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Scalar f4 field theory for active-particle
phase separation
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Recent theories predict phase separation among orientationally disordered active particles

whose propulsion speed decreases rapidly enough with density. Coarse-grained models of

this process show time-reversal symmetry (detailed balance) to be restored for uniform

states, but broken by gradient terms; hence, detailed-balance violation is strongly coupled to

interfacial phenomena. To explore the subtle generic physics resulting from such coupling, we

here introduce ‘Active Model B’. This is a scalar f4 field theory (or phase-field model) that

minimally violates detailed balance via a leading-order square-gradient term. We find that this

additional term has modest effects on coarsening dynamics, but alters the static phase

diagram by creating a jump in (thermodynamic) pressure across flat interfaces. Both results

are surprising, since interfacial phenomena are always strongly implicated in coarsening

dynamics but are, in detailed-balance systems, irrelevant for phase equilibria.
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M
uch recent research has addressed active materials,
whose constituent particles violate microscopic time-
reversal symmetry (TRS) by continuously converting

fuel into motion. Systems with medium- or long-range orienta-
tional order, such as swarms of rod-like bacteria1, can then be
viewed as active liquid crystals, which are successfully described
by adding minimal active terms to the established continuum
equations for liquid crystal hydrodynamics. The resulting field
theories involve either vector or tensor order parameters
describing the local state of orientational order2,3.

However, an important alternative paradigm addresses
isotropic bulk phases of active (that is, self-propelled) colloidal
particles. These can be natural microorganisms such as bacteria
or algae3,4, or synthetic microswimmers5–9. In many such cases,
the dynamics is approximately described by having a fixed
relaxation time t for the direction of self-propelled motion, but a
non-trivial dependence of the propulsion speed u(r) on the
particle density r. If d ln(u)/d ln(r) o� 1, steady-state phase
separation can be shown to arise through a positive-feedback
mechanism in which a slowing of the particles leads to their
accumulation, and vice versa10,11. In biological systems, such
slowing could arise through various causes such as a coupling of
the quorum-sensing response of bacteria to their motility4,12. For
synthetic swimmers, which are often modelled as ‘active
Brownian particles’ (ABPs) whose swimming direction rotates
by diffusion, an effective decrease in u at high density can result
instead from collisional interactions13,14.

This scenario of active-particle phase separation is now fully
established in simulation studies13–18, and partly confirmed by
experiments19,20. It cannot happen in systems with microscopic
TRS for which steady-state accumulation by slowing is forbidden.
Indeed, TRS of the steady state, also known as ‘the principle
of detailed balance’, ensures that the equilibrium density is
controlled solely by conservative inter-particle forces (via the
Boltzmann distribution) and not by any density-dependent
kinetic coefficients10,21. For example, in an isothermal sus-
pension of Brownian colloidal particles, the diffusivity decreases
strongly at high density, with no effect on the phase diagram.
In such ‘passive’ colloids, phase separation requires attractive
interactions.

For passive colloidal systems, the resulting phase-separation
kinetics is well described by dynamical field theories involving a
conserved scalar order-parameter field f, linearly related to the
local density of colloids. Simplifying the underlying free energy to
a quartic polynomial in f with square-gradient terms, and
assuming local diffusive dynamics, then gives a theory called
‘Model B’. Such scalar f4 field theories (or phase-field models)
have played a pivotal role in understanding phase separation in
systems with TRS22,23. This applies particularly when noise
terms are neglected, creating a mean-field model that accurately
captures the long-time dynamics of phase separation, which is
dominated by the deterministic motion of sharply defined
interfaces. In that limit, Model B becomes the simplest
form of the Cahn–Hilliard equation24, capturing a celebrated
universal result, LBt1/3, for the dependence of the domain size
L on time t25.

Despite the deep distinction between active and passive phase
separation, explicit coarse-graining of the active dynamics at large
scales establishes a partial mapping between the two cases. This
mapping was found first for models of swimming bacteria with
discrete reorientations10, but later extended to ABPs11. At zeroth
order in spatial gradients, which is equivalent to considering only
systems of uniform density, the mapping allows a bulk free energy
to be constructed whose instabilities are those of the active
system10,11. (In what follows, all thermodynamic quantities,
such as pressure and bulk chemical potential, refer to those

calculated within this mapping.) Detailed balance, while absent
microscopically, re-emerges to this order. Recently, however, we
studied the leading-order gradient terms and found these to break
detailed balance once again14. This creates a new class of models
in which the breaking of TRS is intimately linked to the physics of
interfaces.

This feature distinguishes such models from others that
address Cahn–Hilliard-like diffusive instabilities in systems
without detailed balance (see for example, refs 26–30). The
latter encompass many physical processes but are often too
complex for their fundamental physics to be understood. In
elucidating the generic physics of active-particle phase separation,
it is therefore important to focus on the simplest model of the
required structure.

In this article, we present and analyse just such a model.
To create our new model, we add the simplest ‘non-integrable’
(as defined below) gradient term to what is otherwise the standard
field theory for locally diffusive phase separation, namely Model
B22,23. The chosen gradient term breaks detailed balance in the
standard, Passive Model B, which implies that the resulting
Active Model B cannot be derived from any free-energy functional.

Below we report simulations of phase kinetics with Active
Model B, which echo results found previously using a more
elaborate continuum model inspired by ABP simulations14. We
find that the non-integrable term does not greatly alter the
dynamical fate of the system. This is remarkable, since coarsening
dynamics is controlled by interfacial tension, which vanishes
without the gradient terms, and so ought to be sensitive to their
form. It also presents a paradox when confronted by another
new result: Active Model B admits no static domain-wall
solution connecting two bulk regions, whose chemical potential
m0�df0/df with the bulk free-energy density f0 takes the value set
by the common tangent construction. (As recalled below, this
construction holds at coexistence, independent of gradient terms,
for all systems with detailed balance.) We explain the resulting
‘uncommon tangent’ result in terms of an activity-induced
analogue of Laplace pressure that arises even across flat interfaces.
This insight allows us to explain why active coarsening dynamics,
en route to full phase separation, remain similar to that of the
traditional Passive Model B.

Results
Active Model B. In line with the principles outlined above, we
adopt the following dynamics for a conserved scalar order-
parameter field f(r, t) at position r and time t in d dimensions:

_f ¼ �r � J ; ð1Þ

J ¼ �rmþK ; ð2Þ

m ¼ �fþf3 �r2fþ lðrfÞ2 : ð3Þ
All quantities are made dimensionless by using ‘natural units’;

these are u(0)t for length and the orientational relaxation time t
for time, where u(0) is the swim speed of an isolated particle. The
composition variable f is related to the number density r(r, t)
of active particles by a linear transform f¼ (2r� rH�rL)/
(rH�rL), where rH and rL are the densities of high- and low-
density coexisting phases, respectively, as calculated for example
from u(r) by the methods of refs 10,11.

Here equation (1) expresses conservation of f, while
equation (2) states that its mean current J–K is proportional to
the gradient of a non-equilibrium chemical potential m obeying
equation (3) with a constant l. Our nomenclature for m is self-
explanatory: even beyond equilibrium, the chemical potential is
the quantity whose gradient causes the mean current. The vector
K is a Gaussian white noise whose variance we take to be
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constant. This follows standard practice in Passive Model B,
although in reality the variance is density dependent, as calculated
explicitly for active particles in ref. 10. The noise is often
neglected altogether for phase-separation studies31 and we
generally ignore it below.

In equation (3), m¼ m0þ m1 is the sum of bulk and gradient
contributions. The bulk part is chosen as the usual Passive Model B
form, m0¼ �fþf3, so that at zeroth order in a gradient
expansion, our Active Model B shares with its passive counterpart
the bulk free-energy density of a symmetric f4 field theory,
f0¼ �f2/2þf4/4. Note that the phase separation, driven by the
negative linear term in m0, can arise from activity alone with no need
for attractive interactions. The gradient term m1 ¼ mP1 þ mA1 is the
sum of two further terms. The first is an integrable or ‘passive’ piece
mP1 , which can be written as a functional derivative of some free
energy

R
f1ddr, while the second is an active part mA1 , which cannot.

We now make the standard Passive Model B choice,
f1¼ (rf)2/2, so that mP1 ¼ �r2f. In the passive case, choosing
the total free-energy density f¼ f0þ f1, in which f0 is supple-
mented by the simplest square-gradient term f1¼ (rf)2/2,
captures all universal aspects of the underlying physics, while
allowing a vastly simpler analysis of interfacial structure and
dynamics than would a more realistic choice of f. The same
advantages hold for our Active Model B. For the non-integrable
term, we write mA1 ¼ lðrfÞ2; the constant l is a parameter of the
model. This is the simplest addition to m, at second order in
gradients, that cannot be derived from a free-energy or Lyapunov
functional. Note that this property is the definition of ‘non-
integrable’ for the purposes of the current paper.

Explicit coarse-graining of the dynamics of ABPs14,32 points to
a specific structure of the gradient terms in equation (3) and leads
to a gradient term m1¼ �k(f)r2f with k(f)¼ 1þ 2lf that
combines exactly our l term mA1 with an integrable part mP1 that
corresponds to f1¼k(f)(rf)2/2. In the units of Active Model B,
the parameter l, whose sign can be absorbed into that of f if
preferred, is then negative and of order unity for ABPs (see
Supplementary Note 1 where an explicit expression for l is
given). The same is true for run-and-tumble bacteria whose
dynamics are almost equivalent11. In both cases, l is set primarily
by the shape of the function u(r), parameterizing the decay with
density of the mean swimming speed. Meanwhile, dimensioned
parameters such as u(0) and t serve to set conversion factors
between Active Model B units and laboratory ones.

Replacement of the derived coarse-grained form of f1 with one
having constant k¼ 1 is standard practice for Passive Model B,
just as one replaces a complicated coarse-grained f0 with the
standard form f0¼ �f2/2þf4/4. (This is how Passive Model B
comes to describe a wide range of microscopic models.) In Active
Model B, we make exactly the same simplifications for all the
integrable terms, while capturing new physics with the minimal,
leading-order TRS-breaking term mA1 ¼ lðrfÞ2. Furthermore, we
show in Supplementary Note 1 that all possible leading-order
current contributions, up to third order in r and second order in
f, are given by combining some choice of free-energy density f
with this choice of mA1 .

Active Model B’s non-integrable term somewhat resembles the
one arising in the celebrated Kardar–Parisi–Zhang equation for
nonlinear interfacial diffusion33, which was constructed on
similar minimalist grounds, and likewise supported by direct
contact with microscopic arguments for specific examples.

Dynamics of Active Model B. We have explored the dynamics of
Active Model B numerically for both symmetric (

R
fddr¼ 0) and

asymmetric (
R
fddra0) quenches in which a uniform initial

state, with slight noise, is evolved by equations (1–3). Our find-
ings are in keeping with a previous study, which showed that the
non-integrability leads to at most quantitative but not qualitative
changes in coarsening dynamics14. This applies here also, bearing
in mind that the l term also breaks the f-�f symmetry of a
symmetric quench. (In two dimensions this results in a droplet
rather than a bicontinuous domain structure, resembling a
slightly asymmetric quench.) Figure 1 shows snapshots of
evolving domain structures for l¼ 0, � 1, � 2, with mean
initial order-parameter fields corresponding to a symmetric
quench (with average density f0�/f(r,0)S¼ 0) and a dilute
quench (f0¼ � 0.4). The case of a dense quench (f0¼ þ 0.4) is
not very different except for a slightly slower coarsening rate. As
noted above, results for positive l can be generated by reversing
the sign of f. Corresponding data for |l|r0.1 is not shown, but is
very close to the l¼ 0 case.

Figure 2 shows the time evolution of the characteristic domain
size L(t)Bta for various l and f0 in two and three dimensions.
Here we see some evidence for a downward drift with increasing
|l| of the exponent a from the well-known value a¼ 1/3 of
Passive Model B31. To distinguish a real asymptotic shift in a
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Figure 1 | Transient domain structures. Snapshots of evolving phase separation in two dimensions at time t¼ 2,000 and l¼0, � 1, � 2 for (a) symmetric

(f0¼0) and (b) asymmetric (f0¼ �0.4) quenches. The plots shown have dimensions 256� 256.
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from a l-influenced crossover would require an exhaustive
computational study34, which we leave for future work. Note,
however, that a similar downward exponent shift was reported in
ref. 14, but found there to be reproducible in an integrable Cahn–
Hilliard model, albeit with a non-polynomial f0, for which the
asymptotic 1/3 power is assured. This suggests a crossover
scenario in which all gradient terms, whether active or passive,
gradually merge into an effective interfacial tension that drives
t1/3 coarsening, once L is very much larger than the interfacial
width. Further arguments for this outcome are given below and in
Supplementary Notes 2 and 3. While the case for a standard
asymptotic t1/3 scaling law is compelling, our next result shows
that the l term in Active Model B is certainly not representable
solely by a shift in interfacial tension, since this would have no
effect on phase equilibria.

Failure of the common tangent construction. In Passive Model
B (l¼ 0), bulk phase separation is characterized by two static
coexisting phases of infinite extent that are separated by a planar
interface. These bulk phases have densities f-� 1 and f-1 for
|z|-N, respectively, where z is a coordinate perpendicular to the
interface. The densities of the coexisting phases are set by the
common tangent construction on f0(f), as is fully explained below,
and imply m0¼ 0 for |z|-N. Furthermore, the constant densities
for |z|-N imply m1¼ 0 and therefore m¼ 0 in both bulk phases.

At first sight one expects the common tangent construction still
to be possible for finite l, because the active contribution to the
non-equilibrium chemical potential, mA1 , vanishes in both bulk
phases, and the construction itself cares only about the bulk free-
energy density f0(f) and not about interfacial tension. This view,
however, is mistaken because the construction implicitly assumes
integrability, that is, the existence of a free-energy structure
everywhere, including any gradient terms. Indeed, we prove here
that no similar solution exists at m¼ 0 for Active Model B, which
means that the common tangent construction fails whenever la0.

Instead, for m0¼ 0 we find only solutions describing spatially
periodic (lamellar) phases. At first sight, these findings suggest

that microphase separation, rather than coexisting bulk phases,
might be the generic fate of Active Model B. This is, for example,
what happens when Passive Model B is coupled to a somewhat
different form of activity, namely logistic population growth15. It
is also hinted at by various experiments in which active particles
form clusters whose size seemingly remains finite at long
times9,35,36. Such an outcome would, however, be paradoxical
given our numerical finding of bulk demixing rather than
microphase separation in Active Model B. To resolve this
paradox, we show below that a planar interface does exist
between fully phase-separated states, but their bulk densities are
not given by a common tangent construction on f0.

To prove this, we look for a fully phase-separated state with a
planar interface and take advantage of its two translational
invariances to reduce the problem to one spatial dimension. For
the required static solution of Active Model B, this means f¼
f(z) where z is a coordinate normal to the interface. To describe
static bulk phase separation, the current in equation (2) (with
K¼ 0), specifically its z component Jz, must vanish. (We assume a
uniform current is excluded by boundary conditions at infinity.)
This requires m to be constant. Let us first try to find its value by
following the usual equilibrium reasoning. Constant m requires
equality of the bulk chemical potential terms m0¼ df0/df and also
of the bulk thermodynamic pressures P¼fm0–f0 in the two
phases. (Recall that in non-equilibrium systems there is no
general relation between the thermodynamic pressure thus
defined and the mechanical pressure; we return to this point
below.) Together, these conditions imply that a common tangent
can be drawn to the curve f0(f) at the two coexisting densities.
Since f0 is symmetric, this implies m-0 for |z|-N, so that by
this argument the non-equilibrium chemical potential m, which
differs from m0 only in interfacial regions, is zero everywhere. The
static density profile f(z) is thus given by

�fþf3 �f00 þ lðf0Þ2 ¼ 0 : ð4Þ

By renaming z and f according to (z-t, f-x), this equation
for the density profile f(z) can be mapped onto the equation of
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Figure 2 | Time evolution of the characteristic domain size. Numerical results (points with error bars) and least-squares fits (straight lines) for the

domain length scale L(t) for different l and average density f0 in both two and three dimensions: (a) d¼ 2, f0¼0; (b) d¼ 2, f0¼ �0.4; (c) d¼ 3, f0¼0;

(d) d¼ 3, f0¼ �0.4. Notice the apparent downward drift with increasing |l| of the exponent a from the well-known value a¼ 1/3 of Passive Model B.

The error bars denote the s.d. of the numerical data from the corresponding fit curves. The definition of L(t) is given in the Methods section.
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motion for the trajectory x(t) of a Newtonian particle of unit mass
in a symmetric inverted potential U(x)¼ � f0(x) under the
influence of a velocity-dependent force l _x2 that is invariant under
time reversal. The resulting equation of motion is

€x ¼ �U 0ðxÞþ l _x2 : ð5Þ
This makes calculating the density profile f(z) the same

problem as finding the trajectory x(t) of a Newtonian particle in
the potential U(x) with a velocity-dependent force arising from
the l term. In the passive case (l¼ 0), this Newton mapping is a
standard procedure (see ref. 37 and references therein), whose
details we recall in the Methods section. In brief, the domain-wall
solution is described by a particle that leaves one of the two
maxima in U(x) with infinitesimal velocity, travels across the
valley in the inverted potential, and then comes to rest at the
other maximum.

Given this picture, let us consider the effect of la0, that is,
Active Model B. This creates a velocity-dependent force in
equation (5), l _x2, which has the same sign throughout the
trajectory. Because of this, if the Newtonian particle starts very
near the top of the first maximum of U(x), that is, if one starts
from a large bulk domain close to the bulk density f1¼±1, the
particle either does not make the top of the other maximum or it
overshoots. The former gives periodic oscillations between the
initial coordinate x1 and the turning point x2, which physically
describe microphase separation, while the latter gives an
unphysical blowup. In the case of microphase separation, the
Newtonian particle retraces its steps from the turning point x2,
which is finitely below the second peak, and regains exactly the
kinetic energy it lost to the velocity-dependent force during the
first half of the cycle. So it arrives exactly at x1 where it started,
comes virtually to rest there, creating another large domain of f1,
before turning round and starting the cycle again. During this
periodic motion, the particle only briefly visits the even peaks,
creating a micro-domain of the f2 phase whose width is of order
of the interfacial width. To make the domain of the second phase
any wider, the velocity-dependent term has to be made
exponentially small (that is, these domains have a width that
varies as � log|l|). Only this will allow the particle to closely
approach the top of the other maximum.

If the Newtonian particle, on the other hand, starts very near
the top of the second maximum of U(x), that is, if one starts with
a very large domain of the second phase, and l has the sign that
prevents the particle from overshooting when it starts from the
first maximum, the l term gives energy to the particle so that it
now overshoots. These arguments confirm that for la0 and
m¼ 0, static bulk phase separation is impossible.

Three resolutions can be envisaged. Either there ceases to be a
static solution of Active Model B, or the solutions describing
microphase separation become stable or m is non-zero and the
common tangent construction fails. We show next that the last of
these resolutions applies.

The uncommon tangent construction. We now generalize the
discussion from the previous section to allow a non-zero non-
equilibrium chemical potential ma0 obeying equation (3). We
show that for Active Model B, a solution with a planar interface
between two static bulk coexisting phases does after all exist, but
is shifted to a non-zero m¼ mb, so that the coexisting densities are
not f¼±1. We also derive the resulting non-equilibrium che-
mical potential at bulk phase coexistence mb as a function of the
parameter l.

For ma0 equation (4) for the density profile f(z) becomes

�fþf3 �f00 þ lðf0Þ2 ¼ m ð6Þ
and the corresponding Newtonian equation is equation (5) with

the now asymmetric potential U(x)¼mx� f0(x). We define a
critical value of |m|¼ mc such that, whenever |m|omc, the potential
U(x) has two maxima at positions xð1Þmax and xð2Þmax, with xð1Þmaxoxð2Þmax,
and a minimum between them. When ma0 the heights of the two
maxima of U(x) are different, and the sign of m decides which
maximum is lower. At |m|¼mc the minimum and the lower
maximum merge into a saddle point, and as |m| increases beyond
the critical value mc, there remains only a single maximum. (We
find mc¼ 3� 1/2–3� 3/2E0.38.) Notice that mc can also be defined
as the maximum slope with which two distinct parallel tangents
can be drawn on f0(f) (see Fig. 3). This maximum slope arises
when one such tangent passes through the inflection point of
f0(f), also known as the spinodal point.

Owing to these properties of the potential U(x)¼ mx� f0(x),
for a Newtonian particle with the equation of motion given in
equation (5), there are three different types of motion possible:
(i) a periodic oscillatory motion between two turning points x1
and x2 with xð1Þmaxox1ox2oxð2Þmax describing microphase separa-
tion, (ii) the non-periodic limiting case x1 ¼ xð1Þmax and x2 ¼ xð2Þmax

that corresponds to bulk phase separation and (iii) divergent
solutions corresponding to unphysical density profiles. Since
there is only one maximum for |m|Zmc, microphase separation
and bulk phase separation are possible only for |m|omc. For
|m|Zmc, on the other hand, no physical solution for the static
density profile f(z) exists.

In the following, we consider the situation |m|omc and treat the
appearance of bulk phase separation as a special limiting case of
microphase separation. The density distribution f(z) for bulk
phase separation is a special solution of equation (6) or
equivalently equation (5) with U(x)¼mx� f0(x) for an appro-
priate value m¼mb of the non-equilibrium chemical potential,
which depends on the parameter l. Equation (5) with U(x)¼
mx� f0(x) is an autonomous nonlinear second-order ordinary
differential equation (ODE) that cannot be solved analytically.
The function mb(l), however, can be derived from this equation
even without solving it. The procedure is detailed in the Methods
section and gives an analytic result of 4/15 for the slope of mb(l)
at l¼ 0 as well as an implicit function for mb(l), which is plotted
in Fig. 4.
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With a much higher computational expense, the function mb(l)
can also be determined from simulations that solve the dynamical
equation (1) of Active Model B by evolving until a steady-state
interfacial profile is reached. The results of such simulations are
also shown in Fig. 4. The function mb(l) is zero for l¼ 0,
increases monotonically for l40, and asymptotically approaches
the limiting critical value mb(N)¼mc for l-N. Using the
function mb(l), the coexisting densities f1¼f(�N) and
f2¼f(N) are given by the smallest and largest solution of
U0(f)¼ 0.

The above arguments demonstrate that solutions describing
static bulk phase separation exist for all values of l, but are shifted
to m¼mba0 and involve coexisting densities fa±1. Other
static solutions describing, for example, lamellar microphase
separation, also exist but are generally not the result of
numerically solving equation (1). Such states are generically
unstable to the same Ostwald ripening mechanism as in the
passive case (see Methods section); this is confirmed in
Supplementary Note 3 for the case of droplets in higher
dimensions.

Bulk phase coexistence in Active Model B is thus governed by
an ‘uncommon tangent’ construction in which tangents to f0(f)
are parallel, but displaced from each other (see Fig. 3). Defining as
usual the bulk thermodynamic pressure by P¼fm0� f0, the
l-induced vertical displacement is identified as a pressure
difference DPl between the coexisting bulk phases. The common
tangent construction equates both m0 and P in these phases; its
failure is thus attributable to a l-induced jump in thermodynamic
pressure across the planar interface that separates them. This is a
very interesting, and somewhat unexpected, consequence of
activity and the resulting breakdown of detailed balance in the
interfacial regions.

Active pressure competes with Laplace pressure. The active
pressure jump DPl has no direct counterpart in passive systems.
However, for a passive droplet with radius R the interfacial ten-
sion g (where g ¼

ffiffiffi
8

p
=3 in Passive Model B34) creates a Laplace

pressure jump DPL¼ (d� 1)g/R across the interface. In
Supplementary Note 2, we establish that to leading order in
large R (that is, small |l|), a static m¼ 0 solution exists for a
droplet of radius R� ¼ 5=

ffiffiffi
8

p� �
ðd� 1Þ= jl j at which the active

and Laplace pressures are equal and opposite; common tangency
is thereby restored. This can happen only for one of the two
possible dispositions of internal and external phases, set by the

sign of l. This result shows that the activity-induced pressure
jump DPl has, within our mapping from active onto passive
phase separation, the same ‘thermodynamic’ status as the Laplace
pressure.

The existence of these static droplet solutions raises once again
the possibility of microphase separation. For instance, one could
envisage a state of droplets, each with radius R*, embedded in a
continuous phase at zero m. If stable, such a phase might explain
various experiments showing formation of small finite clusters in
bacteria and artificial active colloidal particles9,35,36. (On
dimensional grounds, R�’ ut.) However, this would contradict
the numerics reported above. We resolve this by noting that
even the single-droplet solution is unstable, as shown in
Supplementary Note 2. The instability appears to be
fundamentally no different from the classical one of a finite
fluid droplet in unstable equilibrium with its vapour (see
Supplementary Fig. 1). Indeed, in Passive Model B a stationary
value of the droplet radius R0 exists for m40, but this is an
unstable fixed point separating shrinking from growing droplet
states. Moreover, as shown quantitatively in Supplementary Note
3, the active pressure DPl offsets the relation between m and the
droplet size, but cannot halt the coarsening of an assembly of
droplets by Ostwald ripening, in which small ones evaporate and
large ones grow (see Supplementary Fig. 2). This reasoning again
points firmly towards the usual diffusive growth law LBt1/3,
which holds for Ostwald-like dynamics in both droplet and
bicontinuous morphologies25, and explains in large part the
remarkable similarity between active and passive phase
separation. It also explains why, in the active case, microphase
separation is not the generic end point of the dynamics; via
Ostwald ripening, coarsening proceeds indefinitely. The
deviations from a¼ 1/3 found numerically are, in this view,
almost certainly transient or crossover effects.

Mechanical versus thermodynamic pressure. In future work we
will generalize this study to allow for coupling of an active scalar
field to a momentum-conserving solvent flow. There we will
present an active counterpart of ‘Model H’, which describes such
coupling for passive systems22,23. This raises an intriguing issue
concerning the nature of the pressure, which we have defined in
this paper as P¼fm0� f to coincide with the standard bulk
thermodynamic definition. In passive systems, this is of course
equal to the mechanical pressure defined either as a force per unit
area on a boundary, or via the diagonal part of the stress tensor.
Accordingly for instance, the Laplace pressure jump across a
curved interface can be measured directly by a mechanical probe
in a passive system.

However, the equivalence of mechanical and thermodynamic
pressure in such a system stems ultimately from the fact that the
same inter-particle forces determine both mechanics and
thermodynamics. In contrast, for active particles, even the
integrable part of the free energy has no simple link to inter-
particle forces: instead it encodes the effects of density on self-
propulsion through the mapping of ref. 10. This means that the
quantity P found via that mapping cannot generally be viewed as
an actual mechanical pressure. This is unsurprising for a system
far from equilibrium; indeed, mechanical and thermodynamic
pressures differ even in systems quite close to equilibrium, such as
flowing fluids. The active pressure jump across a flat interface
could not therefore be measured with a pressure gauge, but is still
a pressure jump in the thermodynamic sense that P¼fm� f has
different values in the two bulk phases. For a curved interface,
exactly the same remarks apply to the Laplace pressure
contribution, whenever the phase separation itself, and hence
the resulting interfacial tension, is activity-driven. Indeed, the
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Figure 4 | Non-equilibrium chemical potential at bulk phase coexistence.

Analytical result (solid line) and numerical results obtained from

simulations using Active Model B (points with error bars that denote the

estimated discretization error) for mb(l). For l-N, the function mb(l)
asymptotically tends to mc¼ 3� 1/2–3� 3/2 (dashed line). Only positive l is

shown, since mb(l) has the symmetry property mb(� l)¼ � mb(l).
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activity-driven interfacial tension is itself not detectable with a
tensiometer; its meaning stems from its ability to drive a diffusive
flux of active particles via the non-equilibrium chemical potential
appearing in equation (2).

When coupling the active system to a momentum-conserving
solvent via the Navier–Stokes equation, it is the mechanical
pressure that enters, not the thermodynamic one. As we will
address in detail elsewhere, in practice this means that an Active
Model H must combine the diffusive dynamics of Active Model B
developed here with a conceptually separate account of the
mechanical forces created by self-propulsion.

That said, if we restrict attention to the class of systems where
bulk phase separation is caused solely by inter-particle attractions,
so that the only effect of weak activity is to create a non-zero
value of l, even the mechanical pressure in the two bulk phases is
then unequal. This is because the gradient terms controlled by l
vanish in bulk: therefore, ordinary equilibrium thermodynamics
holds locally, and mechanical and thermodynamic pressure must
once again coincide in each bulk phase. The activity represented
by l plays a direct role only near the interface, where it creates the
uncommon tangent condition. This obliges the system to develop
a real, physically measurable mechanical pressure jump between
phases, equal to our active pressure. Note that our active pressure
is not just the mechanical pressure that a confined active gas
exerts on a container wall38 and that results directly from the
increased speed and surface accumulation of active particles
compared with passive ones. In contrast to the pressure of an
active gas, our pressure jump across the interface between a dilute
and a dense phase of active particles is not proportional to the
density and its origin is more subtle.

Discussion
We have argued that, when no solvent is present so that dynamics
is diffusive, the physics of active-particle phase separation is fully
captured by Active Model B. This combines a f4 bulk free energy
with passive and active gradient terms in a minimal fashion. It
represents an intriguing class of problems involving diffusive
phase separation in systems where detailed-balance violations are

created primarily by interfaces. The minimalist structure of
Active Model B allows not only for efficient simulation, but also
for several analytic results to be obtained. These explain why such
detailed-balance violations have paradoxically small effects on
coarsening dynamics, for which interfacial physics is usually
dominant, but large ones on the phase diagram, for which
such physics is, at first sight, irrelevant. Somewhat similar
equations have been used recently to study crystal growth at finite
undercooling29,30 and state selection in shear-banding rheology39.
In these cases, it is known that non-integrable gradient terms
can destroy the common tangent construction for phase
coexistence30,39. In Active Model B the physics that replaces
common tangency is both simple and remarkable: the equality of
chemical potential between phases is maintained, but activity
creates a direct analogue of the thermodynamic Laplace pressure
operating across the interface between bulk phases which, unlike
its equilibrium counterpart, remains finite even for a planar
interface.

Our work sheds direct light on how the non-integrable term in
Active Model B leads to new and unintuitive physical predictions
for active-particle phase separation. The role played by this active
term can best be understood in terms of the well-established bulk
mapping between active and passive phase separation, as
extended here to include an interfacial tension plus an interfacial
pressure jump that has no passive counterpart. Our results are all
the more powerful and surprising, because we have so far found
no convincing route to obtain them by qualitative reasoning
applied directly to the motion of active particles. It is very difficult
for such reasoning to capture the unusual structure of the
problem, which involves restoration of TRS (absent microscopi-
cally) at zeroth order in spatial gradients and its loss again at
higher order. A fully microscopic interpretation of our results
may therefore remain elusive.

Methods
Numerical analysis. To solve Active Model B numerically, a finite-difference
scheme with periodic boundary conditions was applied. The initial spatial dis-
tribution of the order-parameter field f was random for the numerical calculations
whose results are shown in Figs 1 and 2 and a step function (with f¼ � 1 for
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64rzr192 and f¼ 1 otherwise) for the results shown in Fig. 4. Both for simu-
lations in two and three spatial dimensions, the time step size was Dt¼ 0.001, while
the spatial step size was Dz¼ 0.5 for two dimensions and Dz¼ 1 for three
dimensions. The lattice size was mainly 256� 256 for two dimensions with the
exception 256� 50 for the numerical calculations corresponding to Fig. 4 and
128� 128� 128 for three dimensions. Finally, the domain length scale L(t) in
Fig. 2 was calculated from the inverse of the first moment of the spherically
averaged structure factor S(k,t)34:

LðtÞ ¼ 2p

R
Sðk; tÞdkR
kSðk; tÞdk : ð7Þ

The spherically averaged structure factor is defined as

Sðk; tÞ ¼ hfðk; tÞfð� k; tÞik ; ð8Þ

where k¼ ||k|| is the modulus of the wave vector k, f(k, t) is the spatial Fourier
transform of the order-parameter field f(r, t) and �h ik denotes an average over a
shell in k space at fixed k.

Newton mapping. Here we summarize the Newton mapping for the passive case
where l¼ 0 (see Fig. 5 for a sketch). The inverted potential U(x)¼ � f0(x) has two
maxima of equal height at x¼±1 with a minimum in between. For x o� 1 and
x41 it falls off to minus infinity. Notice that the starting position x1¼ x(�N) of
the Newtonian particle with the equation of motion (5) corresponds to the density
f1¼f(�N) of the first bulk phase. The Newtonian particle can start from rest
from one of three qualitatively different domains: (i)� 1ox1o1,
(ii) x1A{� 1,1} and (iii) x1o� 1 or x141. In case (i) the Newtonian particle
oscillates indefinitely between its starting position x1 and a turning point at
position � x1. For the density distribution f(z) this describes a lamellar state
corresponding to microphase separation. (This state could be viewed in one
dimension as a series of droplets each of exactly equal size and separation.) Such a
state is unstable (in any dimension) to small density variations causing large
droplets to grow at the expense of small ones. This is the Ostwald process discussed
further in Supplementary Note 3.

On the other hand, in the more particular case (ii) the Newtonian particle starts
from rest infinitesimally below one peak of the potential U(x), where it hovers a
long time before starting to move, shoots up the other side and then comes to rest
infinitesimally below the other peak. This can be done in either direction and gives
the familiar domain-wall solution that describes bulk phase separation. Finally, in
case (iii) the Newtonian particle accelerates indefinitely towards x¼ �N or
x¼N. This corresponds to a divergent and unphysical solution of equation (4),
which is anyway ruled out by the boundary conditions. Imposing f(z)¼±1 at
|z|-N selects the bulk interfacial profile as the only stable, non-uniform, static
solution of Passive Model B.

Determination of the coexistence condition. To find the function mb(l), we first
reduce the order of equation (5) with U(x)¼ mx� f0(x). The substitution nðxÞ ¼
_xðtÞ transforms it into a non-autonomous nonlinear first-order ODE. A further
non-invertible substitution w(x)¼ n2(x) then leads to the linear first-order ODE

w0ðxÞ ¼ � 2U 0ðxÞþ 2lwðxÞ : ð9Þ
This equation describes the squared velocity w(x) of a Newtonian particle, with

the equation of motion (5), as a function of the particle’s position x. Equation (9)
is much simpler than the ODE (5) with U(x)¼ mx� f0(x) and can be solved
analytically as

wðxÞ ¼ w0e
2lðx� x0Þ � 1

8l4
ðglðxÞ� glðx0Þe2lðx� x0ÞÞ ð10Þ

with the initial value w0¼w(x0) at the initial position x0¼ x(0), and the polynomial
gl(x)¼ 6þ 12lxþ 4l2(3x2� 1)þ 8l3(� m� xþ x3).

With the help of equation (10) the condition for microphase separation can be
written as follows: there are two positions x1 and x2 with xð1Þmaxox1ox2oxð2Þmax

so that w(x1)¼w(x2)¼ 0. This condition is equivalent to hl(x1)¼ hl(x2) with
hl(x)¼ gl(x)e� 2lx. Bulk phase separation as a limiting case of microphase
separation appears for x1 ¼ xð1Þmax and x2 ¼ xð2Þmax. The condition for bulk phase
separation can thus be written as

hlðxð1ÞmaxÞ ¼ hlðxð2ÞmaxÞ : ð11Þ

Notice that the last term in gl(x) and therefore also in hl(x) vanishes for
x 2 fxð1Þmax; x

ð2Þ
maxg. The condition (11) depends only on m, which we denote as mb in

the case of bulk phase separation, and l. This means that bulk phase separation
requires a relation between mb and l described by a function mb(l).

For jl j� 1 (which also implies jmbj� 1; notice that mb¼ 0 for l¼ 0) the
function mb(l) can be found from the implicit equation (11) by expanding the latter
in both l and mb. The resulting perturbative solution of equation (11) is given by

mbðlÞ ¼
4
15

lþOðl3Þ : ð12Þ

Also the property mb(� l)¼ �mb(l) follows from equation (11), so that there are
no terms of even order in equation (12).
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