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SUMMARY

This work concerns spatial variable selection for scalar-on-image regression. We propose a new
class of Bayesian nonparametric models and develop an efficient posterior computational algo-
rithm. The proposed soft-thresholded Gaussian process provides large prior support over the class
of piecewise-smooth, sparse, and continuous spatially varying regression coefficient functions. In
addition, under some mild regularity conditions the soft-thresholded Gaussian process prior leads
to the posterior consistency for parameter estimation and variable selection for scalar-on-image
regression, even when the number of predictors is larger than the sample size. The proposed
method is compared to alternatives via simulation and applied to an electroencephalography
study of alcoholism.

Some key words: Electroencephalography; Gaussian process; Posterior consistency; Spatial variable selection.

1. INTRODUCTION

Scalar-on-image regression has recently attracted considerable attention in both the frequentist
and the Bayesian literature. This problem is challenging for several reasons: the predictor is a
two-dimensional or three-dimensional image where the number of pixels or voxels is often larger
than the sample size; the observed predictors may be contaminated with noise; the true signal
may exhibit complex spatial structure; and most components of the predictor may have no effect
on the response, and when they have an effect it may vary smoothly.

Regularized regression techniques are often needed when the number of predictors is much
higher than the sample size. The lasso (Tibshirani, 1996) is a popular method for variable selection
that employs a penalty based on the sum of the absolute values of the regression coefficients.
However, most penalized approaches do not accommodate predictors with ordered components
such as an image predictor. One exception is the fused lasso, which generalizes the lasso by
penalizing both the coefficients and their successive differences and thus ensures both sparsity
and smoothness of the estimated effect. To incorporate the spatial structure of the predictors,
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166 J. KANG, B. J. REICH AND A.-M. STAICU

Reiss & Ogden (2010) extended functional principal component regression to handle image
predictors by approximating the coefficient function using B-splines. However, this method is
not sensitive to sparsity or sharp edges. Wang et al. (2017) proposed a penalty based on the
total variation of the regression function that yields piecewise-smooth regression coefficients.
The approach is focused primarily on prediction and does not quantify uncertainty in a way that
permits statistical inference. Reiss et al. (2015) considered a wavelet expansion for the regression
coefficients and conducted inference via hypothesis testing. Their approach requires that the
image predictors have dimensions of equal size and moreover that the common size be a power
of two. These strong assumptions are violated for our motivating application. Therefore, none of
these methods are appropriate for detecting a piecewise-smooth, sparse, and continuous signal
for a scalar outcome and an image predictor.

Scalar-on-image regression has been also approached from a Bayesian viewpoint. Goldsmith
et al. (2014) proposed to model the regression coefficients as the product of two latent spatial
processes to capture both sparsity and spatial smoothness of the important regression coefficients.
They used an Ising prior for the binary indicator that a voxel is predictive of the response, and
a conditionally autoregressive prior to smooth the nonzero regression coefficients. Use of an
Ising prior for binary indicators was first discussed in Smith & Fahrmeir (2007) in the context of
high-dimensional spatial predictors and was also recently employed by Li et al. (2015), who used
a Dirichlet process prior for the nonzero coefficients. In both Li et al. (2015) and Goldsmith et al.
(2014), sparsity and smoothness are controlled separately by two independent spatial processes,
so the transitions from zero areas to neighbouring nonzero areas may be abrupt and computation
is challenging because the Ising probability mass function does not have a simple closed form.

We propose an alternative approach to spatial variable selection in scalar-on-image regression
by modelling the regression coefficients through soft-thresholding of a latent Gaussian process.
The soft-thresholding function is well known for its relation with the lasso estimate when the
design matrix is orthonormal (Tibshirani, 1996), and here we use it to specify a spatial prior
with mass at zero. The idea is inspired by Boehm Vock et al. (2014), who considered Gaussian
processes as a regularization technique for spatial variable selection. However, their approach
does not assign prior probability mass at zero for regression coefficients and is not designed for
scalar-on-image regression. Unlike other Bayesian spatial models (Goldsmith et al., 2014; Li
et al., 2015), the soft-thresholded Gaussian process ensures a gradual transition between the zero
and nonzero effects of neighbouring locations and provides large support over the class of spatially
varying regression coefficient functions that are piecewise smooth, sparse, and continuous. The
use of the soft-thresholded Gaussian process avoids the computational problems posed by the
Ising prior, and can be scaled to large datasets using a low-rank spatial model for the latent
process. We show that the soft-thresholded Gaussian process prior leads to posterior consistency
for both parameter estimation and variable selection under mild regularity conditions, even when
the number of predictors is larger than the sample size.

The proposed method is introduced for a single image predictor and Gaussian responses mainly
for simplicity. Extensions to accommodate multiple predictors and non-Gaussian responses
are relatively straightforward. However, the theoretical investigation of the procedure for non-
Gaussian responses is not trivial, and so we establish the theory for binary responses and the
probit link function. The methods are applied to data from an electroencephalography, EEG,
study of alcoholism; see http://kdd.ics.uci.edu/datasets/eeg/eeg.data.html. The objective of our
analysis is to estimate the relationship between alcoholism and brain activity. EEG signals are
recorded for both alcoholics and controls at 64 channels of electrodes on subjects’ scalps for 256
seconds, leading to a high-dimensional predictor. The data have been previously described in
Li et al. (2010) and Zhou & Li (2014). Previous literature has ignored the spatial structure of the
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Soft-thresholded Gaussian process 167

Fig. 1. Standard electrode position nomenclature for the 10-10 system.

electrodes shown in Fig. 1, which was recovered from the standard electrode position nomen-
clature described by Fig. 1 of https://www.acns.org/pdf/guidelines/Guideline-5.pdf. Our spatial
analysis exploits the spatial configuration of the electrodes and reveals regions of the brain with
activity predictive of alcoholism.

2. MODEL

2·1. Scalar-on-image regression

Let R
m be a m-dimensional vector space of real values. Suppose there are n subjects in the

dataset and the data for subject i consist of a scalar response variable, Yi ∈ R
1, a set of pn spatially

distributed image predictors, denoted by Xi = (Xi,1, . . . , Xi,pn)
T ∈ R

pn , and other scalar covariates
collected by Wi = (Wi,1, . . . , Wi,q)

T ∈ R
q. Assume that {Wi}

n
i=1 are fixed design covariates. Here

Xi,j denotes the image intensity value measured at location sj, for j = 1, . . . , pn. We assume that
the set of locations S = {sj}

pn

j=1 is a fixed subset of a compact closed region B ⊆ R
d . Let N (μ, �)

denote a normal distribution with mean μ and variance-covariance matrix �, or variance for the
one-dimensional case. We consider the scalar-on-image regression model

(Yi | Wi, Xi, α
v, β, σ 2 ) ∼ N

⎧

⎨

⎩

q
∑

k=1

αkWi,k + p−1/2
n

pn
∑

j=1

β(sj)Xi,j, σ
2

⎫

⎬

⎭

(i = 1, . . . , n), (1)

where αv = (α1, . . . , αq)
T quantifies the effect of Wi and β(·) is a spatially varying coefficient

function defined on B. In practice, the normalizing scalar p
−1/2
n can be absorbed into the image

predictors; its role is to rescale the total effects of massive image predictors such that they are
bounded away from infinity with large probability, when pn is very large. Scientifically, in brain
imaging studies, the image predictors take values that measure the body tissue contrast or the
neural activities at each spatial location, and the number of image predictors, pn, is determined
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168 J. KANG, B. J. REICH AND A.-M. STAICU

by the image resolution. Thus, the total effect of the image predictors reflects the total intensity
in the brain signals, which should not increase to infinity as the image resolution increases. In
model (1), the response is taken to be Gaussian and only one type of image predictor is included,
although extensions of the modelling framework to non-Gaussian responses and multimodality
image predictor regression are straightforward.

2·2. Soft-thresholded Gaussian processes

To capture the characteristics of the image predictors and their effects on the response variable,
the prior for β(·) should be sparse and spatial. That is, we assume that many locations have
β(sj) = 0, the sites with nonzero coefficients cluster spatially, and the coefficients vary smoothly
in clusters of nonzero coefficients. To encode these desired properties into the prior, we represent
β(·) as a transformation of a Gaussian process, β(s) = gλ{β̃(s)}, where gλ is the transformation
function dependent on parameter λ and β̃(s) follows a Gaussian process prior. In this trans-
kriging (Cressie, 1993) or Gaussian copula (Nelsen, 1999) model, the function gλ determines the
marginal distribution ofβ(s), while the covariance of the latent β̃(s)determinesβ(s)’s dependence
structure.

Spatial dependence is determined by the prior for β̃(s). We assume that β̃(·) is a Gaussian
process with mean zero and stationary covariance function cov{β̃(s), β̃(s′)} = κ(s− s′) for some
covariance function κ . Although other transformations are possible (Boehm Vock et al., 2014),
we select gλ to be the soft-thresholding function to map β̃(s) near zero to exact zero and thus
give a sparse prior. Let

gλ(x) =

{

0, |x| � λ,
sgn(x)(|x| − λ), |x| > λ,

where sgn(x) = 1 if x > 0, sgn(x) = −1 if x < 0, and sgn(0) = 0. The thresholding parameter
λ > 0 determines the degree of sparsity. This soft-thresholded Gaussian process prior is denoted
by β ∼ STGP(λ, κ).

3. THEORETICAL PROPERTIES

3·1. Notation and definitions

We first introduce additional notation for the theoretical development and the formal definitions
of the class of spatially varying coefficient functions under consideration. We assume that all
the random variables and stochastic processes in this article are defined on a probability space
(�, F , 	). Let Z

d
+ = {0, 1, . . .}d ⊂ R

d represent a space of d-dimensional nonnegative integers.

For any vector v = (v1, . . . , vd)T ∈ R
d , let ‖v‖p =

(
∑d

l=1 |vl|
p
)1/p

be the Lp-norm of vector

v for any p � 1, and let ‖v‖∞ = maxd
l=1 |vl| be the supremum norm. For any x ∈ R, let

⌈x⌉ be the smallest integer not smaller than x and let ⌊x⌋ be the largest integer not larger than
x. Define the event indicator I (A) = 1 if event A occurs and I (A) = 0 otherwise. For any
z = (z1, . . . , zd)T ∈ Z

d
+, define z! =

∏d
l=1

∏zl

k=1 k and vz =
∏d

l=1 v
zl

l
. For any real function f on

B, let ‖f ‖p =
{∫

B
|f (s)|p ds

}1/p
denote the Lp-norm for any p � 1 and let ‖f ‖∞ = sups∈B |f (s)|

denote the supremum norm.
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DEFINITION 1. Denote by Cm(B) the set of differentiable functions f (·) of order m defined on

B such that f (s) has partial derivatives

Dτ f (s) =
∂‖τ‖1 f

s
τ1
1 · · · s

τd

d

(s) =
∑

‖η‖1+‖τ‖1�m

Dτ+ηf (t)

η!
(s − t)η + Rm(s, t),

where τ = (τ1, . . . , τd)T ∈ Z
d
+, η ∈ Z

d
+ and t ∈ R

d and given any point s0 of B and any ε > 0,

there is a δ > 0 such that if s and t are any two points ofB with‖s−s0‖1 < δ and‖t−s0‖1 < δ, then

|Rm(s, t)| � ‖s − t‖
m−‖τ‖1
1 ε. If ‖Dτ f ‖∞ � M < ∞, then |Rm(s, t)| � (M‖s − t‖m+1

1 )/(m + 1)!.

Denote by R̄ and ∂R the closure and the boundary of any set R ⊆ B.

DEFINITION 2. Define � = {β(s) : s ∈ B} to be the collection of all spatially varying coefficient

functions that satisfy the following conditions.Assume that there exist two disjoint nonempty open

sets R−1 and R1 with R̄1 ∩ R̄−1 = ∅ such that:

(i) β(·) is smooth over R̄−1 ∪ R̄1, i.e.,

β(s)I (s ∈ R̄−1 ∪ R̄1) ∈ Cρ(R̄−1 ∪ R̄1), ρ = ⌈d/2⌉;

(ii) β(s) = 0 for s ∈ R0, β(s) > 0 for s ∈ R1 and β(s) < 0 for s ∈ R−1, where R0 =

B − (R−1 ∪ R1) and R0 − (∂R1 ∪ ∂R−1) |= ∅;

(iii) β(·) is continuous over B, i.e., lims→s0 β(s) = β(s0) (s0 ∈ B).

Simply put, � is the collection of all piecewise-smooth, sparse and continuous functions
defined on B.

3·2. Large support

One desirable property for the Bayesian nonparametric model is that it should have prior
support over a large class of functions. In this section, we show that the soft-thresholded Gaussian
process has large support over �. We begin with two appealing properties of the soft-thresholding
function. All technical conditions are listed in the Appendix, as Conditions A1–A5.

LEMMA 1. The soft-thresholding function gλ(x) is Lipschitz continuous for any λ > 0, that is,

for all x1, x2 ∈ R, |gλ(x1) − gλ(x2)| � |x1 − x2|.

LEMMA 2. For any function β0 ∈ � and any threshold parameter λ0 > 0, there exists a smooth

function β̃0(s) ∈ Cρ(B) such that β0(s) = gλ0{β̃0(s)}.

Lemma 1 is proved directly by verifying the definition. The proof of Lemma 2 is not trivial, it
requires a detailed construction of the smooth function β̃0(s). See the Appendix for details.

THEOREM 1. For any function β0 ∈ � and ε > 0, the soft-thresholded Gaussian process

prior β ∼ STGP(λ0, κ) satisfies 	 (‖β − β0‖∞ < ε) > 0, for any λ0 > 0 and κ that satisfy

Condition A5.

Proof. By Lemma 2, for any threshold parameter λ0 > 0 there is a smooth function β̃0(s) ∈

Cρ(B) such that β0(s) = gλ0{β̃0(s)}. Since β ∼ STGP(λ0, κ), we have β(s) = gλ0{β̃(s)} with
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β̃(s) ∼ GP(0, κ). By Lemma 1,

	

{

sup
s∈B

|β(s) − β0(s)| < ε

}

= 	

[

sup
s∈B

|gλ0{β̃(s)} − gλ0{β̃0(s)}| < ε

]

� 	

{

sup
s∈B

|β̃(s) − β̃0(s)| < ε

}

.

By Condition A5 and Theorem 4·5 of Tokdar & Ghosh (2007), β̃0(·) is in the reproduc-
ing kernel Hilbert space of κ , and then by Theorem 4 of Ghosal & Roy (2006) we have

	
{

sups∈B |β̃(s) − β̃0(s)| < ε
}

> 0, which completes the proof. �

Theorem 1 implies that there is always a positive probability that the soft-thresholded Gaussian
process concentrates in an arbitrarily small neighbourhood of any spatially varying coeffi-
cient function that has piecewise smoothness, sparsity and continuity properties. According to
Lemma 2, for any positive λ1 |= λ2, there exist β̃1, β̃2 ∈ Cρ(B) such that β0(s) = gλ1{β̃1(s)} =

gλ2{β̃2(s)}. Thus the thresholding parameter λ0 and the latent smooth curve β̃0 are not identifiable,
but we can ensure that β0 is identifiable by establishing the posterior consistency of parameter
estimation.

3·3. Posterior consistency

For i = 1, . . . , n, given the image predictor Xi on a set of spatial locations S and other
covariates Wi, suppose that the response Yi is generated from the scalar-on-image regression
model (1) with parameters αv

0 ∈ R
q, σ 2

0 > 0 and β0 ∈ �. For theoretical convenience we
assume that αv

0 and σ 2
0 are known; in practice it is straightforward to estimate them from

the data. We assign a soft-thresholded Gaussian process prior for the spatially varying coef-
ficient function, i.e., β ∼ STGP(λ, κ) for any given λ > 0 and covariance kernel κ . In light
of the large-support property in Theorem 1, the following lemma shows the positivity of prior
neighbourhoods.

LEMMA 3. Denote by πn,i(·; β) the density function of Zn,i = (Yi, Wi, Xi) in model (1) and

suppose that Condition A4 holds for Xi. Define �n,i(·; β0, β) = log πn,i(·; β) − log πn,i(·; β0),

Kn,i(β0, β) = Eβ0{�n,i(Zn,i; β0, β)} and Vn,i(β0, β) = varβ0{�n,i(Zn,i; β0, β)}. There exists a set

B with 	(B) > 0 such that, for any ε > 0,

lim inf
n→∞

	

[{

β ∈ B, n−1
n
∑

i=1

Kn,i(β0, β) < ε

}]

> 0, n−2
n
∑

i=1

Vn,i(β0, β) → 0, β ∈ B.

We construct sieves for the spatially varying coefficient functions in � as

�n =

{

β ∈ � : ‖β‖∞ � p1/(2d)
n , sup

s∈R1∪R−1

|Dτβ(s)| � p1/(2d)
n , 1 � ‖τ‖1 � ρ

}

,
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where ρ is defined in Condition A1. By Lemmas A1–A5 in the Appendix, we can find an upper
bound for the tail probability and construct uniform consistent tests in the following lemmas.

LEMMA 4. If β(s) ∼ STGP(λ0, κ) with λ0 > 0 and the kernel function κ satisfies Condition A5,

then there exist constants K and b such that for all n � 1, 	(�C
n ) � K exp(−bp

1/d
n ).

LEMMA 5. For any ε > 0 and υ0/2 < υ < 1/2, there exist N , C0, C1 and C2 such that

for all n > N and all β ∈ �n, if ‖β − β0‖1 > ε, a test function �n can be constructed such

that Eβ0(�n) � C0 exp(−C2n2υ) and Eβ(1 − �n) � C0 exp (−C1n), where υ0 is defined in

Condition A1.

Proofs of Lemmas 3–5 are provided in the Supplementary Material. These lemmas verify three
important conditions for proving posterior consistency in the scalar-on-image regression based
on Theorem A1 of Choudhuri et al. (2004). Thus we have the following theorem.

THEOREM 2. Denote the data by Dn = {Yi, Xi, Wi}
n
i=1. If Conditions A1–A5 hold, then for any

ε > 0,

	 (β ∈ � : ‖β − β0‖1 < ε | Dn) → 1, n → ∞. (2)

Theorem 2 implies that the soft-thresholded Gaussian process prior can ensure that the poste-
rior distribution of the spatially varying coefficient function concentrates in an arbitrarily small
neighbourhood of the true value, when the numbers of subjects and spatial locations are both
sufficiently large. Given that the true function of interest is piecewise smooth, sparse and contin-
uous, the soft-threshold Gaussian process prior can further ensure that the posterior probability
of the sign of the spatially varying coefficient function being correct converges to 1 as the sample
size goes to infinity. The result is formally stated in the following theorem.

THEOREM 3. Suppose that the model assumptions, prior settings and regularity conditions for

Theorem 2 hold. Then

	 [sgn{β(s)} = sgn{β0(s)}, s ∈ B | Dn] → 1, n → ∞. (3)

This theorem establishes the consistency of spatial variable selection. It does not require that
the number of true image predictors be finite or less than the sample size. This result is reasonable
in that the true spatially varying coefficient function is piecewise smooth and continuous, and the
soft-thresholded Gaussian process will borrow strength from neighbouring locations to estimate
the true image predictors. The Supplementary Material gives proofs of Theorems 2 and 3.

To apply the proposed model to the motivating dataset, we extend the proposed model (1) and
Theorems 2 and 3 to analysis of the binary response variable using a probit model:

Yi ∼ Ber(πi), �−1(πi) =

q
∑

k=1

αkWi,k + p−1/2
n

pn
∑

j=1

β(sj)Xi,j, (4)

where �(·) is the standard normal cumulative distribution function.

THEOREM 4. Assume that the data Dn are generated from model (4) and prior settings are

the same as in Theorem 2. If Conditions A1–A5 and S1–S3 hold, then (2) and (3) hold under

model (4).

Conditions S1–S3 and the proof of Theorem 4 are in the Supplementary Material.
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4. POSTERIOR COMPUTATION

4·1. Model representation and prior specification

Next, we discuss the practical applicability of our method. We select a low-rank spatial model
to ensure that computation remains possible for large datasets, and exploit the kernel convolution
approximation of a spatial Gaussian process. As discussed in Higdon et al. (1999), any stationary
Gaussian process V (s) can be written as V (s) =

∫

K(s − t)w(t) dt, where K is a kernel function
and w is a white-noise process with mean zero and variance σ 2

w. Then the covariance function of
V (·) is cov{V (s), V (s + h)} = κ(h) = σ 2

a

∫

K(s − t)K(s + h − t) dt.

This representation suggests the following approximation for the latent process β̃(s) ≈
∑L

l=1 K(s−tl)alδ, where t1, . . . , tL ∈ R
d are a grid of equally spaced spatial knots covering B and

δ is the grid size. Without loss of generality, we assume that δ = 1 and K is a local kernel function.
We use tapered Gaussian kernels with bandwidth σh, K(h) = exp{−h2/(2σh)

2}I (h < 3σh), so
that K(‖s − tl‖) = 0 for s separated from tl by at least 3σh. Taking L < p knots and selecting
compact kernels leads to computational savings, as discussed in § 4·2.

The compact kernels K control the local spatial structure and the prior for the coefficients
a = (a1, . . . , aL)T controls the broad spatial structure. Following Nychka et al. (2015), we assume
that the knots t1, . . . , tL are arranged on an m1 ×· · ·×md array, and use l ∼ k to denote that knots
tl and tk are adjacent on this array. We then use a conditionally autoregressive prior (Gelfand et al.,
2010) for the kernel coefficients. The conditional autoregressive prior is also defined locally, with
full conditional distribution

al | ak , k |= l ∼ N

(

ϑ

nl

∑

k∼l

ak ,
σ 2

a

nl

)

, (5)

where nl is the number of knots adjacent to the knot l, ϑ ∈ (0, 1) quantifies the strength of spatial
dependence, and σ 2

a determines the variance. These full conditional distributions correspond to
the joint distribution a ∼ N {0, σ 2

a (M − ϑA)−1}, where M is diagonal with diagonal elements
(n1, . . . , nL) and A is the adjacency matrix with (k , l) element equal to 1 if k ∼ l and zero
otherwise.

Write β̃v = {β̃(s1), . . . , β̃(sp)}
T. Denote by K the p × L kernel matrix with (j, l) element

K(‖sj − tl‖2); then β̃v ∼ N {0, σ 2
a K(M −ϑA)−1KT} as a prior distribution. In this case, the β̃(sj)

do not have equal variances, which may be undesirable. Nonconstant variance arises because the
kernel knots may be unequally distributed, and because the conditional autoregressive model is
nonstationary in that the variances of the al are unequal.

To stabilize the prior variance, define K̃j,l = K(‖sj − tl‖2)/wj and let K̃ be the corresponding
p × L matrix of standardized kernel coefficients, where wj are constants chosen so that the prior
variance for βj is the same over j. We take wj to be the square root of the jth diagonal element of
K(M − ϑA)−1KT , so the kernel functions depend on ϑ . By pulling the prior standard deviation
σa out of the thresholding transformation, we have an equivalent representation of (1) as

Yi ∼ N (W T
i αv + p−1/2

n X T
i βv, σ 2), β(sj) = σagλ{β̃(sj)}, (6)

where β̃v ∼ N {0, K̃(M − ϑA)−1K̃T}. After standardization, the prior variance of each β̃(sj) is

1, and therefore the prior probability that β̃(sj) is nonzero is 2�(−λ) for all j. This endows
each parameter with a distinct interpretation: σa controls the scale of the nonzero coefficients, λ

controls the prior degree of sparsity, and ϑ controls spatial dependence. With an additional set of
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conditions, we can show that model representation (6) when L → ∞ has a large prior support,
thus leading to the posterior consistency and selection consistency. The Supplementary Material
contains more details.

In practice, we normalize the response and covariates, and then select priors αv ∼ N (0, 102Iq),
σ 2 ∼ IG(0·1, 0·1), σa ∼ HalfNormal(0, 1), ϑ ∼ Be(10, 1), and λ ∼ Un(0, 5). Following Banerjee
et al. (2004), we use a beta prior for ϑ with mean near one because only values near one provide
appreciable spatial dependence. Finally, although our asymptotic results suggest that any λ > 0
will give posterior consistency, in finite samples posterior inference may be sensitive to the
threshold and so we use a prior rather than a fixed value.

4·2. Markov chain Monte Carlo algorithm

For fully Bayesian inference on model (1), we sample from the posterior distribution using
Metropolis–Hastings within Gibbs sampling. The parameters αv, σ 2, and σ 2

a have conjugate full
conditional distributions and are updated using Gibbs sampling. The spatial dependence parame-
ter ϑ is sampled with Metropolis–Hastings sampling using a beta candidate distribution with the
current value as mean and standard deviation tuned to give an acceptance rate of around 0·4. The
threshold λ is updated using Metropolis sampling with a random-walk Gaussian candidate distri-
bution with standard deviation tuned to have acceptance probability around 0·4. The Metropolis
update for al uses the prior full conditional distribution in (5) as the candidate distribution, which
gives a high acceptance rate and thus good mixing without tuning.

To make posterior inference for the probit regression model (4), we can slightly modify the
aforementioned algorithm by introducing an auxiliary continuous variable Y ∗

i for each response
variable Yi. We assume that Yi = I (Y ∗

i > 0) and Y ∗
i follows (1) with σ 2 = 1. The full conditional

distribution of Y ∗
i is truncated normal and is straightforward to generate as a Gibbs sampling step

in the posterior computation. The updating schemes for other parameters remain the same. For
other types of non-Gaussian response models, we can use Metropolis–Hastings sampling directly
by modifying the likelihood function accordingly.

5. SIMULATION STUDY

5·1. Data generation

In this section we conduct a simulation study to compare the proposed methods with other
popular methods for scalar-on-image regression. For each simulated observation, we generate
a two-dimensional image Xi on the {1, . . . , m} × {1, . . . , m} grid with m = 30. The covariates
are generated following two covariance structures: exponential, and having shared structure with
the signal. The exponential covariates are Gaussian with mean E(Xij) = 0 and cov(Xi,j, Xi,l) =

exp(−dj,l/ϑx), where dj,l is the distance between locations j and l and ϑx controls the range of

spatial dependence. The covariates generated with shared structure with βv are Xi = X̃i/2+eiβ
v,

where X̃i is Gaussian with exponential covariance with ϑx = 3 and ei ∼ N (0, υ2). The continuous
response is then generated as Yi ∼ N (X T

i βv, σ 2), and the binary response as Yi ∼ Ber(πi) with
�−1(πi) = X T

i βv. Both Xi and Yi are independent for i = 1, . . . , n. We consider three true βv

images: two sparse images plotted in Fig. 2, five peaks and triangle, and the dense image waves
with β(s) = {cos(6πs1/m) + cos(6πs2/m)}/5. We also compare sample size n ∈ {100, 250},
spatial correlation ϑx ∈ {3, 6}, and error standard deviation σ ∈ {2, 5}. For all combinations of
these parameters considered we generate S = 100 datasets. We also simulate binary data with
	(Yi = 1) = �(X T

i βv) with n = 250 and exponential covariance with ϑx = 3.
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Fig. 2. True βv images used in the simulation study: (a) Five peaks; (b) Triangle.

5·2. Methods

We fit our model with an m/2 × m/2 equally spaced grid of knots covering {1, . . . , m} ×

{1, . . . , m} with bandwidth σh set to the minimum distance between knots. We fit our model
both with λ > 0, where the prior is a soft-thresholded Gaussian process with sparsity, and with
λ = 0, in which case the prior is a Gaussian process with no sparsity. For both models, we run
the proposed Markov chain Monte Carlo algorithm for 50 000 iterations with a 10 000-iteration
burn-in, and compute the posterior mean of βv. For the sparse model, we compute the posterior
probability of a nonzero β(s).

We compare our method with the lasso (Tibshirani, 1996) and fused lasso (Tibshirani et al.,
2005; Tibshirani & Taylor, 2011) penalized regression estimates

β̂v
L = arg min

βv

⎧

⎨

⎩

(Y − X βv)T(Y − X βv) + λ̃
∑

j

|β(sj)|

⎫

⎬

⎭

,

β̂v
FL = arg min

βv

⎧

⎨

⎩

(Y − X βv)T(Y − X βv) + λ̃
∑

j∼k

|β(sj) − β(sk)| + γ̃ λ̃
∑

j

|β(sj)|

⎫

⎬

⎭

.

The lasso estimate β̂v
L is computed using the lars package (Hastie & Efron, 2013) in R (R Core

Team, 2018), and the tuning parameter λ̃ is selected using the Bayesian information criterion.
The fused lasso estimate β̂v

FL is computed using the genlasso package (Arnold & Tibshirani,

2014) in R. The fussed lasso has two tuning parameters: γ̃ and λ̃. Owing to computational
considerations, we search only over γ̃ in {1/5, 1, 5}. For each γ̃ , λ̃ is selected using the Bayesian
information criterion. The Supplementary Material gives results for each γ̃ ; here we report only
the results for the γ̃ with the most precise estimates.

We also consider a functional principal component analysis-based alternative. We smooth each
image using the technique of Xiao et al. (2013) implemented in the fbps function in R’s refund
package (Crainiceanu et al., 2014), compute the eigendecomposition of the sample covariance of
the smoothed images, and then perform principal components regression using the lasso penalty
tuned via the Bayesian information criterion. The Supplementary Material gives results using the
leading eigenvectors that explain 80%, 90%, and 95% of the variation in the sample images, and
here we report only the results for the value with the most precise estimates.
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Finally, we compare our approach with the Bayesian spatial model of Goldsmith et al. (2014)
using β(sj) = α̃jθj, where α̃j ∈ {0, 1} is the binary indicator that location j is included in the
model, and θj ∈ R is the regression coefficient given that the location is included. Both the α̃j

and the θj have spatial priors; the continuous components θj follow a conditional autoregressive
prior, and the binary components αj follow an Ising or autologistic prior (Gelfand et al., 2010)
with full conditional distributions,

logit 	(α̃j = 1 | α̃l , l |= j) = a0 + b0

∑

l∼j

α̃l .

Estimating a0 and b0 is challenging because of the complexity of the Ising model (Møller et al.,
2006), so Goldsmith et al. (2014) recommended selecting a0 and b0 using crossvalidation over
a0 ∈ (−4, 0) and b0 ∈ (0, 2). For computational reasons we select values in the middle of these
intervals and set a0 = −2 and b0 = 1. The posterior mean of β(s) and the posterior probability
of a nonzero β(s) are approximated based on 5000 Markov chain Monte Carlo samples after the
first 1000 are discarded as burn-in.

5·3. Results

Tables 1 and 2 give the mean squared error for βv estimation averaged over location, Type
I error and power for detecting nonzero signals, and the computing time. The soft-thresholded
Gaussian process model gives the smallest mean squared error when the covariate has exponen-
tial correlation. Compared to the Gaussian process model, adding thresholding reduces mean
squared error by roughly 50% in many cases. As expected, the functional principal component
analysis method gives the smallest mean squared error in the shared-structure scenarios where
the covariates are generated to have a similar spatial pattern to the true signal. Even in this case,
the proposed method outperforms other methods that do not exploit this shared structure. Under
the dense waves signal the nonsparse Gaussian process model gives the smallest mean squared
error, but the proposed method remains competitive.

For variable selection results, we only compare the proposed method with the fused lasso and
the Ising model for a fair comparison, because the lasso does not incorporate spatial locations
and other methods do not perform variable selection directly. The fused lasso has much larger
Type I error in all cases and the Ising model has low power to detect the signal in each case. The
proposed method is much more efficient than both for variable selection, and is comparable to
the fused lasso and is faster than the Ising model in terms of computing time.

6. ANALYSIS OF EEG DATA

Our motivating application is the study of the relationship between electrical brain activity
as measured through multichannel EEG signals and genetic predisposition to alcoholism. EEG
is a medical imaging technique that records the electrical activity in the brain by measuring the
current flows produced when neurons are activated. The study comprises 77 alcoholic subjects
and 45 non-alcoholic controls. For each subject, 64 electrodes were placed on their scalp and an
EEG was recorded from each electrode at a frequency of 256 Hz. The electrode positions were
located at standard sites, i.e., standard electrode position nomenclature according to theAmerican
Electroencephalographic Association (Sharbrough et al., 1991). The subjects were presented
with 120 trials under several settings involving one stimulus or two stimuli. We consider the
multichannel average EEG across the 120 trials corresponding to a single stimulus. The dataset
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Table 1. Simulation study results for linear regression models. Methods are compared in terms

of mean squared error for βv, Type I error and power for feature detection. The scenarios vary

by the true βv
0 , sample size n, similarity between covariates and true signal determined by

τ , error variance σ , and spatial correlation range of the covariates ϑx. Results are reported

as the mean with the standard deviation in parentheses over the 100 simulated datasets

Mean squared error for βv, multiplied by 104

Signal n τ σ ϑx Lasso Fused lasso FPCA Ising GP STGP

Five peaks

100 0 5 3 326 (5) 22 (0) 36 (0) 46 (1) 27 (0) 13 (0)
100 0 5 6 553 (9) 22 (0) 33 (0) 44 (1) 28 (0) 13 (0)
100 0 2 3 102 (1) 11 (0) 24 (0) 26 (0) 15 (0) 4 (0)
250 0 5 3 674 (9) 13 (0) 27 (0) 52 (1) 17 (0) 6 (0)

Triangle

100 0 5 3 289 (4) 9 (0) 17 (0) 30 (1) 19 (0) 8 (0)
100 0 5 6 515 (9) 8 (0) 1·5 (0) 28 (1) 19 (0) 8 (0)
100 0 2 3 73 (1) 5 (0) 12 (0) 14 (0) 10 (0) 4 (0)
250 0 5 3 650 (9) 6 (0) 14 (0) 34 (0) 12 (0) 6 (0)
100 2 5 3 1011 (17) 7 (0) 10 (0) 27 (1) 33 (1) 13 (1)
100 4 5 3 1018 (17) 6 (0) 4 (1) 32 (1) 34 (1) 14 (1)

Waves
100 0 5 3 1260 (13) 250 (5) 188 (7) 419 (3) 48 (1) 109 (10)
100 0 5 6 1639 (17) 233 (4) 126 (3) 402 (4) 51 (1) 128 (12)

Type I error, % Power, %

Signal n τ σ ϑx Lasso Fused lasso Ising STGP Lasso Fused lasso Ising STGP

Five peaks

100 0 5 3 10 (0) 14 (1) 0 (0) 4 (1) 17 (0) 55 (2) 4 (0) 51 (1)
100 0 5 6 10 (0) 37 (1) 0 (0) 7 (1) 15 (0) 80 (1) 5 (0) 58 (1)
100 0 2 3 79 (0) 24 (1) 0 (0) 4 (1) 28 (0) 84 (1) 4 (0) 82 (1)
250 0 5 3 27 (0) 19 (1) 0 (0) 4 (1) 32 (0) 77 (1) 10 (0) 71 (1)

Triangle

100 0 5 3 10 (0) 5 (0) 0 (0) 4 (1) 23 (1) 85 (1) 9 (0) 87 (1)
100 0 5 6 11 (0) 8 (1) 0 (0) 4 (1) 19 (1) 91 (1) 9 (0) 86 (1)
100 0 2 3 9 (0) 7 (1) 0 (0) 4 (0) 42 (1) 95 (0) 5 (0) 98 (0)
250 0 5 3 27 (0) 5 (0) 0 (0) 4 (0) 35 (1) 92 (1) 16 (0) 96 (1)
100 2 5 3 11 (0) 7 (1) 0 (0) 1 (0) 17 (0) 86 (1) 8 (0) 70 (1)
100 4 5 3 11 (0) 2 (1) 0 (0) 3 (1) 19 (1) 84 (1) 12 (0) 73 (1)

Computing time, minutes
Signal n τ σ ϑx Lasso Fused lasso FPCA Ising GP STGP
Five peaks 100 0 5 3 0·02 16·77 5·40 27·61 4·81 11·28

Type I error, proportion of times that zero coefficients were estimated to be nonzero; Power, proportion of times that
nonzero coefficients were estimated to be nonzero; FPCA, functional principal component analysis approach (Xiao
et al., 2013); Ising, Bayesian spatial variable selection with Ising priors (Goldsmith et al., 2014); GP, Gaussian process
approach; STGP, soft-thresholded Gaussian process approach.

is publicly available at the University of California at Irvine Knowledge Discovery of Datasets,
https://kdd.ics.uci.edu/databases/eeg/eeg.data.html.

These data have been previously analysed by Li et al. (2010), Hung & Wang (2013) and Zhou
& Li (2014). However, all the analyses ignored the spatial locations of the electrodes on the scalp
and used instead smoothed values based on their identification numbers, which range from 1
to 64 and were assigned arbitrarily relative to the electrodes’ positions on the scalp. Our goal
in this analysis is to detect the regions of brain which are most predictive of alcoholism status,
so accounting for the actual positions of the electrodes is a key component of our approach. In
the absence of more sophisticated means to determine the electrodes’ position on the scalp, we
consider a lattice design and assign a two-dimensional location to each electrode that matches
closely the electrode’s standard position. Using the labels of the electrodes, we were able to
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Table 2. Simulation study results for binary regression models. Methods are compared in terms

of mean squared error for βv, Type I error and power for feature detection. The scenarios vary

by the true βv
0 ; see Fig. 2. Results are reported as the mean with the standard deviation over the

100 simulated datasets
Mean squared error for βv, multiplied by 104

Signal Lasso FPCA, 80% FPCA, 90% FPCA, 95% GP STGP
Five peaks 11 (2) 3 (0) 6 (2) 21 (16) 1 (0) 1 (0)
Triangle 4 (1) 1 (0) 3 (1) 8 (4) 1 (0) 0 (0)
Waves 80 (5) 18 (4) 52 (16) 38 (8) 107 (46) 191 (138)

Type I error, % Power, %

Signal Lasso STGP Lasso STGP
Five peaks 3 (0) 7(1) 15 (0) 62 (1)
Triangle 1 (0) 4 (0) 24 (1) 91(1)

Type I error, proportion of times that zero coefficients were estimated to be nonzero; Power, proportion of times
that nonzero coefficients were estimated to be nonzero; FPCA, α %, functional principal component analysis
approach (Xiao et al., 2013) using eigenvectors that explain α% of variation; Ising, Bayesian spatial variable selec-
tion with Ising priors (Goldsmith et al., 2014); GP, Gaussian process approach; STGP, soft-thresholded Gaussian
process approach.

identify only 60 of them. As a result our analysis will be based on the multichannel EEG from
these 60 electrodes.

In accordance with the notation employed earlier, let Yi be the alcoholism status indicator
with Yi = 1 if the ith subject is alcoholic and 0 otherwise. Furthermore, let Xi = {Xi(sj; t) :
sj ∈ R

2, j = 1, . . . , 60, t = 1, . . . 256} be the EEG image data for the ith subject, indexed by a
two-dimensional index accounting for the spatial location on the matching lattice design, sj, and
a one-dimensional index for time, t.

We use a probit model to relate the alcoholism status and the multichannel EEG image:
Yi | Xi, β ∼ Ber(πi) and �−1(πi) =

∑60
j=1

∑256
k=1 Xi(sj, tk)β(sj, tk). The spatially-temporally

varying coefficient function β quantifies the effect of the image on the response over time and
is modelled using the soft-thresholded Gaussian process on the spatial and temporal domain.
We select a 5 × 5 square grid of spatial knots and 64 temporal knots, for a total of 1600
three-dimensional knots. We initially fitted a conditional autoregressive model with a differ-
ent dependence parameter ϑ for spatial and temporal neighbours (Reich et al., 2007), but found
that convergence was slow and that the estimates of both the spatial and the temporal dependence
were similar. Thus, we elected to use the same dependence parameter for all neighbours.

We evaluate the prediction performance of the proposed model using crossvalidation. We
first calculate the posterior predictive probabilities that each test-set response is unity and then
apply the standard receiver operating characteristic curve plot, which evaluates the classification
accuracy over thresholds on the predictive probabilities. Figure 3 shows the receiver operating
characteristic curve using leave-one-out crossvalidation. The results are compared with those of
the lasso, functional principal component analysis and the soft-thresholding Gaussian process
approach with thresholding parameter λ = 0. To facilitate computation for these methods, we thin
the time-points by two, leaving 128 time-points. While no model is uniformly superior, the area
under the curve corresponding to our approach is optimal among the alternatives we considered.

The differences between the models are further examined in the estimated β functions plotted
in Fig. 4, where we ignore the spatial locations of the electrodes and plot them using their
identification number. The lasso solution is nonzero for a single spatiotemporal location, while
the functional principal component analysis and Gaussian process methods lead to nonsparse
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Fig. 3. Receiver operating characteristic curves with the area under the
curve, AUC, for leave-one-out crossvalidation of the EEG data by six
different methods: lasso (black solid, AUC = 0·789), functional prin-
cipal component analysis using the leading eigenvectors that explain
80% (red solid, AUC = 0·775), 90% (red dashes, AUC = 0·789)
or 95% (red dots, AUC = 0·777) of variations, Gaussian process
approach (green solid, AUC = 0·770) and soft-thresholded Gaussian

process approach (blue solid, AUC = 0·818).

and thus uninterpretable β estimates. In contrast, the soft-thresholded Gaussian process-based
estimate is near zero for the vast majority of locations, and isolates a subset of electrodes near
time-point 86 as the most powerful predictors of alcoholism.

Our analysis suggests that EEG measurements at time t = 86, which roughly corresponds
to 0·336 fraction of second, are predictive of the alcoholism status. This observation is further
confirmed by the plot of the posterior probability of nonzero β(sj, t) values in Fig. 5(a). This
implies a delayed reaction to the stimulus, although this finding has to be confirmed with the
investigators. To gain more insight into these findings, Figs. 5(b)–5(d) focus on a particular time
and display the posterior mean and posterior probability of a nonzero signal across the electrode
locations. They indicate that the right occipital/lateral region is the most predictive of alcoholism
status.

7. DISCUSSION

The proposed method suggests future research directions. First, we aim to develop a more
efficient posterior computation algorithm for analysis of voxel-level functional magnetic reso-
nance imaging, fMRI, data, which typically contains 180 000 voxels for each subject. Any fast
and scalable Gaussian processes approximation approach can be potentially applied to the soft-
thresholded Gaussian process. For example, the nearest-neighbour Gaussian process approach
proposed by Datta et al. (2016) can be applied to our model. In addition, it is of great interest to
perform joint analysis of datasets involving multiple imaging modalities, such as fMRI, diffusion
tensor imaging and structural MRI. It is very challenging to model the dependence between the
multiple imaging modalities over space and to select the interactions between multiple-modality
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Fig. 4. Estimated spatial-temporal effects of the EEG image predictors by four different methods: (a) lasso, (b) func-
tional principal component analysis, (c) Gaussian process and (d) soft-thresholded Gaussian process. The Gaussian

process and soft-thresholded Gaussian process estimates are posterior means.

image predictors in scalar-on-image regression. The extension of the soft-thresholded Gaussian
process might solve this problem. The basic idea is to introduce hierarchical latent Gaussian
processes and different types of thresholding parameters for different modalities, leading to a
hierarchical soft-thresholded Gaussian process as the prior model for the effects of interactions.
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Fig. 5. Summary of analysis of the EEG data by the soft-thresholded Gaussian process. Panel (a) plots the posterior
probability of a nonzero β(s, t); each electrode is a line plotted over time t. The remaining panels map either the

posterior probability of a nonzero β(s, t) or the posterior mean of β(s, t) at individual time-points.

APPENDIX

Conditions for theoretical results

ConditionA1. There exist M0 > 0, M1 > 0, N � 1, and some υ0 with d/(2ρ) < υ0 < 1 and ρ = ⌈d/2⌉

such that for all n > N , M0nd � pn � M1n2ρυ0 .

This condition implies that the number of image predictors pn should be of polynomial order in the
sample size. The lower bound indicates that pn needs to be sufficiently large that the posterior distribution
of the spatially varying coefficient function concentrates around the true value.

Condition A2. The true spatially varying coefficient function in model (1) enjoys the piecewise
smoothness, sparsity and continuity properties; in short, β0 ∈ �.
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The next two conditions summarize constraints on the spatial locations and the distribution of the image
predictors.

Condition A3. For the observed spatial locations S = {sj}
pn
j=1 in region B, there exists a set of subregions

{Bj}
pn
j=1 satisfying the following conditions:

A3.1 They form a partition of B, i.e., B =
⋃pn

j=1 Bj with Bj ∩ Bj′ = ∅.
A3.2 For each j = 1, . . . , pn, sj ∈ Bj and V(Bj) � ζ(Bj) < ∞, where V is the Lebesgue measure and

ζ(B) = supt,t′∈B

(

maxk |tk − t′k |
)d

, with t = (t1, . . . , td)
T, and t′ = (t′1, . . . , t′d)

T.
A3.3 There exists a constant 0 < K < V(B) such that maxj ζ(Bj) < 1/(Kpn) as n → ∞.

When B is a hypercube in R
d , e.g., B = [0, 1]d , there exists a set of {Bj}

pn
j=1 that equally partitions B.

Then V(Bj) = ζ(Bj) = p−1
n .

Condition A4. The covariate variables {Xi,1, . . . , Xi,pn}
n
i=1 are independent realizations of a stochastic

process X (s) at spatial locations s1, . . . , spn . And X (s) satisfies the following conditions:

A4.1 E{X (s)} = 0 for all s ∈ B.
A4.2 For all n > 1, let �n = (σj,j′)1�j,j′�pn where σj,j′ = E{X (sj)X (sj′)}. Let ρmin(A) and ρmax(A) be

the smallest eigenvalue and the largest eigenvalue of a matrix A, respectively. Then there exist
cmin and cmax with 0 < cmin � 1 and 0 < cmax < ∞ such that for n > 1, ρmin (�n) > cmin and
ρmax (�n) < cmax.

A4.3 For any ε > 0 and M < ∞, there exists δ > 0 such that for any a1, . . . , apn ∈ R with |aj| < M for
all j, if there exists N such that for all n > N , p−1

∑pn

j=1 |aj| > ε, then

	

{

p−1/2
n

∣

∣

∣

∣

∣

pn
∑

j=1

ajX (sj)

∣

∣

∣

∣

∣

> δ

}

> δ.

Condition A4 includes assumptions on the mean of X (s) and on the range of eigenvalues of the
covariance matrix �n for covariate variables. If the Gaussian process X (s) on [0, 1]d has zero mean and
E{X (sj)X (sj′)} = ρ0 exp(−pn‖sj − sj′‖1) with 0 < ρ0 < 1, for j |= j′ and E{X (sj)

2} = 1, where {sj}
pn
j=1

are chosen as the centres of the equally spaced partitions of B, then Condition A4·2 holds. Furthermore,
Condition A4·3 also holds. Specifically, for any ε > 0, taking δ = c

1/2
minε exp(−ε), for any a1, . . . , apn let

ξ = p−1/2
n

∑pn

j=1 ajX (sj) ∼ N (0, κ2)· By Condition A4·2, κ2 = p−1
n

∑

j,j′ ajσj,j′aj′ � p−1
n

∑pn

j=1 a2
j ρmin(�n) >

cminp−1
n

∑pn

j=1 a2
j . There exists N such that for all n > N , (p−1

n

∑pn

j=1 a2
j )

1/2 � p−1
n

∑pn

j=1 |aj| > ε. Thus, κ2 >

cminε
2. Furthermore,	(|ξ | > δ) = 2�(−κ−1δ) > 2�(−c

−1/2
min ε−1δ) = 2�{− exp(−ε)} > ε exp(−ε) > δ.

To ensure the large-support property, we need the following condition on the kernel function of the
Gaussian process. This condition has also been used previously by Ghosal & Roy (2006).

ConditionA5. For every fixed s ∈ B, the covariance kernelκ(s, ·)has continuous partial derivatives up to
order 2ρ+2. Suppose that κ(s, t) =

∏d

l=1 κl(sl−tl; νl) for any s = (s1, . . . , sd) and t = (t1, . . . , td) ∈ [0, 1]d ,
where κl(·; νl) is a continuous, nowhere zero, symmetric density function on R with parameter νl ∈ R

+

for l = 1, . . . , d.

Additional lemmas

LEMMA A1. The ε-covering number N (ε, �n, ‖ · ‖∞) of �n in the supremum norm satisfies

log N (ε, �n, ‖ · ‖∞) � Cp1/(2ρ)
n ε−d/ρ .

LEMMA A2. Suppose that Condition A3 holds for all sj for j = 1, . . . , pn and that K is the constant in

Condition A3. Let υ > 0 be a constant. For each integer n, let �n be a collection of continuous functions,

where each function γ (s) is differentiable on a set D that is dense in B and sups∈D
|Dτγ | � p‖τ‖1/2d

n + υ
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for ‖τ‖1 � 0. For each function γ ∈ �n and ε > 0, define Vε,γ = {s : |γ (s)| > ε}. For all n > N and

γ ∈ �n,
∑pn

j=1 |γ (sj)| � λ(Vε,γ )Kεpn/2.

LEMMA A3. Suppose that Conditions A1 and A2 hold. For each ε > 0, there exist N and r > 0 such

that for all n > N and for all β ∈ �n such that ‖β − β0‖1 > ε, we have
∑pn

j=1 |β(sj) − β0(sj)| > rpn.

LEMMA A4. For any 0 < ε < 1 and 0 < r < ε2, let

An =

[

n
∑

i=1

p−1/2
n

∣

∣

∣

∣

∣

pn
∑

j=1

Xi,j{β(sj) − β0(sj)}

∣

∣

∣

∣

∣

� nr

]

.

There exist N and D > 0 such that if for all n > N and for all β ∈ �n, 	[p−1/2
n |

∑pn

j=1 X (sj){β(sj) −

β0(sj)}| > ε] > ε, then

	
(

AC
n

)

� ε2/r exp(−Dn), 	

(

∞
⋃

m=1

∞
⋂

n=m

Am

)

= 1.

LEMMA A5. Suppose that αv
0 = (α0,1, . . . , α0,q)

T and σ 2
0 are known. For the hypothesis testing

problem H0 : β = β0 ∈ � versus H1 : β = β1 ∈ �, the testing statistic is �n(β0, β1) =

I
{
∑n

i=1 δi(Yi − ηi,0)/σ0 > 2nυ+1/2
}

, where ηi,m =
∑q

k=1 α0,kWi,k + p−1/2
n

∑pn

j=1 βm(sj)Xi,j for m = 0, 1,

δi = 2I (ηi,1 > ηi,0) − 1 and υ0/2 < υ < 1/2. Then for any r > 0, there exist constants C0, C1,

N and r0 > 0 such that for any β0 and β1 satisfying
∑pn

j=1 |β1(sj) − β0(sj)| > rpn for any n > N,

we have Eβ0{�n(β0, β1)} � C0 exp(−2n2υ), and for any β with ‖β − β1‖∞ < r0/(4c1/2
max), we have

Eβ{1 − �n(β0, β1)} � C0 exp(−C1n).

Proof of Lemma 2

For any λ0 > 0, set α(s) = β0(s) + λ0 for s ∈ R̄1 and α(s) = β0(s) − λ0 for s ∈ R̄−1. Then by
Condition A1, α(s) is smooth over R̄1 ∪ R̄−1, i.e., α(s)I (s ∈ R̄1 ∪ R̄−1) ∈ Cρ(R̄1 ∪ R̄−1). Next, we define
α(s) on another closed subset of B. Since B is compact, ∂Rk for k = −1, 1 is also compact. For any r > 0
and each t ∈ B, define an open ball B(t, r) = {s : ‖t − s‖2 < r}, where ‖ · ‖2 is the Euclidean norm. Note
that ∂Rk ⊆

⋃

t∈∂Rk
B(t, r) for k = −1, 1. Since ∂R1 ∪ ∂R−1 is compact, there exists tl ∈ ∂R1 ∪ ∂R−1,

for 1 � l � L, such that ∂R−1 ⊆
⋃L0

l=1 B(tl , r) and ∂R1 ⊆
⋃L

l=L0+1 B(tl , r).

Let R∗
0(r) = R0−

⋃L

l=1 B(tl , r); then R∗
0 ⊆ R0−∂R1∪∂R−1. Note that R0−∂R1∪∂R−1 is a nonempty

open set, R∗
0(r) is its closed subset and R∗

0(r) will increase as r decreases. There exists an r0, 0 < r0 < 1,

such that R∗
0(r0) |= ∅ and {

⋃L0
l=1 B(tl , r0)} ∩ {

⋃L

l=L0
B(tl , r0)} = ∅. The latter fact is due to R1 ∩ R−1 = ∅.

Since R1∪R−1 is bounded and α ∈ Cρ(R1∪R−1), we have M = max0<‖τ‖1�ρ supt∈R1∪R−1
|Dτα(t)| < ∞.

Take r = min[λ0/{2M (ρ + 1)d + 1}, r0]. Define α(s) = 0 if s ∈ R∗
0(r). Then α(s) is well defined on a

closed set R∗ = R∗
0 ∪ R̄1 ∪ R̄−1, where R∗

0 = R∗
0(r).

Define a function φ(s, t) =
∑

‖τ‖1�ρ Dτα(t)(s − t)τ/τ ! = α(t) +
∑

0<‖τ‖1�ρ Dτα(t)(s − t)τ/τ !. When

t ∈ ∂R1 ∪ ∂R−1 and s ∈ B(t, r0), |φ(s, t)| � |λ0| +

∣

∣

∣

∣

∑

0<‖τ‖1�ρ Dτα(t)(s − t)τ/τ !

∣

∣

∣

∣

� λ0 + 2M (ρ + 1)dr0.

When t ∈ ∂R∗
0(r0) and ‖s − t‖ < r0, |φ(s, t)| � 2M (ρ + 1)dr0.

Define ψ(t) =
∑L

l=1 ψ(t, tl), where ψ(t, tl) = Cl exp{−1/(1−‖t − tl‖2/r)}I (‖t − tl‖2 < r). We choose

Cl for l = 1, . . . , L such that
∑L

l=1

∫

B(tl ,r) ψ(t, tl) dt = 1 and
∑L

l=L0+1

∫

B(tl ,r) ψ(t, tl) dt < 1 − 2M (ρ +

1)dr/λ0. We construct β̃0(s) by extending α(s) from R∗ to the whole domain B. Let

β̃0(s) =

{ ∫

∂R∗ φ(s, t)ψ(t) dt, s ∈ B − R∗,
α(s), s ∈ R∗.
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Note that

∣

∣

∣

∣

∫

∂R∗

φ(s, t)ψ(t) dt

∣

∣

∣

∣

�

L
∑

l=1

∫

∂R∗∩B(tl ,r)

∣

∣φ(s, t)
∣

∣ψ(s, t) dt

�

L
∑

l=1

{

∫

∂R
∗
0∩B(tl ,r)

∣

∣φ(s, t)
∣

∣ψ(s, t) dt +

∫

∂(R1∪R−1)∩B(tl ,r)

∣

∣φ(s, t)
∣

∣ψ(s, t) dt

}

< 2M (ρ + 1)dr(1 − w1) + {λ0 + 2M (ρ + 1)dr}w1 < λ0,

where w1 =
∑L

l=L0+1

∫

B(tl ,r) ψ(t, tl) dt < 1 − 2M (ρ + 1)dr/λ0.

Next, we show that lims→s0 Dτ β̃0(s) = Dτα(s0) for any s0 ∈ ∂R∗ and τ with ‖τ‖1 � ρ.
For any ε with 0 < ε < 1, since Dτα is continuous over R∗, there exists δ1 > 0 such that for all t with

‖t − s0‖ < δ1, we have |Dτα(t) − Dτα(s0)| < ε/2. Take δ < min[ε/{2(ρ + 1)dM }, r, δ1]; then as long as
‖s0 − s‖ < δ, we have

|Dτ β̃0(s) − Dτ α̃(s0)| �

∫

∂R∗

|Dτα(t) − Dτα(s0)|ψ(t) dt +
∑

‖τ ′‖1 � ‖τ‖1,

τ ′ |= τ

∫

∂R∗

|Dτ ′
α(t)|

τ ′!
|(s − t)τ ′

|ψ(t) dt

<
ε

2
+ (ρ + 1)dMδ < ε.

By Condition A2, we have α(s) = λ0 for s ∈ ∂R1, and α(s) = −λ0 for s ∈ ∂R−1.
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