sc1/2 ~Refs. 3, 6! and

the local molecular diffusion scale advection time lD /U ,

which represent respectively the finest spatial and temporal

length scales which can be sustained in the scalar field. Here

ln ' 11.2 • d • Red
23/4 is the finest viscous diffusion length

scale, and U is the local mean streamwise velocity. The re-

sulting scaled resolution estimates Dx ,Dy ,Dz and DT are

given in Table II. The spatial separations Dx ,Dy ,Dz are all

less than 0.5, indicating that the data are Nyquist sampled in

space. This, combined with the high signal quality attained,

allows accurate differentiation in all three spatial directions

to obtain the true scalar gradient vector field ¹z(x,t). Simi-

larly, the temporal separation DT between the same spatial

point in successive data volumes is in all cases on the order

of 0.5, which indicates that the data can be differentiated in

time as well.

However, the nature of these measurements, in which

the parallel ~z-!planes are measured sequentially in time,

means that the accuracy of the z-derivatives is affected not

only by the grid spacing Dz in that direction, but also by the

temporal displacement Dtz between measurements of para-

llel planes. Where the value of Dtx i
, the time between mea-

surements of points spatially adjacent in the x i direction,

begins to approach Dx i , the accuracy of spatial derivatives

computed using straight central differences may be called

into question.

For points which are spatially adjacent in the x- or

y-directions, Dtx i
is manifestly far smaller than Dx or Dy , as

given in Table II, and central differencing is used without

hesitation to determine ]z/]x and ]z/]y . The measurements

of z at points which are adjacent in z are, however, separated

temporally by the time necessary to measure z at 2562

points. From Table II, the scaled Dtz may then be as high as

0.2Dz ~in the case of the R0811 measurements!. To quantify

this effect, consider first the Taylor series representation of

z , for points separated in z with no temporal separation ~sub-

scripts denote partial derivatives!, namely

z~z1Dz ,t !5z~z ,t !1zz~z ,t !•Dz1
1
2zzz~z ,t !•Dz2

1O~Dz3!. ~1!

The central difference operator for ]z/]z follows, as

]z

]z
5

z~z1Dz ,t !2z~z2Dz ,t !

2Dz
1O~Dz2!, ~2!

which is second-order accurate. For these measurements,

where the z-adjacent points are separated temporally by Dt

~this Dt[Dtz from above!, the Taylor expansion becomes

z~z1Dz ,t1Dt !

5z~z ,t !1z t~z ,t !•Dt1zz~z ,t !•Dz1zzt~z ,t !•DzDt

1
1
2z tt~z ,t !•Dt2

1
1
2 zzz~z ,t !•Dz2

1O~D3!. ~3!

Here the notation O(D3) means that the remaining terms are

third-order in any combinations of Dt and Dz . The presence

of the first-order term in Dt means that the simple central

difference expression of Eq. ~2!, if applied to these spatially

and temporally separated points, would contain errors of the

order Dt/Dz . However, the first-order term in Dt involves

the time derivative ]z/]t , which is itself determined to

second-order accuracy using central differencing. Incorporat-

ing this information, we have the corrected operator

]z

]z
5

z~z1Dz ,t1Dt !2z~z2Dz ,t2Dt !22z t~z ,t !•Dt

2Dz

1O~D2!, ~4!

where the time derivative term z t(z ,t) which appears is the

second-order estimate found using central differencing in

time. By using the time derivative information in this fashion

in determining the z- spatial derivative, the errors which

would arise from a naı̈ve application of the direct central

difference operator ~2! are avoided, and all of the compo-

nents of the scalar gradient vector ¹z are determined to an

equivalent level of accuracy.

C. Representative scalar field measurement results

Figures 2 to 8 give representative results from this scalar

field imaging diagnostic. A more extensive set of figures can

be found in Refs. 3 and 4. Figure 2 shows the measured

scalar field z(x,t) on a full 2563 data volume; Fig. 3 shows

the resulting scalar energy dissipation rate field ¹z–¹z(x,t)

and the Laplacian field ¹2z(x,t) for the same volume. These

volumes are taken from the data set labeled R0806 in Refs. 3

and 4, for which the jet outer scale Reynolds number was

5,000. While the temporal spacing between these 2563 vol-

umes is too great to allow for time differentiation, Figs. 2

and 3 give a good indication of the access to the three-

dimensional fine scale structure of the scalar field which this

diagnostic provides.

The temporal resolution achievable by the four-

dimensional measurements can be seen in Fig. 4, which

shows a time series of the scalar field in the same plane from

eight successive spatial volumes. Figure 5 shows a time se-

ries of three scalar field data planes from the R0811 case,

together with the time derivative field corresponding to the

center plane. The calculation of the time derivative for the

center plane is made using a central difference, involving the

two adjacent planes shown. Figure 6 shows a series of par-

allel scalar field data planes in z; the center plane here is the

same as for the time series of Fig. 5. The z-derivative
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]z/]z for the center plane is also shown in Fig. 6 and is

determined from the adjacent z-planes shown, incorporating

the time derivative information of Fig. 5 via Eq. ~4!. Finally,

Fig. 7 gives the spatial derivative component fields ]z/]x

and ]z/]y for the central plane of Figs. 5 and 6, and Fig. 8

shows the corresponding scalar energy dissipation rate and

Laplacian fields, ¹z–¹z and ¹2z . These results give an in-

dication of the resolution and differentiability achievable by

scalar field measurements of this type. These measurements

provide the input to the scalar imaging velocimetry

method.1,2

III. SCALAR IMAGING VELOCIMETRY RESULTS

This section presents fully resolved, four-dimensional

measurements of the structure and dynamics of the complete

velocity gradient tensor field ¹u(x,t) in turbulent flows.

These results are obtained by applying the integral minimi-

zation scalar imaging velocimetry approach of Part I to fully

resolved turbulent scalar field data of the type described in

Section II. The Sc'2075 scalar field data z(x,t) used here

are the three data sets of Refs. 3 and 4 labeled R0420, R0628

and R0811, for which the characteristics are given in Tables

FIG. 9. A sample scalar field data plane ~a! from the set R0811. This data set was collected in the far field of a turbulent jet, with outer scale Reynolds number

Red54200. Also shown are the velocity component fields for this plane, found by integral minimization scalar imaging velocimetry as described in Section

III B. The negative y-axis here corresponds to the streamwise direction in the jet. ~b! The u-component. ~c! The v-component. ~d! The w-component.

1888 Phys. Fluids, Vol. 8, No. 7, July 1996 L. K. Su and W. J. A. Dahm



I and II. The data are fully resolved in space and time, al-

lowing direct differentiation to obtain ]z(x,t)/]t , ¹z(x,t)

and ¹2z(x,t), as demonstrated in Section II. These deriva-

tive fields provide the inputs to the integral minimization

SIV technique, which yields the underlying velocity field

u(x,t).

Section III A presents a brief review of the integral mini-

mization scalar imaging velocimetry technique of Part I. Sec-

tion III B describes the choice of parameters in the scalar

imaging velocimetry inversion for the particular characteris-

tics and structure of these data sets. Sections III C and III D

present the u(x,t) and ¹u(x,t) results for the three data sets,

giving sample data planes as well as probability density

functions over all of the data. The ability of the SIV tech-

nique to determine all three components of the velocity vec-

tor u(x,t) and all nine components of the velocity gradient

tensor ¹u(x,t) provides direct access to the structure and

dynamics of the strain rate tensor field «(x,t) [ 1
2(¹u

1 ¹u
T), and the vorticity vector field v(x,t) [ ¹ 3 u. These

results are given in Section III D 1. Following this, Section

III D 2 examines the true kinetic energy dissipation rate

fields F(x,t)[(2/Re)«:« and the enstrophy fields
1
2v•v(x,t), as well as the enstrophy production rate fields

v•«•v~x,t!. In Section III D 3, comparisons are made with

available data for the structure function exponents zq giving

the inertial range scalings for the velocity gradient fields,

allowing for validation of the SIV results. The strain rate

tensor eigenvalues are examined in Section III D 4, while

Section III D 5 examines the alignments of the velocity vec-

tor, the vorticity vector and the eigenvectors of the strain rate

tensor. The alignment of the scalar gradient vector ¹z(x,t)

with the strain rate tensor eigenvectors is given in Section

III D 6. This section concludes with a demonstration of the

measurement of the pressure gradient field ¹p(x,t) in

sample planes in Section III D 7.

A. Scalar imaging velocimetry

The integral minimization formulation of scalar imaging

velocimetry is described in detail in Part I. The problem of

determining the velocity field u(x,t) from the measured sca-

lar field data z(x,t) is through the minimization of the inte-

gral of a quantity E over the measurement domain, where

E is a functional term dependent upon the components of the

velocity vector u(x,t) and the velocity gradient tensor

¹u(x,t). Formally,

min

u~x!PR
3
→R

3

E
D

E~u1 ,u2 ,u3 ;x1 ,x2 ,x3!d3
x. ~5!

The components u i of u are the dependent variables in E ,

and the components x i of x are the independent variables.

E itself is written as

E[E11a2E21b2E31 . . . , ~6!

where each E i>0 represents a local residual involving the

velocity field and possibly the scalar field. The factors a2,

b2, . . . . 0 allow control over the relative weights assigned

to the individual terms E i in the minimization functional

E .

Scalar imaging velocimetry is based on the exact con-

served scalar transport equation, which in dimensionless

form is

F ]

]t
1u–¹2

1

Re Sc
¹2Gz~x,t !50. ~7!

The residual E1 in Eq. ~6! is thus chosen to be the left-hand

side of Eq. ~7!, and thus enforces the condition that the mea-

sured scalar field derivatives and any candidate velocity field

u(x,t) be in ‘‘good’’ agreement with the exact conserved

scalar transport equation. Thus, formally

E1[S F ]

]t
1u–¹2

1

Re Sc
¹2Gz~x,t ! D 2

. ~8!

Because only incompressible turbulent flows will be consid-

ered, the second condition chosen is ¹–u50, and thus

E2[~¹–u!2. ~9!

The third condition chosen is one which measures the

smoothness of the velocity field. Here we use a first-order

Tikhonov stabilizer7

E3[¹u:¹u, ~10!

which provides the solutions for u with the property of math-

ematical stability in the face of small noise or discretization

errors in the initial data.

From the functional E and its constituent terms E1 , E2

and E3 , Eq. ~5! can be solved for the components of u. From

the calculus of variations, the characteristic ~Euler! equations

which result for the three components u ,v ,w are

FIG. 10. Velocity vector projections, for the velocity component results of

Fig. 9. Shown are the u-, v-projection ~a! and the u-, w-projection ~b!. The

mean streamwise velocity has been subtracted from the v-component, to

emphasize the structure of the flow field.
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uzx
2
1vzyzx1wzzzx2a2~uxx1vyx1wzx!2b2¹2u

52S ]z

]t
2

1

Re Sc
¹2z D zx ~11!

uzxzy1vzy
2
1wzzzy2a2~uxy1vyy1wzy!2b2¹2

v

52S ]z

]t
2

1

Re Sc
¹2z D zy ~12!

uzxzz1vzyzz1wzz
2
2a2~uxz1vyz1wzz!2b2¹2w

52S ]z

]t
2

1

Re Sc
¹2z D zz . ~13!

The velocity field u(x,t) is then found by writing the above

three equations for each of the discrete points in the mea-

surement domain, representing the velocity derivative terms

by discrete operators. Concatenating these equations results

in a linear system which may be solved for the velocity field

components.

B. Application of the scalar imaging velocimetry

technique

The values for the weighting factors a2 and b2, which

weight the continuity and smoothness conditions, respec-

tively, used in the DNS-based validation test in Part I were

a2
55•1024 and b2

52•1024 ~though over a limited range

of values the velocity field results were insensitive to the

particular choices of a2 and b2). The values of a2 and b2 to

be used here must reflect the much higher Schmidt number

of these scalar field data. In addition, in the far-field of the

turbulent jet the distribution of scalar values in the three-

dimensional data volume varies significantly with time.

These fluctuations will result in variations in the magnitudes

of the scalar field derivative terms in E1 @defined by Eq. ~8!#,

with the consequence that the effective weight on the scalar

transport residual E1 relative to E2 and E3 in Eq. ~6! will

change independent of the choices of a2 and b2. To offset

this, the scalar field values in each three-dimensional data

volume are normalized by a uniform factor related to the

peak scalar value. With this renormalization, the same values

of a2 and b2 can be used for all times t in the measured

FIG. 11. A time series of six scalar field data planes from the data set R0628. The planes shown are separated in time by 30DT , where DT is the separation

between successive scalar field data volumes, and the velocity fields are determined for data volumes separated by 15DT . The high Schmidt number of these

measurements means that the velocity field will, in general, be time resolved and differentiable for the velocity field temporal separation 15DT . Compare the

clear time evolution of these scalar field planes with the small changes in the planes of Fig. 4, for which the scalar field is time differentiable.
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scalar field data z(x,t). Here the values used are a2
50.72

and b2
50.36, which were found to yield a ratio of scalar to

viscous length scales lD and ln consistent with the required

lD /ln5Sc21/2 in turbulent flows.1,2

Owing to the large Sc in these measurements, the scalar

field contains far more information than the target velocity

field. Proper subsampling of the scalar field data both in

space and time can therefore reduce the total computational

load required to perform the inversion, without compromis-

ing any information in the velocity field. For the present

Sc'2075 scalar field data, the finest possible length scale

ln in the velocity field is roughly 45 times larger than the

finest scale lD in the scalar field data. However, the primary

constraint on spatial subsampling of the data is not the reso-

lution level of the velocity field, but rather is the structure of

the scalar field data volumes. For each of the three data sets

used, there are five usable planes in the z-direction. After

central differencing there are three z-planes for which all of

the scalar field derivative terms are known. Any spatial sub-

sampling can thus only be performed in the x-y plane. From

Tables I and II, Dx5Dy'Dz on the original measurement

grid. Subsampling in the x-y plane then results in a grid for

which the in-plane grid spacing Dx5Dy is larger than the

interplane grid spacing Dz . Should this discrepancy in grid

spacings become too large, the numerical difference opera-

tors, particularly those which represent mixed derivatives,

may become unreliable. Experience has shown that a 43

subsampling in x-y does not have a noticeable effect on the

results as compared with the original or 23 subsampled vol-

umes. The nominal 6436433 volumes which result have

1/16 the number of points of the original volumes, which

greatly increases the speed of the calculations.

The limited number of z-planes in these measurements

becomes significant where the boundary conditions are con-

cerned. Recall from Part I that the reflective boundary con-

ditions used force ]u i /]z50 at the z-boundaries of the spa-

tial data volumes. Because of the proximity of these

z-boundaries to the interior of the measurement volume, the

]u i /]z values obtained throughout are inherently lower than

the ]u i /]x and ]u i /]y values, for which the boundary con-

ditions are imposed at a much greater distance. It is trivial to

correct for this effect if to leading-order the true z-derivatives

are taken to differ from their measured values by a multipli-

cative factor g , which can then be readily found by matching

the measured variance of ]w/]z to those of ]u/]x and

]v/]y . The result is to increase the normal strain rate along

z by g while leaving the other normal strain rates unchanged,

and to increase those shear strain rates and vorticity compo-

nents involving z-derivatives by 2g/(g11), as has been

done in the results presented in Sections III D 1 and III D 2.

In the same manner that the spatial resolution of the

scalar field measurements results in over-resolution of the

velocity field when both fields are viewed on the same grid,

the time step DT of the measurements over-resolves the time

FIG. 12. The velocity component results for the scalar field time series of Fig. 11. Shown are ~a! the u-component, ~b! the v-component, and ~c! the

w-component.
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evolution of the velocity field. Defining a time scale for the

velocity field in terms of the local advection velocity as

ln /U , the temporal spacing DT in the scalar field data pro-

vides a level of time resolution of the velocity field roughly

45 times greater than the resolution of the scalar field. The

choice here is to determine the velocity fields for scalar field

times separated by 15DT . For the R0420, R0628 and R0811

data sets there are, respectively, 5485, 5674 and 4266 scalar

field time steps available, resulting in velocity fields for 365,

378 and 284 time steps.

Because the turbulent jet in which these measurements

of z(x,t) are made entails the mixing of jet fluid with initial

scalar concentration z0 with ambient fluid with zero scalar

concentration, and because the scalar diffusivity is relatively

small, there are substantial three-dimensional regions in the

scalar field data volumes which have little or no scalar con-

centration. Such regions can be readily seen in, for example,

Figs. 2 and 11. In these regions, the scalar field derivatives

]z(x,t)/]t , ¹z , and ¹2z are negligibly small, resulting in the

scalar transport condition E1 being insignificant in relation to

E2 and E3 in Eq. ~6!. For this reason, a criterion is used to

exclude non-representative velocity and velocity gradient

values when collecting statistics. This criterion is based on

the scalar field time derivative ]z(x,t)/]t . A given point

(x,t) in the four-dimensional data volume is considered sig-

nificant if ]z(x,t)/]t exceeds a certain threshold value, the

threshold value used being dependent upon the noise level of

the scalar field measurements. From Southerland,3 the rms

noise level of the original 8-bit scalar field measurements is

;1 digital level; a simple error propagation analysis ~e.g.,

Bevington8! on the central difference operator then yields an

rms error in the time derivative of 1.4(digital levels)/2DT .

This error estimate is used as the threshold level on the scalar

field time derivative. However, in identifying those points

where the velocity component values are to be disregarded

when collecting statistics, it would be overly restrictive sim-

ply to ignore all points where the time derivative falls below

this threshold. Doing so would fail to recognize that the in-

tegral minimization scheme can deal with such regions of

sparse scalar field information, provided that they are suffi-

ciently small ~as discussed in Refs. 9 and 10!. If the charac-

teristic length of these regions is not larger than the finest

velocity gradient length scale ln , we can reasonably expect

that the velocity field results in these regions will be accu-

rate. The velocity component values at a given point x are

thus ignored only if fewer than 10% of the points within

ln/4 of x have scalar time derivative values exceeding the

chosen threshold. With this criterion, the u(x,t) results at

86.6% of the original data points are used in collecting sta-

tistics.

C. Sample spatial field results

Figure 9 shows a scalar field plane from the data set

R0811, together with the three velocity component fields in

this plane as found by the SIV technique. Normalization of

all variables here is performed with the inner variables n and

ln , and the resulting reference velocity n/ln . In the coor-

dinate frame used, the increasing jet streamwise direction

corresponds to the negative y-axis, and thus the v-component

values shown are largely negative, as indicated by colors

tending from green to blue. The positive x-axis points in the

radially outward direction, and the z-axis corresponds to the

azimuthal direction, with component values as identified in

the associated color bars. These and all subsequent displayed

velocity results have been processed with an ideal, spectrally

sharp filter to remove clearly spurious noise at the grid scale

arising from, e.g., numerical discretization errors. The sharp

cutoff scale for this filter is chosen at wavenumber

FIG. 13. Probability distributions of the velocity component values, for all

time steps of the three data sets R0420, R0628 and R0811. ~a! The

u-component distribution, ~b! the v-component distribution, and ~c! the

w-component distribution.
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k52p/ln , so that the results at scales larger than the esti-

mated finest velocity gradient length scale remain unaf-

fected.

The resulting velocity field u(x,t) is much smoother

than the scalar field, consistent with the ln5(2075)1/2
•lD

disparity in gradient length scales between these two fields.

Each of the data planes spans roughly two viscous scales

ln in the x- and y-directions, as seen in Fig. 9. This limited

range of accessible length scales is the primary disadvantage

of Sc @1 scalar field data in scalar imaging velocimetry

studies of turbulent flow structure, precluding for example

the determination of spatial structure, spectra, and other in-

formation at all but very small length scales. These results

nevertheless offer access to complete velocity gradient tensor

information at the small scales of turbulent flows. In addi-

tion, as will be seen in Section III D 3, information on the

inertial range of scales is available from these measurements

through the much longer temporal dimension of these four-

dimensional velocity field results.

Figure 10 presents the velocity fields of Fig. 9 in the

more familiar and perhaps more intuitive form of vector pro-

jections. Shown are the projections of the u- and

v-components of the velocity field u(x,t), and the u- and

w-components, into the x-y plane. The v-component of

u(x,t) has had the mean streamwise component subtracted,

to emphasize the structure of the flow field. While such vec-

tor projections allow orientation information to be better

comprehended, it will be seen in the following sections that

in most of the fields considered, more insight can be gained

by viewing the sample results as colormaps of the type in

Fig. 9.

D. Time series and probability distributions

The results in Figs. 9 and 10 demonstrate the spatial

information on the velocity field available from these scalar

imaging velocimetry measurements with the scalar field data

of Section II. Of course, these SIV measurements of the ve-

locity and velocity gradient fields may be repeated in time as

well. Figure 11 shows a time series of six scalar field data

planes from the data set R0628. This figure is similar to Fig.

4, except that the time step shown is much larger, with suc-

cessive planes separated by 30DT , where DT is the time

separation of the scalar field data volumes. This larger tem-

poral separation is reflective of the longer time scales on

which changes in the velocity field occur. In this section,

results will be presented for the velocity and velocity gradi-

ent fields in the same six planes, as well as for the statistics

obtained over the roughly 300 or more time steps at which

velocity results were found for each of the three cases.

1. Results for u(x,t) and ¹u(x,t)

The components of the velocity field u(x,t) correspond-

ing to each of the scalar field planes in Fig. 11 are shown in

FIG. 14. The components of the vorticity vector field v(x,t), from the velocity field results of Fig. 12. Shown are ~a! the vx(x,t) component, ~b! the

vy(x,t) component, and the vz(x,t) component ~c!.

1893Phys. Fluids, Vol. 8, No. 7, July 1996 L. K. Su and W. J. A. Dahm



Fig. 12. It is evident in this figure that the temporal separa-

tion of 30DT between successive planes is indeed character-

istic of the time scales in the velocity field. This can be seen,

for example, in the v-component field results in Fig. 12,

where there is a clear evolution over the time span shown.

This is a partial validation of the results obtained by the SIV

technique, since no shared scalar field information is used in

extracting the velocity field in the six time steps shown. That

the results nevertheless show a consistent structure, which

evolves clearly over these time steps, suggests that the ve-

locity fields obtained are primarily driven by the scalar trans-

port condition E1 and less so by the continuity and smooth-

ness conditions E2 and E3 .

Figure 13 presents probability density functions of the

velocity component values, for each of the three data sets

R0420, R0628 and R0811. The strong tendency for negative

values of the v-component of the velocity is, of course, con-

sistent with the negative y-axis being the streamwise direc-

tion. The mean streamwise velocity at the measurement lo-

cation is ;30n/ln . It is, however, apparent in Fig. 13 that

the velocity field data for each of the three cases shown do

not span sufficiently long times for the statistics to have con-

verged to their stationary form. Although the probability dis-

tributions of the individual velocity component values are

comprised of well over a million points for each of the three

cases, these span a total time t of only about two local outer

time scales. Therefore t'2(d/U), whereas a duration of at

least ten outer time scales (d/U) is typically required to

obtain converged statistics of the velocity component values.

The time needed for convergence of velocity gradient statis-

tics is, in contrast, much shorter, since these scale with the

local advection time scale (ln/U). In terms of this advection

time scale, the data sets each span a total time

t'75(ln/U), which is adequate for velocity gradient statis-

tics to have converged to their stationary form. Indeed, as

will be seen below, the velocity gradient statistics obtained

from these scalar imaging velocimetry measurements are es-

sentially converged.

The three components of the vorticity vector field

v(x,t), determined directly from the velocity field results of

Fig. 12 as ¹ 3 u(x,t), are shown in Fig. 14. These results

represent the first non-invasive measurements of the full

three-component vector vorticity field in a turbulent flow. By

giving the vorticity at a very large number of closely spaced

points in space and time, these measurements also allow ex-

amination of the spatial structure and temporal dynamics of

the vorticity field. Probability distributions of the vorticity

field component results are presented in Fig. 15. Similarly,

results for the three normal and three shear components of

the strain rate tensor field «(x,t)[ 1
2(¹u1¹u

T) obtained

from these data are shown respectively in Figs. 16 and 18,

while the corresponding probability distributions are given in

Figs. 17 and 19. Collectively, these give all nine components

of the velocity gradient tensor field ¹u(x,t). It can be seen

from the probability distributions of Figs. 15, 17 and 19 that

the results for cases R0420 and R0811, when normalized by

inner variables, are substantially in agreement, and are also

symmetric about zero. This suggests that the distributions

obtained for these cases are converged. The scaling of the

tails of the R0420 and R0811 results in these semi-

logarithmic plots are also significant. In the chosen axes, a

straight line falloff for increasing magnitudes would indicate

exponential scaling of the probability density distribution. It

follows in such a case that all moments of the distribution

would be convergent, which is of interest in regard to models

of the small scale intermittency of turbulence. The results for

cases R0420 and R0811, shown in Figs. 15, 17 and 19, in-

deed show evidence of such an exponential decay in the

scaling of the tails.

FIG. 15. Probability distributions of the components of the vorticity vector

v(x,t). Shown are ~a! the vx(x,t), ~b! the vy(x,t), and ~c! the vz(x,t)

distributions.
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It should be noted that, at the finest scales, turbulence

structure is widely held to be universal for high Reynolds

numbers. As discussed in Refs. 3 and 4, recent direct numeri-

cal simulations of turbulent flows11 suggest that the Taylor

scale Reynolds numbers at which the scalar field measure-

ments of Section II were made are sufficiently high that the

fine scale structure largely approaches its high Reynolds

number form. The scaled probability distributions presented

here should thus be largely similar to those obtained in other

turbulent shear flows at similar and higher Reynolds num-

bers, when normalized by the inner reference scales. In this

sense, the results reported here are believed not to be specific

to the turbulent jet at these Reynolds numbers, but to be

largely representative of the fine scale structure and dynam-

ics of all high Reynolds number turbulent shear flows.

Two other aspects of these distributions are particularly

striking; the differences between the R0420 and R0811 re-

sults and the results for case R0628, and the substantially

smaller derivative values found in the z-direction for each of

the sets. The latter issue was previously discussed in Section

III B. Regarding the former, although the results for cases

R0420 and R0811 are substantially in agreement, the R0628

case has velocity gradient component values which are uni-

formly lower than those for the other two cases. This sug-

gests that the reference inner length scale ln used in the

normalization, which is found from the non-buoyant turbu-

lent jet scaling laws, is smaller than the true value. The likely

explanation for this is that buoyancy effects in the R0628

case were non-negligible. ~Complete elimination of buoy-

ancy effects in this flow is extremely difficult—density gra-

dients corresponding to temperature differences of

DT50.1°C cause noticeable buoyancy effects, while smaller

density differences can lead to buoyancy effects which are

not manifested as visible differences in the growth rate of the

flow. Identifying the effect of buoyancy in the latter case

thus requires velocity measurements, as is done here.! The

presence of buoyancy in this jet facility would act to de-

crease the outer scale Reynolds number at the measurement

location. Such a decrease in the Reynolds number would

lead to a larger value of the reference length ln as well as a

smaller value of the reference velocity scale n/ln , in accor-

dance with the observations of Figs. 15, 17 and 19. Further

evidence that the true velocities in the R0628 case are lower

than those expected from the non-buoyant jet scaling laws

can be seen in the distribution of v-component values in Fig.

13. While the mean streamwise velocity ~the v-component!
for a non-buoyant jet in the R0628 case would be

228.0n/ln , the measured v values are distributed much

nearer zero, with a mean value of 26.7n/ln . This is consis-

tent with the effect of negative buoyancy, with an accompa-

nying decrease in the outer scale Reynolds number and a

consequent larger value of ln . The larger ln leads to longer

characteristic times (ln/U) and thus slower convergence of

the probability distributions for this case. This also explains

FIG. 16. The normal components of the strain rate tensor field «(x,t) for the velocity field results of Fig. 12. ~a! The «xx(x,t) results. ~b! The «yy(x,t) results.

~c! The «zz(x,t) results.
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the apparent asymmetry of the probability distributions for

the R0628 case, suggesting that complete statistical conver-

gence for that case has not been achieved.

The foregoing argument suggests that the probability

distributions for the R0628 case should be rescaled with an

adjusted value of ln which is reflective of the true viscous

diffusion length scale. The adjusted value used is 1.7 times

the value of ln determined from the ~non-buoyant! jet scal-

ing. The dashed-dotted curves in the probability distributions

of Figs. 15, 17, and 19 ~as well as in all remaining distribu-

tions presented here! represent the data of the R0628 case, as

normalized by this adjusted value of ln . Though the result-

ing renormalized curves obviously retain their original asym-

metry, these distributions are otherwise in good agreement

with the R0420 and R0811 curves. This will be seen more

dramatically in Fig. 20, where the rescaling by the adjusted

inner scale ln produces excellent agreement of the velocity

gradient probability distributions for both the buoyant and

non-buoyant turbulent jet cases. This agreement supports the

idea that the inner scales of these turbulent flows have sub-

stantially achieved their high Reynolds number asymptotic

state, independent of both the outer scale Reynolds number

and the particular turbulent shear flow in which the measure-

ments were made.

As a further note on these velocity gradient results, the

agreement with the continuity condition ¹–u50 was quanti-

fied by measuring the fluctuation correlation between

(]u/]x) and (2]v/]y2]w/]z), which assumes a value of 1

when continuity is exactly satisfied. The SIV measurements

yielded an x-divergence value of 0.73 for these three data

sets. This compares favorably with the range of values, from

0.25 to 0.7, reported in hot-wire measurements ~Tsinober

et al.12!.

2. Kinematic quantities

The velocity gradients ¹u(x,t) in turbulent flows are of

interest in part because of their relation to various higher-

order quantities connected with the kinematics of the fluid

motion. Perhaps most insightful among these are quantities

associated with energy density, energy transfer and energy

dissipation. The transport equation for the kinetic energy

density field k[ 1
2u–u(x,t) is

F ]

]t
1u–¹2

1

Re
¹2Gk~x,t !52u–¹p1

1

Re
¹u:¹u

T
2

2

Re
«:« ,

~14!

where the last term on the right-hand side gives the kinetic

energy dissipation rate F(x,t)[(2/Re)«:«(x,t). Also of in-

terest in understanding the kinematics of the underlying vor-

ticity field is the enstrophy field, defined as 1
2v•v(x,t). The

enstrophy transport equation is

F ]

]t
1u–¹2

1

Re
¹2G1

2
v•v~x,t !5v•«•v2

1

Re
¹v:¹v .

~15!

The terms on the right-hand side are respectively the enstro-

phy production rate and the enstrophy dissipation rate. Un-

like Eq. ~14!, however, pressure is absent.

Figures 20 and 21 presents results for the true kinetic

energy dissipation rate field F(x,t), the enstrophy field
1
2v•v(x,t) and the enstrophy production rate field

v•«•v(x,t). These are found from the velocity field results

of Fig. 12, and represent the first, direct, non-intrusive mea-

surements of these kinematic quantities in turbulent flows. It

is notable that the energy dissipation rate field and the en-

strophy field in Fig. 21 are both relatively ‘‘spotty,’’ with

large values occurring very rarely. Such high internal inter-

mittency in these fields has been recognized since the origi-

FIG. 17. Probability distributions of the normal components of the strain

rate tensor «(x,t). Shown are ~a! the «xx(x,t) distribution, ~b! the

«yy(x,t) distribution, and ~c! the «zz(x,t) distribution. The rescaled R0628

curves correspond to a different estimate of the viscous scale ln , as dis-

cussed in Section III D 1.
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nal indirect measurements of Batchelor and Townsend,13 and

forms the basis for most higher-order dynamical models of

the small scales of turbulence. Both of these fields are

second-order in the velocity gradient components; in con-

trast, the enstrophy production rate field in Fig. 21 is third-

order in the velocity gradients, and thus is even more highly

intermittent. This can be seen directly in the probability dis-

tributions of these quantities for the three cases considered,

given in Fig. 20. The extreme rarity of large magnitudes in

all of these quantities is readily apparent. It can also be seen

that the results for all three cases collapse to an essentially

universal form when the ln value for the R0628 case is

rescaled to account for the presumed buoyancy effects.

Though the outer scale Reynolds numbers for the three cases

considered do not differ greatly, the agreement of the buoy-

ant and non-buoyant jet results, when normalized by appro-

priate inner variables, suggests that these results are largely

indicative of the high Reynolds number form of these distri-

butions. ~Further supporting evidence for this will be seen in

the following section when inertial range structure function

exponents, obtained from the kinetic energy dissipation rate

distributions in Fig. 20, are compared with previous results

of Anselmet et al.14 at high Reynolds numbers.!
To account for the internal intermittency of turbulence,

Kolmogorov15 postulated a log-normal distribution for the

energy dissipation. While this has been shown to be strictly

inconsistent with the physics of incompressible flow, as dis-

cussed for example by Frisch,16 gross departures from the

log-normal dissipation model should be manifested primarily

in high-order statistical quantities. Figure 22 compares the

distribution of kinetic energy dissipation rates for the R0811

case with a log-normal distribution, which is Gaussian in the

displayed axes. Also shown is a comparison of the distribu-

tion of enstrophy field values for this case with a log-normal

distribution. In both fields, the log-normal approximation

gives a relatively good model of the distributions for all but

the lowest values. In particular, it appears that the log-normal

model underestimates the occurrence of low values in these

fields. Departures from strict log-normal scaling will become

clear in examining the inertial range structure function expo-

nents in the following section.

To understand the results for the enstrophy production

rate v•«•v5v i« i jv j in Figs. 20 and 21, it is helpful to

write this in a more physically intuitive form as

v i« i jv j5«vv~v•v !, ~16!

where «vv is the normal strain rate in the direction of the

vorticity v . Alignment of the vorticity vector with a positive

strain rate axis («vv.0) therefore results in the production

of enstrophy, while alignment with a compressional strain

axis decreases the enstrophy. The vorticity-strain rate align-

ment is discussed in some detail in Section III D 5. We ob-

FIG. 18. The shear components of the strain rate tensor field «(x,t) for the velocity field results of Fig. 12. ~a! The «xy(x,t) results, ~b! the «yz(x,t) results,

and the «xz(x,t) results ~c!.

1897Phys. Fluids, Vol. 8, No. 7, July 1996 L. K. Su and W. J. A. Dahm



serve here that for each of the data sets R0420, R0628 and

R0811 the enstrophy production has a positive mean, sug-

gesting that the intensification of enstrophy by stretching oc-

curs more frequently than its diminution by compression, in

agreement with the hot-wire experiments of Tsinober et al.12

and the computations reported by Rogers and Moin.17

3. Inertial range scaling exponents

Though the spatial extent of the present measurements is

limited to about two inner scales ln , the temporal extent

typically spans over 75 advection time scales (ln/U). As a

result, the accessible spatial structure in the velocity and ve-

locity gradient fields is restricted to length scales well within

the dissipation range. However, the accessible temporal

scales extend well into the inertial range, and make possible

the examination of the scaling properties of turbulence fields

well into this range. This may be done equivalently in either

the spectral or physical domains. In the physical domain, the

scaling can be related to the moments of the distribution of

FIG. 19. Distributions of the shear components of the strain rate tensor

«(x,t). Shown are ~a! the distribution of «xy(x,t) ~b! the «yz(x,t) distribu-

tion, and the «xz(x,t) distribution ~c!.
FIG. 20. Probability distributions for ~a! the kinetic energy dissipation

F(x,t)[2«:«/Re, ~b! the enstrophy v•v/2, and ~c! the enstrophy produc-

tion v•«•v5v i« i jv j .
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the kinetic energy dissipation rate field values F(x,t). This

is generally done in terms of the two-point structure func-

tions, which scale in the inertial range as

^~Du !q&}Lq/3^F&q/3S r

L
D zq

. ~17!

The inertial range scaling exponents zq are given by

zq5
1
3 q2mq , ~18!

where the mq are the intermittency corrections to the inertial

Kolmogorov18 predictions zq5
1
3 q . These corrections are re-

lated to the moments of F(x,t) in Figs. 20 and 22 as

mq[m6

log~^Fq/3&/^F&q/3

log~^F2&/^F&2 , ~19!

where the only free parameter is m6 .

Figure 23 presents the structure function exponents zq

for 2<q<16 determined from the F distribution in Fig. 22.

Also shown are the curves giving the exponents for the origi-

nal Kolmogorov 1941 ~uniform! and 1962 ~log-normal! pre-

dictions. The plotted symbols are the exponents found by

Anselmet et al.14 from two-point measurements of the struc-

ture functions in a turbulent duct at RelT
5515 and in a tur-

bulent jet at RelT
5536 and 852. The log-normal curve

shown uses a value of m650.2, while the two curves corre-

sponding to the present R0811 measurements of F(x,t) use

values of 0.2 and 0.25, in accordance with the estimate of

m650.260.05 obtained by Anselmet et al.

There are several observations of particular interest in

the results shown in Fig. 23. The good agreement of the SIV

results for the inertial range structure function exponents for

m650.25 with the measurements of Anselmet et al.,14 at

least up to q'14, supports the conclusion that the probabil-

ity distributions obtained from the SIV measurements are

largely indicative of their high Reynolds number asymptotic

forms. In this regard it is noteworthy both that the results of

Anselmet et al. were obtained at higher Taylor scale Rey-

nolds numbers than were the present measurements, and in-

clude measurements obtained in a fundamentally different

turbulent flow; this agreement between the SIV results and

those of Anselmet et al. for both the exponents zq and the

value of m6 comes despite the high susceptibility of the

higher-order structure function exponents to errors in the un-

derlying velocimetry measurements. Second, the close agree-

ment of the present results for q52 with the Kolmogorov

result z252/3 ~the Kolmogorov 2/3-law! implies a k25/3

scaling in the kinetic energy spectrum E(k) with wave num-

ber k ~the corresponding Kolmogorov 25/3-law!. Finally,

although Fig. 22 indicated a roughly log-normal form for the

distribution of true kinetic energy dissipation rates, the

FIG. 21. Key kinematic quantities formed from the velocity gradient field results of Figs. 14–18. ~a! The kinetic energy dissipation term

F(x,t)[2«:«/Re, ~b! the enstrophy v•v/2, and ~c! the enstrophy production term v•«•v5v i« i jv j .
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present results for the corresponding structure function expo-

nents show clear departures from strict log-normal scaling.

4. Structure of the strain rate field

The strain rate field «(x,t) is key to the physical struc-

ture which produces the small scale intermittency found in

the kinetic energy dissipation, enstrophy and other velocity

gradient fields in turbulent flows. The symmetry of the strain

rate tensor «[ 1
2(¹u1¹u

T) allows it to be written in terms of

FIG. 22. Distributions of ~a! the kinetic energy dissipation rate F(x,t) and

~b! the enstrophy v•v(x,t)/2 for the R0811 case, compared with log-

normal distributions.

FIG. 23. Structure function exponents zq for inertial range scalings. The

log-normal model represents the original intermittency correction of Kol-

mogorov ~Ref. 15!. The symbols represent the results of Anselmet et al.

~Ref. 14!, while the R0811 curves represent the zq estimated from the

R0811 measurements of F(x,t) ~Fig. 22!. The dashed-dotted line is the

original theory of Kolmogorov ~Ref. 18!, uncorrected for intermittency ef-

fects.

FIG. 24. Distributions of the principal strain rate eigenvalues. Shown are the

results for ~a! the most extensional principal strain rate «11 , ~b! the inter-

mediate principal strain rate «22 , and ~c! the most compressive principal

strain rate «33 .
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orthogonal principal axes, with principal strain rates

«11>«22>«33 and associated eigenvectors ê«11
, ê«22

and

ê«33
. Continuity requires

«111«221«3350, ~20!

so «11>0 and «33<0. The structure of the local strain rate

field can thus be characterized by a single parameter

s[«22 /«11 , as

«5~«11 ,«22 ,«33!5«11~1,s ,2~11s !!, ~21!

where s is constrained by the continuity condition to

21/2<s<1. There are two possible topologies for the local

strain rate field, which depend upon the sign of s . Since

«11>0, the sign of s is simply the sign of the intermediate

principal strain «22 . When s.0 there are two extensional

FIG. 25. Distributions of the intermediate strain rate eigenvalue «22 , nor-

malized to lie in the range @21,1#. These curves show a positive bias for the

intermediate strain rate, corresponding to the topology of two extensional

and one compressive strain rates. There is at the same time a notable ten-

dency towards the two-dimensional flow case of «2250, as discussed in

Sections III D 1 and III D 4.

FIG. 26. Alignment of the vorticity vector v with the principal axes of the

strain rate tensor « , expressed in terms of the cosine of the angles u i be-

tween v and the principal strain rate eigenvectors ê« ii
. The tendency for the

vorticity vector v to align with the intermediate strain rate eigenvector

ê«22
, while being directed away from ê«11

and ê«33
, is very evident.

FIG. 27. Probability distributions of the relative helicity density

h(x,t)5u•v/(uuivu) for the R0420 and R0811 results. Shown are the val-

ues of uhu when defined for the total velocity u, as well as for the fluctuating

velocities um8 and uJ8 formed using the measured and expected mean velocity

components, respectively. A tendency away from alignment of u and v , and

thus away from helical behavior, is evident.

FIG. 28. Alignment of the scalar gradient vector ¹z with the principal axes

of the strain rate tensor. The angles between ¹z and the most extensional,

intermediate, and most compressional strain rate axes are denoted by u1 ,

u2 and u3 , respectively. Shown are ~a! the probability distributions for the

cosines of u1 , u2 and u3 , showing clearly the preferred alignment of ¹z
with the most compressive strain axis. This alignment is more pronounced at

higher scalar energy dissipation rates ¹z–¹z , as seen in ~b!, where the

distributions of cosu3 are shown for those points where ¹z–¹z exceeds

certain threshold values.
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and one compressional principal strain axes, while the

s,0 case involves one extensional and two compressional

principal strain axes.

Figure 24 gives the probability distributions of the strain

rate eigenvalues «11 , «22 and «33 . Figure 25 also shows the

intermediate strain «22 normalized by 61/2
•i«i , where

i«i5(«11
2
1«22

2
1«33

2)1/2; in this form «22 has extreme val-

ues of 21 and 1. This plot may be directly compared with

similar plots in Ashurst et al.,19 She et al.20 and Tsinober

et al.12 In similar fashion to those results, Fig. 25 shows a

tendency towards positive values of «22 , with «22.0 for

51%, 54% and 53% of points in the R0420, R0628 and

R0811 cases respectively. These values are, however, lower

than the figure of ;65% quoted in Tsinober et al.12 This

lessened tendency towards positive intermediate strain rate

would be consistent with a lower normalized rate of strain, as

discussed by Ashurst et al.19 and She et al.20 Finally, Fig. 25

shows a very marked peak in each curve near «2250, corre-

sponding to a locally two-dimensional strain field, though

this is likely accentuated by the smaller z-derivative compo-

nents discussed in Section III D 1.

5. Vorticity vector orientation

The strong tendency of the vorticity vector field v(x,t)

in turbulent flows to align with the axis of the intermediate

rate of strain «22 was first observed by Ashurst et al.19 using

data provided by direct numerical simulations of homoge-

neous isotropic and sheared turbulence. Tsinober et al.12 sub-

sequently observed the same tendency experimentally,

through hot-wire measurements in turbulent grid flow and in

the outer region of a flat plate boundary layer. A model

based on the Euler equations that describes the dynamics of

this strain-vorticity alignment is given by She et al.20.

Figure 26 shows results obtained from the present mea-

surements for the alignment of the vorticity vector v with

the strain rate eigenvectors ê« ii
. The preference for alignment

of v with the intermediate principal strain rate axis ê«22
is

very clear. The figure also shows that v tends away from

alignment with the most extensional and compressional

strain rate directions ê«11
and ê«33

. While this contrasts with

the results of Tsinober et al.,12 which display essentially no

correlation between the most extensional strain axis and the

vorticity, the present result agrees in principle with the

model of She et al.,20 which describes a rotation of the most

extensional axis away from the vorticity vector v . The pro-

pensity for alignment of the vorticity vector with the inter-

mediate principal strain rate eigenvector ê«22
, and the posi-

tive bias of the associated eigenvalue «22 ~discussed in

Section III D 4 above!, provide an explanation for the ob-

served positivity of the enstrophy production rate term ~Sec-

tion III D 2!.
The alignment between the velocity and vorticity vectors

in turbulent flows, quantified by the helicity density u • v ,

has in recent years been the subject of numerous investiga-

tions. Interest has generally been focused on the relative he-

licity density, defined as h(x,t)5u•v/(uuivu) and giving

the cosine of the angle between the vorticity vector and the

velocity vector. As pointed out by Rogers and Moin,21 rela-

tive helicity density is not Galilean invariant, and thus de-

pends on the choice of the velocity. In general, either the

total velocity u or the fluctuating velocity u8 are used. Figure

27 presents measured probability distributions of the abso-

lute value of the relative helicity density field h(x,t) for the

combined results of R0420 and R0811. Shown are the distri-

butions of uhu for three different definitions of the velocity,

namely the total velocity u, the fluctuating velocity um8 de-

fined using the mean velocity components for each case

found from the distributions of Fig. 13, and the fluctuating

velocity uJ8 defined using the mean values from the turbulent

jet scaling laws for each case. The constant distribution

shown is that which would be characteristic of two uncorre-

lated, isotropic velocity and vorticity vector fields.

The distributions of uhu in Fig. 27 indicate that, irrespec-

tive of the choice of the velocity, the velocity and vorticity

vector orientations are largely uncorrelated, with a slight ten-

dency away from helical behavior. This is manifested in the

somewhat larger values of the probability density as

uhu→0, and smaller values as uhu→1. While the distribution

of uhu obtained using the total velocity u may be misleading,

owing to the streamwise bias of u and the consequent anisot-

ropy, the distributions of uhu using the two estimates um8 and

uJ8 of the fluctuating velocity show no evidence that the true

fluctuating velocity field will display notable helical proper-

ties. In fact, from Fig. 27 it seems likely that the true u8 will

be biased away from helical behavior. This result is in agree-

ment both with the findings of Rogers and Moin21 for the

relative helicity density in simulated homogeneous turbu-

lence with mean strain, and also with the conclusions of

Wallace et al.22 from hot-wire measurements in grid turbu-

lence and turbulent boundary and mixing layers.

6. Scalar gradient vector orientations

As with the vorticity vector v ~Section III D 5!, the sca-

lar gradient vector ¹z(x,t) shows a preferential orientation

relative to the strain rate eigenvectors. This orientation, how-

ever, differs from that shown by the vorticity vector, owing

to the differing nature of the stretching term in the respective

transport equations. In the vorticity transport equation, the

stretching term increases the vorticity magnitude when the

normal strain rate along the vorticity vector direction is posi-

tive, as can be seen in Eqs. ~15! and ~16!. In contrast, in the

scalar gradient transport equation ~e.g., Buch and Dahm6,23!
the stretching term acts to decrease the scalar gradient mag-

nitude when the normal strain rate along the gradient vector

direction is extensional ~positive!, and increases the gradient

when the normal strain rate along the gradient vector direc-

tion is compressional. It is thus expected that the scalar gra-

dient vector field should demonstrate a preferred local align-

ment with the most compressional principal axis of the strain

rate tensor. This preferred alignment has been confirmed

through direct numerical simulations ~DNS! of passive scalar

mixing in turbulence under simplified conditions.

Because the scalar imaging velocimetry technique uses

measurements of the scalar field to find the underlying ve-

locity field, the simultaneous scalar and velocity gradient

fields needed to assess the alignment of ¹z(x,t) with the

eigenvectors of «(x,t) are available to the present study.
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Figure 28 shows the results obtained for the degree of align-

ment of the scalar gradient vector with each of the three

principal axes of the local strain rate tensor. These are pre-

sented as distributions of ucosuiu, where u1 is the angle be-

tween ¹z and the most extensional principal strain rate axis,

and u2 and u3 are the angles between ¹z and the intermedi-

ate and most compressional principal axes, respectively. The

strong tendency toward alignment of the scalar gradient vec-

tor with the most compressional strain rate eigenvector

~namely ucosu3u→1) is evident. The tendency of ¹z to be

orthogonal to the most extensional and the intermediate

strain rate eigenvectors (ucosu1,2u→0) is also apparent.

There appears to be no difference in the alignment of ¹z
with either of these two eigenvectors. The bottom panel

in this figure presents the distributions of ucosu3u for

those points where the scalar gradient magnitude, expressed

as the normalized scalar energy dissipation rate

¹z–¹z/ (^z&/lD)2, exceeds the threshold values indicated. It

is evident that higher values of scalar energy dissipation are

associated with better alignment with the most compressive

strain rate axis, consistent with the earlier results of Ashurst

et al.19 from numerical simulations. The present results ap-

pear to represent the first experimental measurements of the

alignment of scalar gradients with strain rate eigenvectors in

turbulent flows.

7. Pressure gradient fields

The preceding sections have presented results related to

the spatial structure of the velocity gradient fields ¹u(x,t)

obtained with the present scalar imaging velocimetry tech-

nique in turbulent flows. However, since these SIV measure-

ments inherently yield the fully resolved temporal informa-

tion in these velocity fields as well, the results obtained

provide access to certain dynamical quantities which have

proven largely intractable to previous experimental studies.

Perhaps the most prominent among these is the pressure gra-

dient field ¹p(x,t), determination of which requires simul-

taneous spatial and temporal differentiation of the velocity

field. From the Navier-Stokes equations, the pressure gradi-

ent field can be obtained as

¹p~x,t !52F ]

]t
1u–¹2

1

Re
¹2Gu~x,t !, ~22!

where, for the present incompressible case, the density r has

been absorbed into the pressure. Determination of pressure

gradient fields and their statistics has been a key objective in

aeroacoustics, yet the associated need for fully resolved,

four-dimensional vector velocity fields has, to date, made

measurement of these fields impossible. The present scalar

imaging velocimetry measurements allow the true pressure

gradient fields to be determined. Examples of the velocity

and velocity gradient field terms appearing in Eq. ~22! were

shown in previous sections. Additionally, Eq. ~22! requires

both time derivatives and the Laplacians of the measured

velocity fields, which are found by direct differentiation on

the four-dimensional velocity field data volumes. Figure 29

shows the resulting pressure gradient magnitude u¹pu(x,t)

for the same series of six planes for which the velocity gra-

dient fields were presented in the previous sections. While an

extensive investigation of the pressure gradient field in tur-

bulent flows is well beyond the scope of the present work,

these results demonstrate the experimental extraction of such

information in a turbulent flow using scalar imaging veloci-

metry.

IV. DISCUSSION AND CONCLUSIONS

This paper has demonstrated practical application of a

new approach to fluid velocimetry, developed and validated

in Refs. 1 and 2, that allows the fully resolved, space- and

time-varying vector velocity field u(x,t) to be determined in

turbulent flows from measurements of a single, dynamically

passive, conserved scalar field z(x,t). This scalar imaging

velocimetry technique has been applied to experimental sca-

lar field data to obtain the first non-invasive measurements of

the full velocity gradient tensor ¹u(x,t) at the small scales

of a turbulent flow. The results obtained provide a level of

detailed access to the structure and dynamics of real, inho-

mogeneous, anisotropic turbulent shear flows that to date has

been realizable only by direct numerical simulations ~DNS!
of turbulence under idealized conditions.

The scalar imaging velocimetry method is based on in-

version of the exact transport equation ~7! which governs the

evolution of the conserved scalar field, together with the

physical constraint ln5lD•Sc1/2 on the relative smoothness

of the scalar and velocity fields in turbulent flows. The scalar

transport equation ensures that the resulting velocity field

u(x,t) is consistent with the scalar field data z(x,t), while

the smoothness condition excludes all spurious velocity

fields that would be admissible by the scalar transport equa-

tion alone. These spurious fields arise from the form of the

advective term in Eq. ~7!, which allows any velocity field

having streamlines confined to isoscalar surfaces to be added

to the true velocity field without affecting the scalar field

evolution. Such spurious velocity fields must contain length

FIG. 29. The pressure gradient magnitude field u¹pu~x,t! for the same series

of six planes used in Figs. 11, 12, 14, 16, 18, and 21. In addition to the

components of u and ¹u shown in those figures, determination of ¹p re-

quires the Laplacian of each of the velocity components as well as their time

derivatives, in accordance with the Navier-Stokes equations.
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scales as small as those in the scalar field data. However, for

Sc.1 this is inconsistent with the physical requirement on

the smallest length scale ratio that can be sustained by the

strain-diffusion balance in turbulent flows. Imposing this

length scale requirement as a smoothness condition on the

scalar and velocity fields therefore excludes the spurious ad-

ditive velocity fields, and allows for unique determination of

the velocity field from scalar field data.

Inversion of the scalar transport equation to yield the

velocity field from scalar field data can be performed di-

rectly, as was shown in Ref. 1, where the smoothness con-

straint was imposed implicitly. This inversion can alterna-

tively be done through a variational formulation, as

presented in Part I, in which the smoothness constraint is

imposed explicitly and which is inherently less sensitive to

noise and other errors in the scalar field data. It was shown

through DNS-based validation tests2 that the variational for-

mulation gives more accurate results than does the direct

inversion formulation. In absolute terms, the velocity fields

extracted from scalar field data using the variational formu-

lation show better than 95% correlations with the true DNS

results. It must be kept in mind that the results from these

DNS tests were obtained in the limiting case of Sc51 scalar

field data, for which the original scalar field contains nomi-

nally the same amount of information as does the objective

velocity field. In contrast, for the Sc@1 scalar field data used

here, the velocity field sought contains less information than

does the scalar field, since for those data

(ln /lD)5Sc1/2'45. Thus the Sc@1 scalar field data carry

redundant information for the purpose of determining the

velocity field. It can be expected that, all other things being

equal, this large redundancy of information leads to velocity

field results that are at least as accurate as those obtained in

the Sc51 DNS validation tests.

Here the scalar imaging velocimetry technique has been

applied to fully resolved, four-dimensional scalar field data

~with Sc'2075) of the type described in Refs. 3, 4, and 5 to

yield the first, non-invasive, spatio-temporal measurements

of the full velocity gradient tensor at the small scales of a

turbulent flow. These data were obtained in the fully devel-

oped, self-similar far field of an axisymmetric turbulent jet,

at an axial location 235 diameters downstream of the jet exit.

The outer scale Reynolds numbers were in the range

3,000<Red<4,200, with Taylor scale Reynolds numbers

Rel'45. The scalar field data in each of three cases consid-

ered contain over 3 billion individual point measurements of

the local conserved scalar value, having spatial separa-

tions (Dx ,Dy ,Dz),0.5lD and temporal separations

DT<0.5lD /U . The high signal-to-noise ratio of these mea-

surements allows accurate determination of the scalar field

derivatives ]z(x,t)/]t , ¹z(x,t) and ¹2z(x,t), which provide

the inputs to the SIV technique.

Samples of the spatio-temporal results obtained from

these scalar imaging velocimetry measurements have been

presented for the complete velocity u(x,t) and velocity gra-

dient ¹u(x,t) fields at the small scales of a turbulent flow in

Figs. 9–12, 14, 16, and 18. The availability of the full nine-

component velocity gradient tensor allows all three compo-

nents of the vector vorticity field v(x,t) and all six compo-

nents of the normal and shear strain rate fields «(x,t) to be

determined. Owing to the very high Schmidt number at

which these measurements are made, the spatial planes typi-

cally span about two inner length scales ln in each direction,

giving the inner scale structure of the various fields shown.

This limited range of accessible spatial length scales allows

determination of spatial structure, spatial spectra, and other

information deep within the dissipative scales of motion, but

precludes spatial information on larger scales. However, the

much longer scaled temporal dimension of the resulting data,

which typically spans well over 75 advective time scales

ln /U , allows access to temporal structure and spectra ex-

tending into the inertial range of scales. Additionally, the

combined four-dimensional data allow probability distribu-

tions of the ¹u(x,t) components to be determined which

have essentially converged to their statistically stationary

form. The corresponding probability distributions have been

presented for the symmetric and anti-symmetric parts of the

complete velocity gradient tensor field ¹u(x,t) at the small

scales of a turbulent flow in Figs. 15, 17 and 19.

There are several features of these results which are of

particular interest, both in themselves, as well as for com-

parison with previous laboratory measurements and results

of direct numerical simulations. Such comparisons serve as

partial validation of the present scalar imaging velocimetry

results.

When normalized by the inner reference scales ln and

n , the probability distributions for the three data sets consid-

ered are substantially in agreement. Although the Reynolds

numbers involved do not differ widely, one of the three cases

appeared to involve significant buoyancy effects; however,

after a rescaling of the length scale ln the results obtained

for that case yield essentially the same probability distribu-

tions as do the non-buoyant jet cases. This can be seen in

Figs. 15, 17 and 19, and even more dramatically in the dis-

tributions obtained for higher-order velocity gradient quanti-

ties in Fig. 20.

The exponential scaling in the tails of these distributions

agrees with results obtained at much higher Reynolds num-

bers and in fundamentally different turbulent flows, from

both experiments and direct numerical simulations.

The zero-divergence requirement from continuity ap-

pears to be well satisfied by these results, with the 0.73 cor-

relation between (]u/]x) and (2]v/]y2]w/]z) comparing

favorably with the values 0.25 to 0.7 reported in invasive

multi-probe measurements.12 This relatively good agreement

with the incompressibility condition results in part from its

having been included explicitly in the variational inversion,

however the weight assigned to it is smaller than that as-

signed to the scalar transport equation.

Results obtained for increasingly high-order velocity

gradient quantities show increasing levels of internal inter-

mittency. Second-order quantities such as the kinetic energy

dissipation rate field F(x,t) [ (2/Re)«:« and the enstrophy

field 1
2v•v(x,t) in Figs. 20 and 21 are ‘‘spotty,’’ with large

values being very infrequent. Third-order quantities such as

the enstrophy production rate field v•«•v(x,t) in Figs. 20

and 21 show even higher internal intermittency. The inter-

mittency in the dissipation rate field leads to inertial range
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structure function exponents ~Fig. 23! that agree well with

previous measurements by Anselmet et al.,14 at Taylor scale

Reynolds numbers 515<RelT
<852, in both turbulent jet and

turbulent duct flows.

The alignments observed in Figs. 26 and 28 for both

the vorticity vector field v(x,t) and the scalar gradient

field z(x,t) with the strain rate tensor eigenvectors

( ê«11
, ê«22

, ê«33
) agree with previous DNS results in homoge-

neous, isotropic turbulence at higher RelT
values, as does the

present lack of any strong alignment between the velocity

vector field u(x,t) and the vorticity vector field v(x,t) seen

in the helicity distributions of Fig. 27 and the positivity of

the intermediate strain rate «22 in Fig. 25. Further, the

present results show improved alignment of the scalar gradi-

ent vector with the most compressive principal strain rate

axis for increasing scalar gradient vector magnitudes, which

is also in agreement with DNS results at higher Reynolds

numbers and in fundamentally different turbulent flows. The

present results also provide the first experimental measure-

ments of the full vector pressure gradient field ¹p(x,t) in a

turbulent flow.

Collectively, the present scalar imaging velocimetry re-

sults, obtained on the inner scales of a turbulent flow, are

generally in good agreement with both direct numerical

simulation results and experimental results obtained at much

larger Reynolds numbers and in fundamentally different

flows. This suggests that the present outer scale Reynolds

numbers 3,000<Red<4,200 and corresponding Taylor scale

Reynolds numbers 41<RelT
<48 are sufficiently large for

the presumed quasi-universality of the small scales to have

been approached, so that the results, when scaled by inner

variables, will show only a weak remaining dependence on

both the Reynolds number and the particular flow in which

the measurements were made. Although these Reynolds

numbers may seem relatively low in comparison with tradi-

tional turbulence studies, there is considerable evidence in

the literature that the physical structure of the small scales in

turbulent flows establishes itself well before many of the

traditional hallmarks of high Reynolds number turbulence

are reached. For example, experimental evidence ~e.g.,

Dowling24! shows that the small scale portion of

Kolmogorov-normalized scalar power spectra collapse for

outer scale Reynolds numbers from 5,000 to 40,000, even

though no inertial range with a k25/3 scaling exists for the

lower Reynolds numbers. These ‘‘hallmarks’’ ~such as an

extensive k25/3 range! are thus believed to be signatures of

this fundamental small scale structure that manifest them-

selves once sufficiently high Reynolds numbers are reached,

rather than being minimum requirements necessary even to

achieve this fundamental small scale structure. Recent evi-

dence from direct numerical simulations of turbulent flows

appears to support this view. In DNS studies with

35<RelT
<170, Jiménez, Wray, Saffman and Rogallo11 find

essentially perfect collapse of small scale spectra ~see their

Figs. 1a and 2a! as well as small scale vortical structure ~see

their Figs. 11a,b!, and, regarding the small scale structure of

the flow, state ‘‘it is surprising that no obvious increase in

complication is detected as RelT
increases.’’ They conclude

that ‘‘it is surprising that we are able to find similarity laws

spanning the whole range of Reynolds numbers, and that

even the lowest-RelT
flow seems to be essentially turbu-

lent.’’ This suggests that the Taylor scale Reynolds numbers

accessible in the present measurements are large enough for

the small scale structure to approach a Reynolds number as-

ymptotic state. As a consequence, the results obtained here

are believed to be largely representative of the quasi-

universal small scale structure of all high Reynolds number

turbulent flows.
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11J. Jiménez, A. A. Wray, P. G. Saffman, and R. S. Rogallo, ‘‘The structure

of intense vorticity in isotropic turbulence,’’ J. Fluid Mech. 255, 65

~1993!.
12A. Tsinober, E. Kit, and T. Dracos, ‘‘Experimental investigation of the

field of velocity gradients in turbulent flows,’’ J. Fluid Mech. 242, 169

~1992!.
13G. K. Batchelor and A. A. Townsend, ‘‘The nature of turbulent motion at

large wavenumbers,’’ Proc. R. Soc. London Ser. A 199, 238 ~1949!.
14F. Anselmet, Y. Gagne, E. J. Hopfinger, and R. A. Antonia, ‘‘High-order

velocity structure functions in turbulent shear flows,’’ J. Fluid Mech. 140,

63 ~1984!.
15A. N. Kolmogorov, ‘‘A refinement of previous hypotheses concerning the

local structure of turbulence in viscous incompressible fluid at high Rey-

nolds number,’’ J. Fluid Mech. 13, 82 ~1962!.

1905Phys. Fluids, Vol. 8, No. 7, July 1996 L. K. Su and W. J. A. Dahm



16U. Frisch, ‘‘From global scaling, á la Kolmogorov, to local multifractal
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