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Section 1

Introduction

This report presents a scalar/vector potential formulation
for viscous compressible unsteady flows around complex geometries
such as complete aircraft configurations.

Several scalar/vector potential methods are available in the
literature for incompressible flows: these methods are reviewed
in this Section (with particular emphasis on that proposed by
this author). The extension of scalar/vector potential method to
compressible flows is presented in Section 4, For the sake of
clarity and completeness some classical results on fluid and
thermodynamics are presented in Section 2 and 3. It should be
emphasized that shock waves and turbulence are not addressed in
this report.

1.1. Scalar/Vector Potential Methods for Incompressible Viscous
Flows

A review of the state of the art of scalar/vector potential
methods for viscous flows is presented here. (This author is not
aware of any method for compressible flows, and thus this review
is 1limited to incompressible flows.) In order to discuss the
advantages of the approach, the primitive variable approach is
also briefly reviewed. Incompressible turbulent viscous flows
are governed by the continuity and Navier—-Stokes equations.
Excellent reviews of the state—of-the—art are given for instance
in Refs. 1 and 2 and are summarized here. For the sake of
conciseness, boundary layer formulations are not included in this
review.

There are two basic approaches to the solution of these
equations: solution in the primitive or physical variables (i.e.,
velocity and pressure) and solution in the scalar-vector
potential variables (also called the vorticity-potential method,
a three dimensional extension of the two—dimensional vorticity
stream—function method). The relative advantages of the two
approaches are considered here.

In the primitive—variable formulation there are three basic
approaches to the numerical solution of the problem: finite-—
difference, finite—element and nodal methods (see Refs. 1-3).
The major advantage of working with the primitive variables is
the simplicity of the equations and the fact that the unknowns
have physical meaning. However such formulation has considerable
drawbacks. The use of the Navier—Stokes equations requires the



solution in the whole physical space, which may be prohibitive in
terms of computer costs. Another difficulty connected with the
primitive-variable formulation for incompresssible viscous flows
is the lack of evolution equation for the pressure: the method of
the artificial compressibility introduced to remedy this problem
is not fully satisfactory (see Ref. 1). However such a problem
does not exist for compressible problems, which are the main
objective of this report.

Next consider the scalar/vector potential approach. In two
dimensions the advantages of the vorticity/stream—function method
over the primitive variable approach are well known. One
advantage is that the continuity equation is automatically
satisfied., However, a more important advantage, often ignored in
literature is that the solution for the equation for vorticity is
limited to the computional region of the boundary-layer/wake for
attached flow, while the equation for the stream function is a
Poisson's equation which can be transformed into an integral
equation (also limited to the rotational region). The
implications is that the exact solution of the Navier-Stokes
equations can be obtained by studying only the rotational region
(i.e., boundary layer and wake for attached flows or boundary
layer plus separated flow), In other words, the
vorticity/stream—function method eliminates all the disadvantages
of the formulation in the primitive variables.

To the contrary of a commonly held idea, the
vorticity/stream—function approach may be extended to three—
dimensional flows. Such a generalization is referred to as the
vorticity/potential method or the scalar/vector potential method.
The velocity vector V is given by the general theorem

V = grad ¢ + curl A 1.1.1

where ¢p is a scalar potential (harmonic for incompressible flows)
and A is a vector potential. The method is classical: although
Lighthill (Refs, 4 and 5) is the standard referemce for this
approach, according to Lamb (Ref. 6), who gives a theoretical -
outline of the formulation, this concept was first introduced by
Stokes (Ref. 7) and later refined by Helmholtz (Ref. 8). The
decomposition_}s not unique and depends upon the boundary
conditions on A, This yields the possibility of different
'versions’ of the same basic methodology: this issue has been
examined very carefully in Ref. 9, which includes an excellent
review of the theoretical works on this issue, The theoretical
foundation for their work is to be found in the work by Smirnov
(Ref. 10). Important in this respect is also the works of
Hiraski and llellums (Refs. 11 and 12), and Ladyzhenskaya (Ref.
13).

The formulation involves solving for the velocity in terms
of the vorticity using the law of Biot and Savart. The vorticity
is obtained by analyzing the vorticity transport equation, and



determining the vorticity produced at the surface due to the n?-
slip condition. Since the advent of the computer era, this
formulation has been used by several investigators (Refs. 14-24)
including the author (Refs. 24-26). Particularly good results
have been obtained by Wu and his collaborators (Refs. 13, 21 and

23).

1,2. A Scalar/Vector Potential Method for Incompressible Flows

As mentioned above, all the scalar/vector potential methods
are based on the classical decomposition of a vector field into
an irrotational component and a rotational (solenoidal) one. The
highlights of this version of the method introduced by this
author and his collaborators in Refs. 25 and 26 are presented
here.

The problem is governed by the averaged Navier—Stokes
equations for incompressible flows,

Dv 1 1 3
—~—==—-—-grad p+ - u Vy 1.2.1
Dt P [

and the continuity equation

divv=0 1.2.2
The boundary conditions are

v =g 1.2.3

where ;B is the velocity of a point on the surface of the body
and (for a frame of reference fixed with the undisturbed fluid)

v=20 1.2.4
at infinity.
The method is based on the classical decomposition theorem
v = grad ¢ + curl A 1.2.5

where ¢ is a scalar potential and A is a vector potential,
related to the vorticity Z by the relationship

VA = -3 1.2.6

The vorticity is given by the third vortex theorem (obtained
by taking the curl of Eq. 1.2.1)

DZ . . B
vy = (g grad)v + % v'Z 1.2.7

The equation for the potential, obtained by combining Egs.
1.2.2 and 1.2.5, is

1.3



Ve =0 1.2.8

Equations 1.2.5 to 1.2.7 are fully equivalent to Eqs. 1.2.1 and
1.2.2 and are much easier to solve., First Eq. 1.2.6 yields

A= fﬂ Zav 1.2.9
v 4nr

whereas Eq. 1.2.8 can be solved using integral equation methods
(also known as panel methods). The numerical formulation is
given in Ref., 26,

Finally a brief assessment of the proposed method is given
in the following. The advantage of the vorticity/potential
method over the primitive-~variable approach has already been
discussed above (elimination of problem due to lack of pressure-
evolution equation, etc.). Here it is important to emphasize
again that (1) the method is fully equivalent to the solution of
the Navier—Stokes equation and (2) that the solution of Egs.
1.2.7 and 1.2.9 requires a (finite difference or finite element)
grid limited to the nonzero-vorticity region (i.e., boundary
layer and wake region for attached flows). However, the main
advantage of the formulation presented above is the fact that it
may be extended to three—~dimensional flows. Such an extension is
presented in Section 4 of this report. As mentioned above, this
is believed to be the first time that such an extension has been
presented.

1.4



Section 2

Foundation of Continuum Mechanics

For the sake of clarity and completeness the derivation of
the equation of continuum mechanics from fundamental principles
is outlined in this section. This derivation is classical and is
similar to the one presented in Serrin. Application to fluids is
given in Section 3.

2.1. Basic Definitions

Consider a Cartesian frame of reference in a three-
dimensional Euclidean space. Let:

x=f(&%,¢t) 2.1.1

be the (vector) function relating the Cartesian coordinates xY,
(at time t) of a material point identified by convected
curvilinear coordinates &%, The coordinates §a could for example
coincide with the values of ¥ at an arbitrary initial time t=O0.
The function f is assumed to have an inverse

£E® = F9(x,t) 2.1.2

so that there exists a one—~to-one correspondence between the
point X at time t and its curvilinear coordinates. It is assumed
that the flow is smooth: in particular surfaces of sharp
variations in the velocity, i.e., wakes and shock waves, are not
included in the formulation (see Serrinm, pp. 226-228).

An arbitrary quantity g, function of X and t, is also a
function of &% and t. The following symbols will be used

% . % | 2.1.3
9t at X = const
IE = 9_3 2.1.4

Dt 3t Ig“zconst
Dg/Dt is called the material (or substantial) derivative of g.
Note, that by using the chain rule:

D, ’)

£ _.% ,7%>2>x 2.1.5

Dt 9t ¢ 3x; ot §°‘: const

or
Dg 9 .
— e . 2.1-6
Dt ot v-grad g
where v is the velocity of the material point
i oxt Dx*
ve =D 2.1.7

ot €°(=('0n$t t

2.1



2.2. Fundamental Conservation Principles

The motion of the continuum is assumed to be governed by the
following fundamental principles:

Conservation of Mass

f{fﬂ pdV = 0 2.2.1
v

. "
Conservation of Momentum

im pv AV = m pfdv + # tde 2.2.2
at Va Vi (2

Conservation of Angular Momentum

:—,t f[f pxxv dV = /f/ pxxfdV + #ix{ de 2.2.3
vl“\ V_q 13

Conservation of Energy (or the first law of thermodynamics,
Ref. 2, p. 177)

ﬁﬂf ple + 216.\7)dv =fﬁ pf.v dv + # t.v de - #a ¢ 2.2.4

Vﬂ VM G 6

In Equations 2.2.1, 2.2.2, 2.2.3 and 2.2.4 the volume V,is
an arbitrary material volume (i.e., by definition a volume which
moves with the continuum particles), Vv is the velocity of the
fluid particles defined by Eq. 2.1.7, p is the density (mass per
unit volume), f is the force per unit mass acting on the fluid at
a point of the volume Vy, t is the stress vector (or force per
unit surface area) acting on the continuum at a point of the
surface & surrounding Vy and h is the heat flux supplied by the
volune Vy.

It may be worth noting that, in postulating the above
principles as the governing equations of the motion of the
continuum, it is implicity assumed that we are dealing with
simple nonreacting species;, multiphase flows, and/or chemical
reactions are not included in the formulation. Also
electromagnetic phenomena are not considered in this report.

A considerable amount of results can be obtained as a
consequence of the above set of principles. The rest of this
section is devoted to the derivation of such results.

2.3. Jacobian of Transformation

Note that, for any arbitrary funtion g,

ﬂ]v gdV = jf/v g T dg'ag*ag’ 2.3.1
2 A

where Vo is the inage of g‘in the & space, J is the

2.2



Jacobian of the transformation

J = det (25—) O 2.3.2
Dg‘
For future reference, note that:
21 =7J div v 2.3.3
Dt

In order to prove thxg,note that if Xa is the cofactor of
3x°/3E% so that

Xt L .
2 — X = 78" 2.3.4
® aé‘ J J
then,
E -_-z .D_(a“ ) Ak X~
Dt <= DEJES ¢+ g 2E< ¢

B M Lot Ui S PP 2.3.5

2.4. Time Derivative of Integrals

Note that if Vy is a volume moving with the fluid, then the

boundaries of its image Vo in the &® space are time
independent. Therefore, using Eqs. 2.3.1 and 2.3.3 one obtains:

d -

Z(x’ﬁj gdV =J'U (gf + gdiv ¥)av 2.4.1
For Vi V

it” gdV = Uf —(gJ)d§ dg*ae’

Vi
= % _Dl 1 2 3
Uj (DCI + g2lyag’ag’at
VJ
( Dg . - 1.2 .3
= ||} 2+ gaiv 9rrartag’ar 2.4.2
v Dt
Also, note that ‘
Dg =0 PRICED!
st gdiv ¥ 5%'+ g 2.4.3
hence, applying the divergence theorenm
JU div wav = ﬁ w. fde 2.4.4
IV 5
(where n is the outer normal to the surface ) one obtains
d U d "
gdVv = JU V+®ovnds 2.4.5
at
m

2.3



which states tnat the rate of change of the volume integral is
due to the rate of change of the integrand over a fixed volume
plus the flux over the boundary surface.

2.5, Continuity Equation

Consider the principle of conservation of mass, Eq. 2.2.1,
Using Eq. 2.4.2, Eq. 2.2.1 yields (noting that Vy is an arbitrary
volume)

D -
L+ pdivy=o0 2.5.1
Dt

or, according to Eq. 2.4.3,

ap

+ div (p¥) = 0 2.5.2
at v

Also combining Eq. 2.3.3 and 2.5.1
D
—(pJ) =0 .5.
Dt(p ) 2.5.3
which can pbe obtained directly trom Eq. 2.2.1, using Eq. 2.3.1
and 2.4.2 and noting tnat the volume Vy is arbitrary. Equation
2.5.3 yieids:
pJ = constant = poJ, (following particle) 2.5.4
Equations 2.5.1, 2.5.2, 2.5.3, and 2.5.4 are four different forms

of the continuity equation. Note that, using Eq. 2.5.3 one
obtains, for any function g,

L] = [ 2o
For, Vm Vi
1 R
v. 9 Dt

2.6. Stress Tensor
Consider the principle of conservation of momentum, Eq.
2.2.2. applied to an infinitesimal volume Va. Let & be a typical
length of the volume VM so that
v,= oceh) 2.6.1

whereas

6= 0(£*) 2.6.2

2.4
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iLetting ¢ go to zero, one obtains, in the limit

#Eds =0 2.6.3
g

Assunme that Vy coincides with an infinitesimal Cauchy's
tetrahedron, i.e., a tetrahedron with the origin at an arbitrary
point X and three faces parallel to _the coordxnatc planes (i.e.,
having outward unit normals 11, -12. -3.) and the fourth face
in the first octant with normal © (see Figure 2.1). In this case
Eq. 2.6.3 yields

t(A)d6 + t(-15)d6y + t(-i3)dss + T(~i;)d6s = 0 2.6.4
or setting t(- 1-) = —t(1k) = tL and noting that de = n,ds ,
(where ny are the components of the unit normal n) one obtains
t = tiny + tana + tin, 2.6.5
i.e.,
=§anjk 2.6.6

where T;y is the kth component of Ej=f(§j)-

The above result can be stated as follows: the forces acting
on three coordinate surfaces through a2 given point defines a
tensor (stress tensor), with components T-k: the force acting on
any surface normal to a given direction 0 is dependent upon these
quantities through Eq. 2.6.6, which, in tensor notations, may be
rewritten as

=n.T 2.6.17

2.7. Cauchy'’s Equation of Motion

Note that, according to Eq. 2.6.6, and using the divergence
theorem

th = #

Z Jr 1de

IH div T aV 2.7.1
v

where div T is a vector defined as

div T =ZaaT“ i 2.7.2

Combining the conservation of momentum, Eq. 2.2.2 with Eq. 2.7.1
and using Eq. 2.5.5 one obtains

Arae

fﬂﬂ dev:J‘J‘ "—‘“’ ﬂ (pf + div T)aV 2.7.3

VM V

2.5
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Figure 2.1

Cauchy tetrahedron
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or, noting that Vy is arbitrary,
Dv s -
— = + div T 2.7.4
th pf div
7
which is called Cauchy’s equation of motion (Serri;. p. 135) or
dynamic equilibrium equation.

2.8. Symmetry of Stress Tensor

Note, that according to Eq 2.6.6,

5@5 Xxt ds =j§ #xx(T kBj 1k)ds- ZJ] (xxTJklk)d\l
G v

f/fﬂ X—T klkdv +>_': ffj 1jxik Tjk av
Je

Ve
= f'{J X xdiv T dv + ZL ﬂ]Tjk;ijk dv 2.8.1
J/
VM vn

Combining the conservation of angular momentum Eq. 2.2.3,
with Eqs 2.5.5 and 2.8.1 one obtains (noting that vxDr/Dt = vxv =

0)
L%Uj pxXxv dV = fjf p;—t(ix\'r)dv = fjj "’-“S_z av
/ﬂ pxxf av + jﬂxxdw T av +Z /f/'rjk TxiV 2.8.2

or,using the equxlxbr1um equatxon. Eq. 2. 7 4. and noting that V
1s arbitrary

‘ jk i ‘lk 2.8.3
).k

or

Tjk = Tkj 2.8.4

which shows that the stress temsor is symmetric.

2.9. Energy Transfer Bquation and Virtual Work Principle

Consider the equilibrium equation, Eq. 2.7.4. Taking the dot
product of both sides of the equation with ¥V and integrating over
an arbitrary volume V one obtains:

jf p— vdv= f/ pf.vav + j/ div T-vdv 2.9.1
Vi V.,

Note that, using Eqs. 2.6.6, 2.7.2, and 2.8.4,

2.7



[ ase T 3 = AT, v -
/ﬂvndw T.% av -% j\j/{a—;gjk_lk.v av

=z; méié'_f vy 4V =

’(J
30’
-Z 7U
z kakn de - [J’ TJk(ax + -()—x—) dv
M
=#tvd5‘ﬁ T:D av 2.9.2
2 Ym
where D is a symmetric tensor with component
Ry oy
D., = =(— + —1) 2.9.3
1 2 ax'J' I %,

=7
and is called the deformation tensor (Serrin, p. 139) or strain-
rate tensor (see also section 2.B).

The last integral in Eq. 2.9.2 is called dissipation term
(Ref.27, p. 138), and is the work per unit time done by the
internal stresses.

Combuung Eqs. 2.9.1 and 2.9.2 yxelds if Vﬁis a material

. S
i

ﬂ 5 2.9.4

which states that the time derxvat1ve of the kinetic energy of a
material volume is equal to the work per unit time of the volume
and surface forces diminished by dissipation term.

The above result is called energy transfer equation or
mechanical energy equation and relates 'mechanical energy terms’
to the dissipation term.

It may be worth noting that if Eq. 2.7.4 multiplied
(internal product) by 617 instead of v one obtains the virtual-
work equation (which here is not assumed as an independent
principle)

fﬂ "_ 8u av = ,W pf.5u dv + #,E. Sa de —jf/i:sﬁ v 2.9.5
VY G Vi

where P
BUjk = ——Suk 2.9.6

2.8



2.10. Thermodynamic Energv Equation

Comparing the principle of conservation of energy, Eq. 2.2.4
with the energy transfer equation, Eq. 2.9.4, one obtains:

Uf pedV = f// // T:D aV - #Qde 2.10.1

which relates thermodynam1c energy terms to the d1ss1patxon term.
For this reason Eq. 2.10.1 is here called the integral
thermodynamic energy equation.

It may be worth noting that Eq. 2.10.1 is often referred to
as the first principle of thermodynamics. Ilere we assune Egq.
2.2.4 (conservation of energy, as a fundamental principle. Egq.
2.10.1 is a consequence of L[q. 2.2.4, not a fundamental
principle.

2.11. Heat Flux Vector

Note that in Eq.2 10.1 if € is a typical size of the volume
V and £ goes to zero then the surface integral is of order ¢
whereas the other terms are of order @’ Hence if V., is an
infinitesimal Cauchy’s tetrahedron (see Figure 2.1) one obtaxns
(see Section 2.6) that:

Q1) =Q(iy)ny +Q(iz)n, +Q(1;)n;, 2.11.1

or
Q=4g.n 2.11.2

where q is a vector with components:
qp = Q(ip) 2.11.3

equal to the heat flux per unit area through the surface normal
to i
k-

2.12. Thermodynamic Energy Equation in Differential Form

Combining Eq. 2.11.3 with the thermodynamic energy equation
Eq. 2.10.1, applying divergence theorem and noting that the
volume is arbitrary yields:

p—% = T:D - div g 2.12.1
which will be called here the differential form of the

thermodynamic energy equation. 'According to Truesdell this
equation should be attributed to C. Newman’ (Serrin’, p.177)

2.9



2.A. A Convenient Expression for the Acceleration

Consider
Tk Wy, X 2.A.1
N v
Dt at j j ax o
Note that
Vi ov; ovy av
Z vJ =Zvj_1 +dovylr - it} 2.A.2
ox; j Yoxp j xj  9xy
and set -
{ =curl ¥ 2.A.3
so that
Dv ov 1 - =
V=97, -grad v> - ¥xl 2.A4
Dt at 3
and Cauchy’s law of motion may be written as
ov + : 2 - 3 f+ldiv T
7 S8rad vo - vxl = f+ ? vT 2.A.5

2.B. Kinematics of Deformation

The relationship between the vorticity and the angular
velocity of a fluid element surrounding a point X, is introduced
in this section,

Consider the Taylor series of the velocity field about any
arbitrary fixed point X, in the flow field

Vi(R) = vi(3e) + 2 —er +0(c?) 2.0.1
k Oxx
where
T=3X-1X 2.B.2

Equation 2.B, 1, may be rewritten as

v = ;o + ;o{-). + ;’.‘-5 2.B.3

where the tensor gradv has been decomposed into its symmetric and
antisymmetric parts

grad¥ = D +80 2.B.4
where D is the (symmetric) deformation tensor with components
1(éw’ ALY 2.B.5
Djx = 3(3 ax: 5.
xp axJ

2.10



(see Eq. 2.9.3), whereas 4 is the (antisymmetric) rotation
tensor with components

ﬂ 1 an avk
; = (e = ——— 2.B.6
kJ z(BXk an)
Note that ) _
r-ﬂ=%flkjrkij = WwxXxr 2.B.7
where - \ _ -
W = (n:;,fl;;,nxz) = icutl v = %Z 2.B.8
Also
#.D0 =2 Dyiryis
b kjTklj
1
= —grad D 2.B.9
2
where
D =J§erjkrk = 5.D.3 2.B.10

is called strain rate quadric. Hence Eq. 2.B.3 may be rewritten
as
vV = Vo + woxr + Vp 2.B.11

with

VD=

(ST )

grad D 2.B.12

which indicates that the motion of a fluid element around a point
Xo can be decomposed in translation (with velocity Vo = ¥(X0)),
rotation (with angular velocity @ equal to half the vorticity,
curl v, at Xo) and deformation (with deformation velocity equal
to grad D/2).

2.11






Section 3

Entropy and the Second Law of Thermodynamics

The fundamental equations of continuum mechanics were
derived in Section 2, from the fundamental principles of
conservation of mass, momentum, angular momentum and energy in
the form of Eqs. 2.2.1, 2,2.2, 2.2.3, and 2.2.4. In this section
the formulation is carried further by assuming that the continuum
be a fluid: the equation of state for & fluid is postulated along
with the second law of thermodynamics. The formulation is again
classical and the presentation given here is quite similar to the
one of Serrin ( pp. 172~178 and 230-241),

3.1. Starting Equations

Starting from the basic principles of conservation the
following equations were derived in Section 2:

Continuity equation (Eq. 2.5.1)

D -

5% +pdivi=0 3.1.1
Cauchy'’s equation of motion (Eq. 2.7.4.)

Dv - -

pif = pf+ aiv T 3.1.2

Symmetry of stress tensor (Eq. 2.8.4)

Tjk = Tkj 3.1.3
Thernodynamic energy equation (Eq. 2.12.1)
pgg = T:D - div q 3.1.4
Dt
where the deformation tensor, D, is defined by (Eq. 2.9.3)

av av,
i = SX s 3.1.5
2 axj axk
In Eq. 3.1.2, the force per unit mass fis prescribed. It is
apparent that if T and § were known, then Eqs. 3.1.1, 3.1,2 and
3.1.4, with appropriate initial conditions and boundary
conditions, could be used to obtain p, v and e. In other words,
the above equations cannot be used to solve the problem unless
suitable constitutive relations (relating T and q to other
quanitities) are available. The objective of this section is to
show that the second law of thermodynamics (introduced in Section
3.4) puts a constraint (Eq. 3.4.4) on the general nature of the
constitutive equations. The actual constitutive equations are
introduced in Section 3.B.

3.1



3.2, Eguation of State

Our continuum is assumed to be a fluid, i.e., a single—phase
system which is described by two state variables, for instance
internal energy ¢ and density p introduced in Section 2. All
other variables are assumed to be functions of the first two.
Any two variables however may be chosen as the main variables: ‘A
particularly elegant formulation of this relation is that of
Gibbs’' (Serrin, p.172), which is followed here: the two main
state variables are chosen to be the entropy (which is assumed
as a primitive concept, like the energy), and the specific volume,
t=1/p. The fundamental state equation is some definite
relationship giving the internal energy as a function of entropy
and specific volume, of the type

e = e(S, 1) 3.2.1

In addition, the (thermodynamic) pressure and the temperature
are defined by

de

—_ 3.2.2
aT

de
35
(it is assumed, of course, that p and T are greater than zero).
Since e and p=1/t have already been introduced, Eq. 3.2.1 could
be thought of as the (implicit) definition of entropy. Note also
that the pressure is introduced as a thermodynamic quantity (see

also Eq. 3.3.4) rather than a mechanical one (i.e., force per
unit surface).

T 3.2.3

The differential of the internal enmergy is
de = TdS - pdr 3.2.4

and, accordingly, the material time derivative is given by
De DS Dt

s = T - 3.2.5
Dt Dt _ Ppt

3.3. Entropy Evolution Equation

Combining the thermodynamic energy equation, Eq. 3.1.4,
with Eq. 3.2.5 one obtains

pTBE - ppBE = T:D - div g 3.3.1
Dt Dt
Note that tv=1/p and therefore, according to Eq. 3.1.1
pE: = - l Bﬂ = div v 3.3.2
Dt p Dt



Combining Eq. 3.3.1 and Eq. 3.3.2 yields
DS - - _
pTBt— = pdiv v + T:D - div q 3.3.3

Equation 3.3.2 may be rewritten in simpler form if we introduce
the tensor, V, defined by

V="T+pI 3.3.4

vhere p is the thermodymmic pressure (Eq. 3.2.2) and I is the
unit tensor. Using Eq. 3.3.4, Eq. 3.3.3 may be written as

S
— = - di a 3.3.5
pT— $ iv q
where
$ = V:D = T:D + pdiv ¥ 3.3.6

Equation 3.3.5 will be referred to as the entropy—-evolution
equation., It should be noted that Eq. 3.3.5 was obtained from
the total energy equation (Eq. 3.1.4), by replacing the internal
energy, e, with its expression obtained from the fundamental
state equation. Therefore Eq. 3.3.5 is fully equivalent to the
principle of conservation of energy.

3.4. Second Law of Thermodynamics

The main postulate introduced in this section is the second
law of thermodynamics:

d 1. .
*ﬁf pSAV > - # = q.n de 3.4.1
dt VH e T

where V,is a fluid-volume (i.e., by definition, a volume moving
with the fluid particles, see Section 2.2).
Equation 3.4.1, may be rewritten in a much more interesting

form, by noting that, using the entropy-evolution equation, Eg.
3.3.5 (see also Eq. 2.5.5), one obtains:

i ll[ v = []] o2
dt Ve Via Dt
=[// & - Laiv pav
wT T
[}

h 1
=/// (g - —q-grad T)dVv -# —q.n d6 3.4.2
Vo T T ¢ T

Hence the second law of thermodynamics, Eq. 3.4.1, may be
rewritten as:
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_JI @ 1 _
= ( T —4-grad T)av > O 3.4.3

T
M

or, since Vkis arbitrary,

1
45 = :i.fi-gtad T>O 3.4.4

(this equation will be used to discuss the constitutive
relations, Section 4.A).

It is instructive to rewrite the total energy equation, Eq.
3.1.4, as (see Eg. 3.3.6)

pEg + pdivv= -divg+ & 3.4.5
Dt

which shows on the right hand-side of the dissipative terms,
whereas the terms on the left hand' side are nondissipative. Both
terms are equal to pT DS/Dt (Eq. 3.3.5), which indicates that the
entropy is the 'link’ between dissipative and nondissipative
terms.

3.5. Thermodynamic Pressure and Mechanical Pressure

It is worth noting that Eq. 3.3.4 may be rewritten as

T=-pIl +V 3.5.1

where p is still the thermodynamic quantity originally defined by
Eq. 3.2.2. However it is apparent that in Eq. 3.5.1, p assumes
the role of mechanical pressure (force per unit area). This is
quite clearly indicated by the fact that, in Eq. 3.4.4, & (see
Eq. 3.3.6) is affected by V, not by T. Therefore the second law -
of thermodynamics itself suggests that T be given in the form of
Eq. 3.5.1 (with V responsible for the dissipative effects), i.e.,
that the nondissipative part of T be given by -pI, where p is the
thermodynamic pressure (in particular for perfect fluids, T—-pI)
This point, clarified further in Section43, is somewhat obscure
in the literature where Eq. 3.5.1 is introduced as an independent
assumption,

3.6. Enthalpy

Note that, using Eq. 3.5.1, Cauchy's equation of motion may
be rewritten as

Dv - 1 1 -
— = f -~ —grad p + ~div V 3.6.1
Dt P P
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In discussing Bermnoullian theorems, it is convenient to express
(1/p) grad p in terms of a conservative (i.e., exact
differential) and nonconservative part: note that according to
Eq. 3.2.4

1
;dp = ¢dp = d(vp) - pdr
= d(e + Tp) — TdS 3.6.2
and hence
1
—grad p = grad h — Tgrad S 3.6.3
p
where the enthalpy h is defined as
h=ce+2 3.6.4
p
Accordingly Eq. 3.6.1 may be rewritten as
Dv - 1 -
— = f - grad h + Tgrad S + —div V 3.6.5
Dt p
Note that for barotropic flows P
1 d
—grad p = grad e 3.6.6
p p

Here Eq. 3.6.3 has the same 'role’ that Eq. 3.6.6 has for
barotropic—flow formulations (for isentropic flows Eq. 3.6.3 and
Eq. 3.6.6 coincide since, in this case dh=dp/p).

3.A Dependence of Internal Energy on Specific Volume

A classical result on du/dt for T = constant is derived here
for use in Section 4. A, Equation 3.2.4 may be rewritten as

=1l £
as Tde +Tdr 3.A.1
or, using T and t as fundamental variables
1 de 1 de P
dS = — —dT + = — dt + =d 3.A.2
T 3T Taz & T A
Hence,
2.l 3.A.3
8T T aT e
AT LA 3.A.4
ot T ot P e

where it is understood that the partial differention with respect
to T is performed with t = const (and viceversa). Therefore
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= = —(= 2
( +T)

2
1 ;) ]
= - _(a_e + p)+i( S 3 3.A.5
T3d7T T aTox aT
or
] ]
—e. = T_p| -p 3.A.6
ot T oT T
Equation 3.A.6 indicates that
de
—| =0 3.A.7
daT T |

whenever, for T = constant, p is a linear function of T.
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Section 4

Vector and Scalar Potentials

The fundamental equations governing the motion of a fluid
were derived in Sections 2 and 3. In this section the
fundamental equations will be rewritten to obtain a formulation
in terms of vector and scalar potentials.

4.1. Starting Equations

The following equations are used in this section:

Continuity equation (Eq. 3.1.1)

-%f + pdivv =20 4.1.1
Cauchy'’s equilibrium equation (Eq. 3.6.5)
Dv - 1, =
T f — grad h + Tgrad S + ;dxv v 4.1.2
Entropy evolution equation (Eq. 3.3.1)
DS . -
PT—=& - div § 4.1.3
Also the expression for the acceleration given by Eq. 2.A.4
22 = ii + lgrad v - vx g 4.1.4
Dt it 2

will be used.

It is understood that the equations of state, Eqs. 3.2.1,
3.2.2 and 3.2.3 are available. It is also assumed that some
constitutive relations (which give T and q in terms of other
quantities) are available. Such relationships are discussed in
Section 4A. The reason the introduction of the comstitutive
relations is postponed is to emphasize the generality of the
vector/scalar-potential formulation, i.e., that the derivation of

such a formulation is independent of the specific expressions
used for T and q.

4.2. Decomposition Theorem

A fundamental theorem of vector field theory states that any
vector field, in particular, in our case, the velocity field, can
be decomposed as (see Serrin, p. 164-165)

v = grad$ + curl A 4.2.1
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where ¢ is called the scalar potential, whereas A satisfies the
relation

divA=0 4.2.2
and is called the vector potential.

Note that the decompositiorn is not unique since any
solenoidal irrotational field can be expressed either as grad ¢
or as curl A.

Taking the curl of Eq. 4.1.1 and using Eq. 4.2.1 and the
vector formula

curl(curl a) = grad div a — V*a 4.2.3
one obtains that A must satisfy the Poisson equation

VA =-Z 4.2.4
i
Because of its relationship with the vorticity, curl A will be
called vortical velocity

V, = curl A 4.2.5

Eq. 4.2.1 will be rewritten as
vV =gradd + v, 4.2.6

In addition to the equation for A',an equation for¢ and one
for & are required. These are derived in Sections 4.4 and 4.5
respectively. Before doing that, however, an extension of
Bernoulli’s theorem is needed. 1ln potential barotropic flows the
equation for the potential is obtained by replacing Dp/Dt in the
continuity equation with its expression obtained from Bernoulli's
theorem. For viscous rotational flows such a theorem does not
exist. Therefore a generalization of Bernoulli’s theorem 1is
presented in Section 4.3.

4.3. Generalized Bernoullian Theorem

The main innovation introduced in this work is the
introduction of a generalized Bernoullian theorem. There exist
several so-called Bernoullian theorems (Serrin, p. 153). The
classical one is for unsteady irrotational inviscid barotropic
(i.e., p=p(p)) flow in a conservative field (i.e., f=—gradf),
where f. is the potential energy).

ad 1_ dp
H=c—+ -v.v + — = t .3.
3t 2v v f > Q = H(t) 4.3.1
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Less known is the one for steady but rotational inviscid
barotropic flow (Serrin, p. 153)

1 -
H=-VVv 4+ f—i + @ = constant overa Lamb surface 4.3.2
2 p(p)

(a Lanb surface is a surface defined by a network of vortex lines
and streamlines).

It is apparent that Eq. 4.3.2 is considerably different from
the classical Bernoulli’s theorem, Eq. 4.3.1, in that H is not
constant in the whole field, but is a function of the location.
Such a function is constant on the Lamb surfaces, or if one
prefers, grad H is normal to the Lamb surfaces., The objective of
this subsection is to obtain an expression similar to Eq. 4.3.2
for viscous compressible flows, i.e.,, an expression which reduces
to Eq. 4.3.2 for inviscid, barotropic steady flows. It is
assumed in the rest of this work that f is conmservative so that

f=-grad p 4.3.3

In order to accomplish this, consider Cauchy’s equation of
motion, Eq. 4.1.2, which, using Eq. 4.1.4 and 4.3.3, may be
rewritten as

oV
— + —grad v* -3xZ-=
ot
1,. -
—grad @ - grad h + Tgrad S + ;dxv \Y 4.3.4

or, using Eq. 4.2.6,

d(a¢+1' + h+ Q) =
gra 3t 2v-v =

avv

- a—+vx§+ Tgrad S + —d1v v 4.3.5

It is apparent that the r:.ght-hand side of Eq. 4.35 is
irrotational (for instance by taking the curl of both sides).

Hence the integral of minus the (dissipative) terms on the right
hand side,

1
f(x)j(———vxt; Tgrad S - -‘;div V) dx 4.3.6

is path independent (suitable branch surfaces are introduced for

multiply connected regions), i.e., fp is only a function of X and
is such that

ov

1
grad £ = gt_‘f-vx; Tgrad S- ~div v 4.3.7
Combining Eqs. 4.3.5 and 4.3.7 yields
-qf-+1vv+h+.n.*D:H°(t) 4.3.8
at 2
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where Ho is a function of time (for instance, if the fluid at x

= - js in uniform translation with speed U_, n, = U2 /2 + h +
fpe Where hy, and fp are the values of h and fp at x, = -=),

Equation 4.3.8 may be written as:

H= %ﬂi + é v? + h +L = constant (over fp-surface) 4.3.9
t

(where a fD—surface is a surface defined by fD = constant).

Equation 4.39 is the generalized Bernoullian theorem. It is
apparent that it reduces to Eq. 4.3.2 for steady, isentropic
(S=constant), inviscid (V = 0) flows, since, in this case,

H=H, - £y, 4.3.10

is constant on the Lamb surfaces (for, vx Zis by definition
normal to Lamb surfaces).

It is understood that Eq. 4.3.8 is a '"formal’ (rather than a
substantial) generalization of Bernoulli’s theorem. In other
words, no claim is made here apout the discovery of a new
physical concept. More appropriately, Eq. 4.3.6 should be
thought of as a convenient formal expression that can be used to
obtain a differential equation for the scalar potential (see
Section 4.4), The determination of the function fD(i) is a
problenm as complicated as the original omne, unless the hypotheses
under which Eq. 4.3.2 (isentropic inviscid steady flow) is valid
are satisfied. However, it will be seen in Section 4.4 that, at
least for steady state, the evaluation of fD is not necessary
( see Eq. 4.4.10). Therefore, at least in that sense, the above
generalization is a powerful tool because it allows for the
derivation of the differential equation for the scalar potential
¢. Also, it may be worth noting that, integrating along a
streamline. .

fp (%) =] (%V_b"— T grad S -1 div V).di 4.3.11
P

4.4. Differential Equation for Potential

Consider the continuity equation, Eq. 4.1.1, which may be
rewritten as

- 1 Dp
divv=-—-— 4.4.1
p Dt
Combining with Eqs. 4.2.1 and 4.2.2 yields
1 Dp
vl = -_ _ .4.2
$ 5 Bt 4.4

Assuming h and S as fundamental variables of state, one obtains
19 Dh d DS

V' =-__f-| —+ 20 2 4.4.3

p dnl pt  3sl, bt
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Note that (see Eq. 4.C.3)
19 K 1
L pl - : 4.4.4
p onlg aplg .2
where a is the usual isentropic speed of sound.

Introducing for notational convenience

1 d
-1 4.4.5
Eq. 4.4.3 may be rewritten as
vip = 1Db DS 4.4.6
a2Dt Dt

The enthalpy h can be obtained from the generalized
Bernoullian theorem, Eq. 4.3.8, to yield

1D 3 1 DS
\7.’4; = ___(_+-vv+f+n)+B_
22Dt 3t 2 Dt
1 3  _ _ DS
- 1P st +m +B D 4.4.7
a2bDt at € o Dt

(where ¢ indicates that v is kept constant while applying the
operator D/Dt), or
2¢ -
1 D¢ bv, o, pn, _DS

v = + Ve + 2+ 25)4 B 4.4.8

a® D’ Dt Dt Dt Dt

where in D’ /Dt? the term v in the first substantial derivative
is kept constant during the second material differentiation.

Note that, according to Eq. 4.3.7

Df, af, _ af, Wy

— = P+ V. .
bt ot & v &red = '5"+v'6_

which indicates that, as mentioned above, in steady state the
explicit evaluation of f is not necessary.

Tv. grad S-.f-v divV 4.4.9

4.5. Vorticity Dynamics Equation

In order to complete the formulation an equation for Z is
needed. Taking the curl of Eq. 4.3.4 yields

av - = 1. =
curl—a—t - curl(vxZ) = grad T x grad S + cnrl(devV ) 4.5.1

Noting that
curl(id x b) =-a.grad b + B»grad 2 + adiv b - bdiv a 4.5.2

one obtains

4.5



curl(v xZ) =-V.grad% + T.grad v + vdivZ -3 div ¥

1 Dp

=-'w7-3rad” +C.grad v + - == g 4.5.3
g +5.g = Dt
and, combining with Eq. 4.5.1 ana noting that
av @ - 2%
l—=— = == 5.4
cur 3t 9t curlyv 3¢ 4
one obtains
> 1
ez . - — — Dp =
—— + Vv.grad - .grad v---- %
Jt & 5 5.8 p Dt
1. -
= grad T x grad S + curl(=div V) 4.5.5
P
or
D Z z 1 1 1 -
—(E) = 5'-grad V + -grad T x grad S + —curl(-div V) 4.5.6
Dt p P p P p

{

which is an extension to unsteadyz_\,riscous fluid of Vazsonyi
vorticity dynamics equation (Serrin” ', p, 189).

4.6. Summary of results

The results can be summarized as follows. The fundamental
unknowns are the potential ¢, the vorticity %, and the entropy S.
The corresponding equations are:

Potential (Eq. 4.42.8)

D Dv Df D DS

.1 ¢ v

VZ(P = — (.._E.;_+ ;,__X+___E+_._)+ b— 4.6.1
a Dt Dt bt Ot Ct

D 2 z 1 1 1 -
—— (%)= 5.gr:ad V+-grad T x grad S + —curl(-div V) 4.6.2
Dt p° p P P P

Entropy (Eq. 4.1.3)
DS _ -
pTl-)-t' = $ - div q 4.6.3

In addition the enthalpy is given by the gemneralized
Bernoullian theorem (Eq. 4.3.8)

¢ 1 _ .
-5;+-2-v.v+h+ﬂ.+fD—Ho 4.6.4

whereas the velocity is given by Eq. 4.2.1
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v = grad¢ + curl A 4.6.5
where A satisfies Eq. 4.2.4

i ‘;Z 4.6.6

The above equations have more unknowns than equations and
require equations of state giving p,p and T as functions of h and
S (such as those for an ideal gas considered in Section 4.A) and
constitutive relations for the heat flux vector, @ and the
viscous stress temnsor, V, such as the Fourier law for heat
conduction and the Cauchy-Toisson law of viscosity (which yields
the well known MNavier—Stokes equations of motion) which are
discussed in Section 4.L,

The above equationswith appropriate state equations and
constitutive equations may be solved approximately as discussed
in Section 5 for both attached and separated flows. The possible
advantages of the scalar/vector potential formulation over the
primitive — variable solution of Navier-Stokes equation are also
discussed in Section 3,

It may be noted that for inviscid (V = 0), adiabatic (3 = 0)
flows, in the absence of external forces (2= 0), the above
equations reduce to

2 Df _ =
D & Dv,
stb =}-—_‘_¢:+__E+ V'__& ) 4.6.7
a® th Dt pe
D 3 % S |
——(§)= Elgrad v+ — grad T x grad § 4.6.8
Lt p p p
DS
— =90
Dt 4.6.9

Note that integrating Eq. 4.3.6 along a streamline (using dx =
(v/1¥1)ds = v d8, where s is the arclength along a streamline ~
and de= ds/|¥])

avv 0S
fy = | (===.¥ + T——) 49 4.6.10
it ot
since
DS s
— ==+ V. ds=0 4.6.11
Dt ot | ET®

In particular, for steady state, noting that (see Eq. 4.3.7)
Gograd fD = 0,
2

; 1 _
\72?5 = —— v.grad Z 4.6.12
2 3
a
- z Z -1
v-grad(§)= %.grad v+ - grad T x grad § 4.6.13
p
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EV.5+h = constant on Lamb surfaces 4.6,.14

S = constant along streamlines 4.6.15

4.A. Equation of State for an Ideal Gas

In this section the necessary equations of state for an
ideal gas are presented. An ideal gas is a gas which satisfies
the equation

- =pt = IRT 4.A.1

where R is a constant.

This implies (see LEq. 3.A.6)

de
'a-— =0 4.A.2
it
and therefore
T
e = e(T) =f ¢, (T) dT 4.A.3
where
o = e 4.A.4
v dT T
In addition (see Eq., 3.6.4 and 4.A.1)
T
h = LW(T) = T JALS
1(T) f ¢, (T) d 4.4
where
c = cv + R 4-A.6

s = %3 + g dz 4.A.7
or
dT
S-S, = va = * R lnt 4.A.8

Equation 4.A.5 can be solved for T to yield T = T(h). This can be
used in Eq. 4.A.8 to yield =t = t(S,h) and finally Eq. 4.A.1 can
be used to obtain p = pRT = p(S,h) which are the three desired
equations of state relating temperature, density and pressure to
the fundamental state variables S and h.

In particular, for ideal gases with constant coefficients,
i.e.,
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¢, = constant 4.A.9
and hence (see Eq. 4.A.6)

¢, = constant 4.A.10
Egqs. 4.A.3 and 4.A.5 yield

e=c¢c T 4.A,11

h=c¢ T 4,A.12

(where the constant of integration has been avoided by choosing*
e =h =0 for T = 0), whereas Eq. 4.A.7 yields

daT  _d= dp dt
as = CV 'f_ + R;-— = cv ;— + Cp :c'-' 4-A.13
or
pel= eS/ey 4.A.14

(where the constant of integration has been avoided by choosing®
S=0 for p=<% =1) and

RT ¥~ = S/cy 4.A.15

Ilence, one obtains explicit expressions

T = T(h) = h/cp 4.A.16
t = t(h,S) = (R héSkV/cpf1A7_n =
d [l 4 S/R
S (2 pyteen 8 4.A.17
Y
-1 ~1) -
P =p(h,S) = (n L=yT /=2 -3F 4.A.18
It may be worth noting that (see Eq. 4.4.5)
12p 129< 1
B=--2f| = 29 = = 4.A.19
p 28Sih T dSI|h R

is a constant. Also, note that the fundamental equation of
state, Eq. 3.2.1, is (see Eq. 4.A.12)

11
e =— - eSc 4.A.20
7-1 v¥-1
i.e., the formulation for ideal gases with constant coefficients

is equivalent to postulating the above equation for the
fundamental equation of state.

* This is consistent with the third law of thermodynamics.
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4.b. Constitutive Relations

In this section, the constitutive relations are discussed:
in particular it is indicated how the Cauchy—-Poisson law of
viscosity (see Eq. 3.3.4)

V=20T +2,D 4.5.1

(where © = div ¥, and the viscosity coefficientsk.and‘p are
positive functions of thermodynamic variables) and the Fourier law
of heat conduction

g =-k grad T 4.0.2

(where the conGuctivity coefficient k is a positive function of
the thermodynamic variables) may be obtained by introducing
certain additional restrictive (but 'reasonable') postulates.

The first postulate introduced here is that the entropy
condition, Eq. 3.4.4, be satisfied by each individual term (sce

Eq. 3.3.6)
' ®=V:D >0 4.E.3
and

G-grad T >0 4,2.4

These are the mathematical expressions for the familiar
statements that mechanical cdeformation dissipates energy
(transforming it into heat), and tkat the heat flows in the
direction of thke temperature gradient.

Next, consider a set of four postulates introduced by Stokes
(see Serrin, p. 231)

-—

1. V is a continuous function of the deformation tensor D
and is independent of all other kinematic quantities.

2. V does not depend explicitly on the position X (spacial
homogeneity).

3. There is no preferred direction in space (isotropy).
4, VhenD=0, V=0 as well.

A fluid satisfying the above postulates is called Stokesian.
Mathematically speaking, the first, second and fourth postulates
imply

V = £(D) (£(0)=0) 4.5.5

(The dependence upon two thermodynamic variables,such as p and T,
while not stated explicitly, is not being excluded). The third
postulate implies that Eq. 4.B.3 is invariant under all
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rectangular coordinate transformations.

In addition, consider another postulate:

5. The function f(D)is linear in V.

These postulates are sufficient to obtain the Cauchy-
Poisson law of viscosity, Eq. 4.B.1, (A proof of this equation is
given in Serriﬁ’pp. 233-234). It may be worth noting that if the
fifth postulate, which is the most restrictive one, is removed
then, as shown in Serrin pp. 231-232, f(D) must te of the tyce

T=«I+ D+ yD° 4.B.6

where a, { and v are functions of the invariants of D (as well
as of the thermodynamic variables).

Introducing similar postulates for g yields the Fourier law
for heat conduction, Eq. 4.B.2.

4.C. Speed of Sound

Note that
3 3
dp = 2| an + 2P| 4s 4.C.1
anls a5in

On the other hand, using Eq. 3.6.2

dp

3 3 3
dp :3‘ dp + —fl s = —3| (pdh - pTds) + -2 as
dplg éSip oplg aSlp

I

2 8 3
p —fl dh + (- ;f| oT + —31 )dS 4.C.2
dplg oplg dsip

Comparing Lqs. 4.C.1 and 4.C.2 yields

2% %y 1 4.c.3
p dh s ap‘s a? U

where a is the usual (isentropic) speed of sound, defined as

1/2

a:(if

3p|5) 4.C.4
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Section 5

Concluding Remarks

5.1. Conments

A general formulation for viscous, compressible flows has
been presented. In order to discuss the advantages of the
formulation, consider the case of the attached flow around an
isolated wing at a high Reynolds number. In this case the region
of nonzero vorticity is limited to a thin region around the
wing (boundary layer) and a region behind the wing (wake), and
the numerical results for the pressure distribution obtained
under the assumption of isentropic irrotational flow are
generally in excellent agreement with the experimental ones, both
in the subsonic and supersonic regimes. This would indicate that
the effects of the presence of the vorticity in the field are
small and therefore the solution to Navier-Stokes equations may
be obtained as a correction of the potential flow formulation.
In order to better understand this, consider the relationship
between the inviscid adiabatic formulation (Eqs. 4.6.7 to
4.6.11) and the potential formulation. If the flow is initially
isentropic (e.g., at rest at t = 0), Eq. 4.6.9 yields that S =
S, (where S, is a constant) at all times. Then if the flow is
initially irrotational (e.g., at rest at t = 0), Eq. 4.6.8 yields
that 3= 0 at all times. Therefore Gv =0 at all times, and Eq.
4.6.10 yields fD =0 at all times, and Eq. 4.6.7 reduces to the
classical formulation for the velocity potential.

Next consider the relationship between inviscid adiabatic
formulation (Eqs. 4.6.7 to 4.6.11) and the formulation for
viscous conductive flows (Egs. 4.6.1 to 4.6.6). In both cases
we will assume that the flow is initially at rest,. If the
viscosity and conductivity coefficients are small (i.e., high
Reynolds number flows), then Eq. 4.6.3 yields that S is
approximately constant in the outcr rcgion (the fluid volume
minus the boundary layer and the wake region). In addition Eq.
4.6.2 yields that the vorticity is approximately equal to zero in
the outer region. Next consider the velocity, Vv. induced by
the vorticity (see Eq. 4.6.6). WVith a suitable choice for the
boundary conditions for Eq. 4.2.4, it is possible to obtain that
A=0 (approximately) in the outer region, since the velocity
obtained from Eq. 4.6.6 is irrotational in the outer region., As
a consequence of the above remarks, 9S/ 2t and ov,/ 9t are zero
in the outer region and so is fp. Therefore, the additional
(nonpotential) terms in Eq. 4.6.1 are all approximately equal to
zero in the outer region and hence the only modification in the
equation for the velocity potential due to the effect of
viscosity is the presence of some apparent sources of mass in the
region of the boundary layer and the wake. In this case an
integral equation formulation would be ideal to approach this
problem (at least in the subsonic and supersonic regimes).

5.1



5.2. Recommendation for future work

A general formulation for scalar/vector-potential
decomposition for viscous compressible flows has been presented.
This formulation should not be considered the last word on the
subject but merely the first, Several issues have not been
addressed here, such as separated flows, turbulence, and the
presence of shock waves in the field and the vorticity generated
by them, However before addressing such issues it seems
appropriate to assess the formulation presented here by
developing a numerical algorithm (and corresponding computer
program) and comparing the results against existing numerical and
experimental ones.
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