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Abstract The staggered-grid finite-difference (SFD) method is widely used in

numerical modeling of wave equations. Conventional SFD stencils for spatial deriva-

tives are usually designed in the space domain. However, when they are used to solve

wave equations, it becomes difficult to satisfy the dispersion relations exactly. Liu and

Sen (2009c) proposed anewSFD scheme for one-dimensional (1D) scalarwaveequation

based on the time–space domain dispersion relation and plane wave theory, which is

made to satisfy the exact dispersion relation. This new SFD scheme has greater accuracy

and better stability than a conventional scheme under the same discretizations. In this

paper, we develop this new SFD scheme further for numerical solution of 2D and 3D

scalarwave equations.Wedemonstrate that themodeling accuracy is secondorderwhen

the conventional 2M-th-order space-domain SFD and the second order time-domain

finite-difference stencils are directly used to solve the scalar wave equation. However,

under the same discretization, our 1D scheme can reach 2M-th-order accuracy and is

always stable; 2D and 3D schemes can reach 2M-th-order accuracy along 8 and 48 di-

rections, respectively, and have better stability. The advantages of the new schemes are

also demonstrated with dispersion analysis, stability analysis, and numerical modeling.

Introduction

Numerical solution of seismic wave equation has played

an important role in both theoretical and applied seismology.

Finite-difference methods (FDMs; e.g., Kelly et al., 1976;

Dablain, 1986; Aoi and Fujiwara, 1999; Vossen et al.,

2002; Etgen and O’Brien, 2007), finite-element methods

(FEMs; e.g., Komatitsch and Vilotte, 1998; Rivière and

Wheeler, 2003; Käser and Dumbser, 2006; De Basabe and

Sen, 2007, 2009; De Basabe et al., 2008), and pseudospectral

methods (PSMs; e.g., Kosloff and Baysal, 1982; Reshef et al.,

1988a, 1988b; Liu and Li, 2000; Liu and Wei, 2005) are the

three main numerical approaches. The FEMs are generally

not widely used because of large memory and computation

time requirements, despite the fact that they can handle com-

plicated geometries and boundaries more easily than the

FDMs. The PSMs, which are more accurate than the FDMs,

are also not very popular for their higher computational cost.

Because of their straightforward implementation, requiring

small memory and computation time, the FDMs are the most

popular methods for seismic modeling (e.g., Virieux, 1986;

Yomogida and Etgen, 1993; Igel et al., 1995; Geller and

Takeuchi, 1998; Pitarka, 1999; Takeuchi and Geller, 2000;

Rojas et al., 2008), migration (e.g., Claerbout, 1985; Ristow

and Ruhl, 1994; Zhang et al., 2000) and inversion (e.g., Pratt

et al., 1998; Ravaut et al., 2004; Abokhodair, 2009).

To improve the accuracy of FDMs for seismic wave

propagation numerical modeling, many variants of the meth-

ods have been advanced—these include difference schemes

of staggered grid (Virieux, 1984, 1986; Kindelan et al.,

1990), variable grid (Wang and Schuster, 1996; Hayashi and

Burns, 1999), irregular grid (Opršal and Zahradník, 1999),

variable time step (Tessmer, 2000), high-order accuracy

(Dablain, 1986; Fornberg, 1987; Crase, 1990; Liu and Wei,

2008; Liu and Sen, 2009d), and implicit formulas (e.g., Emer-

man et al., 1982; Kosloff et al., 2008; Liu and Sen,

2009a, 2009b).

The staggered-grid finite-difference methods (SFDMs)

have greater accuracy and better stability than the conven-

tional-grid FDMs and therefore have been widely used in nu-

merical modeling of acoustic waves (e.g., Etgen and

O’Brien, 2007), elastic waves (e.g., Graves, 1996; Moczo

et al., 2000, 2002; Mittet, 2002), and viscoacoustic and vis-

coelastic waves (Robertsson et al., 1994; Bohlen, 2002).

Staggered-grid finite-difference (SFD) modeling can also

be performed with models that include surface topography

(e.g., Robertsson, 1996; Ohminato and Chouet, 1997;

Hestholm and Ruud, 1998; Hayashi et al., 2001; Hestholm,

2003; Lombard et al., 2008). Saenger et al., (2000) derived a

rotated staggered-grid scheme in which all the medium
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parameters are defined at appropriate positions within an ele-

mentary cell for the essential operations. Using this modified

grid, it is possible to simulate the propagation of elastic

waves in a medium containing cracks, pores, or free surfaces

(Saenger and Shapiro, 2002), anisotropy (Saenger and

Bohlen, 2004; Bansal and Sen, 2008), and scattering and

diffraction by a single crack (Krüger et al., 2005).

It is generally known that the SFD stencils for the spatial

derivatives are designed only in the space domain. When

these stencils are directly used to solve the wave equations,

the dispersion always exists. Finkelstein and Kastner (2007)

proposed a new method to derive the finite-difference (FD)

coefficients in the joint time–space domain using standard

grids. The key idea of this method is that the dispersion

relation is completely satisfied at designated frequencies;

thus several equations are formed, and the FD coefficients

are obtained by solving these equations. This method was

developed further for the one-dimensional 1D lossless and

boundless wave equation, and its spatial FD coefficients were

determined at one designated frequency to obtain arbitrary-

order accuracy (Finkelstein and Kastner, 2008). Liu and Sen

(2009c) employed a plane wave theory and the Taylor series

expansion of dispersion relation to derive the FD coefficients

in the joint time–space domain for the scalar wave equation

with second-order spatial derivatives. They demonstrated

that the method has greater accuracy and better stability than

the conventional method. Liu and Sen (2010) designed a spa-

tial FD stencil based on a time–space domain dispersion re-

lation to simulate wave propagation in an acoustic vertically

transversely isotropic medium. Two-dimensional dispersion

analysis and numerical modeling demonstrated that this sten-

cil has greater precision than one used in a conventional FD.

In this paper, based on the dispersion relation of the FD

formula in the time–space domain and the plane wave theory,

we derive new spatial SFD coefficients for 2D and 3D scalar

wave equation modeling. The coefficients are related to

space point number and the Courant number, which are de-

termined by time step, grid size, and velocity. When 2M

points are involved in the spatial derivatives and 3 points

in the temporal derivatives, the accuracy can be improved

from second order of the conventional method to 2Mth order

of the new method for 1D scalar wave equation modeling

(Liu and Sen, 2009c), and 2M-th-order accuracy can be

reached along 8 directions for 2Dmodeling and 48 directions

for 3D modeling. Moreover, the new method can adopt a

larger Courant number than the conventional method. The

advantages of the new method are demonstrated by disper-

sion analysis, stability analysis, and numerical modeling.

This paper mainly includes six sections. First, we prove

that the accuracy of scalar wave equation modeling using the

conventional SFD operators is of the second order. Second, we

derive new SFD coefficients for 2D and 3D scalar wave equa-

tion modeling. Third and fourth, dispersion and stability anal-

yses are carried out for both the conventional and the new

methods. Fifth, the conventional and the new methods are

used to perform numerical modeling, both in homogeneous

and inhomogeneous media. Finally, we draw conclusions.

Accuracy of Scalar Wave Equation Modeling
by the Conventional SFDM

We start with the 1D scalar wave equation in inhomo-

geneous media (Claerbout, 1985)

∂

∂x

�

1

ρ

∂p

∂x

�

� 1

K

∂2p

∂t2
; (1)

where ρ is the density; K is the bulk modulus, K �
λ� 2μ � ρv2 in which v is the velocity; and p represents

the pressure.

The following second-order FD is usually used:

∂2p

∂t2
≈

δ2p

δt2
� 1

τ 2

h

�2p0
0 � �p�1

0 � p1
0�
i

; (2)

where

pn
m � p�x�mh; t� nτ�; (3)

h is the grid size, x is the space coordinate, t is time, and τ is

the time step. Generally, the modeling accuracy is improved

by high-order FD for the spatial derivatives; the 2M-th-order

SFD formula for the first-order derivatives is (Kindelan et al.,

1990)

∂p

∂x
� 1

h

X

M

m�1

am�p0
m�1=2 � p0

�m�1=2�: (4)

Assuming the media are homogeneous and substituting

equation (2) and equation (4) into equation (1), we have

1

h2

X

M

m�1

X

M

n�1

aman

h

�p0
m�n�1 � p0

m�n� � �p0
�m�n � p0

�m�n�1�
i

≈
1

v2τ 2
�p1

0 � p�1
0 � 2p0

0�: (5)

In the conventional method, FD coefficients for the

spatial derivatives are determined in the space domain. Using

the plane wave theory, we let

pn
m � ei�k�x�mh��ω�t�nτ�� � ei�kx�ωt�ei�mkh�nωτ�; (6)

where, k is the wavenumber, ω is the angular frequency, and

i �
�������

�1
p

. Substituting equation (6) into equation (4) and

simplifying it, we have

k≈
2

h

X

M

m�1

am sin��m � 0:5�kh�: (7)

Using the Taylor series expansion, we obtain

k≈
2

h

X

M

m�1

am
X

∞

j�1

��1�j�1��m � 0:5�hk�2j�1
�2j � 1�! : (8)

By comparing the coefficients of k; k3;…; k2M�1, M

equations can be obtained to solve SFD coefficients

a1; a2;…:; aM (Kindelan et al., 1990; Pei, 2004; Liu and
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Sen, 2009b). Then, the error of SFD on spatial derivatives is

derived from equation (8) as follows:

2

h

X

M

m�1

am
X

∞

j�M�1

��1�j�1��m � 0:5�hk�2j�1
�2j � 1�! : (9)

Therefore, we obtain

2

h

X

M

m�1

am sin��m � 0:5�kh�

� k� 2

h

X

∞

j�M�1

�

X

M

m�1

�m � 0:5�2j�1am
�

��1�j�1�hk�2j�1
�2j � 1�! :

(10)

Substituting equation (6) into equation (2) and using the

Taylor series expansion, we obtain

� ω2 ≈
1

τ 2
��2� 2 cos�ωτ�� � �ω2 � 2

τ 2

X

∞

j�2

��1�j�ωτ�2j
�2j�! :

(11)

When the 1D space domain SFD and time domain FD formulas

are directly used to solve the 1D scalar wave equation, the

error function is expressed as equation (A2) (seeAppendixA).

Because the minimum power of h in the error function (A2)

is 2, FD accuracy is second order. Therefore, when the

2M-th-order space domain SFD and the second-order time

domain FD stencils are used to solve the 1D scalar wave equa-

tion, the accuracy is second order. The conclusion is obviously

the same for the 2D and 3D scalar wave equations. Note that

increasingMmay decrease the magnitude of FD error without

increasing the accuracy order. The main reason is that the

wave equation is solved in both the spatial and the temporal

domains simultaneously, but SFD stencils are designed in

either the spatial or the temporal domain, but not both.

Time–Space Domain Dispersion-Relation-Based
Spatial SFD Stencils

In this section, we derive new spatial SFD coefficients

for 2D and 3D scalar wave modeling based on the time–space

domain dispersion relations. We start with a 1D case.

1D SFD Stencil

Substituting equation (6) into equation (5) and simplify-

ing it, we obtain

� 4

h2

�

X

M

m�1

am sin��m � 0:5�kh�
�

2

≈ � 4

v2τ2
�sin�0:5ωτ��2:

(12)

Using the Taylor series expansion for sine functions,

r � vτ=h and ω � vk, we obtain SFD coefficients for 1D

scalar wave equation modeling (Liu and Sen, 2009c):

am � ��1�m�1

2m � 1

Y

1≤n≤M;n≠m

�

�

�

�

�2n � 1�2 � r2

�2n � 1�2 � �2m � 1�2

�

�

�

�

; (13)

where r ≤ 1. The SFD modeling has 2M-th-order accuracy.

When r � 0, the SFD coefficients are the same as those from

the conventional method (Kindelan et al., 1990; Pei, 2004;

Liu and Sen, 2009b).

2D SFD Stencil

The 2D scalar wave equation is (Claerbout, 1985)

∂

∂x

�

1

ρ

∂P

∂x

�

� ∂

∂z

�

1

ρ

∂P

∂z

�

� 1

K

∂2P

∂t2
: (14)

Because the same SFD is usually used for spatial derivatives,

we let

∂p

∂x
≈

δp

δx
� 1

h

X

M

m�1

�p0
m�1=2;0 � p0

�m�1=2;0�; (15a)

and

∂p

∂z
≈

δp

δz
� 1

h

X

M

m�1

�p0
0;m�1=2 � p0

0;�m�1=2�; (15b)

where

pn
m;j � p�x�mh; z� jh; t� nτ�: (16)

The second-order FD stencil for the temporal derivative is

∂2p

∂t2
≈

δ2p

δt2
� 1

τ 2
��2p0

0;0 � �p�1
0;0 � p1

0;0��: (17)

Using equation (15a), equation (15b), and equation (17),

equation (14) is changed as follows:

1

h2

X

M

m�1

X

M

n�1

aman��p0
m�n�1;0 � p0

m�n;0�

� �p0
�m�n;0 � p0

�m�n�1;0��

� 1

h2

X

M

m�1

X

M

n�1

aman��p0
0;m�n�1 � p0

0;m�n�

� �p0
0;�m�n � p0

0;�m�n�1��

≈
1

v2τ2
�p1

0;0 � p�1
0;0 � 2p0

0;0�: (18)

Let

pn
m;j � ei�kx�x�mh��kz�z�jh��ω�t�nτ��: (19)

Substituting equation (19) into equation (18) and simplifying

it, we obtain

�

X

M

m�1

am sin��m � 0:5�kxh�
�

2

�
�

X

M

m�1

am sin��m � 0:5�kzh�
�

2

≈ �r�1 sin�0:5ωτ��2: (20)
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Let

kx � k cos θ and kz � k sin θ; (21)

where θ is a propagation direction angle of the plane wave.

Then equation (20) changes to

�

X

M

m�1

am sin��m � 0:5�kh cos θ�
�

2

�
�

X

M

m�1

am sin��m � 0:5�kh sin θ�
�

2

≈ �r�1 sin�0:5ωτ��2: (22)

Using the Taylor series expansion for sine functions,

r � vτ=h and ω � vk, we have

�

X

∞

n�1

X

M

m�1

��2m � 1� cos θ�2n�1am
��1�n�1�0:5kh�2n�1

�2n � 1�!

�

2

�
�

X

∞

n�1

X

M

m�1

��2m � 1� sin θ�2n�1am
��1�n�1�0:5kh�2n�1

�2n � 1�!

�

2

≈

�

X

∞

n�1

r2n�2
��1�n�1�0:5kh�2n�1

�2n � 1�!

�

2

:

(23)

Here, let

βn � ��1�n�1
�2n � 1�! ; (24a)

bn �
X

M

m�1

�2m � 1�2n�1am; (24b)

cn � �cos θ�2n�1βn; (24c)

and

dn � �sin θ�2n�1βn; (24d)

then

�

X

∞

n�1

bncn�0:5kh�2n�1
�

2

�
�

X

∞

n�1

bndn�0:5kh�2n�1
�

2

≈

�

X

∞

n�1

r2n�2βn�0:5kh�2n�1
�

2

: (25)

Comparing coefficients of k2n, we obtain

b21�c21 � d21� � 1 �n � 1�; (26a)

and

X

n

j�1

bjbn�1�j�cjcn�1�j � djdn�1�j�

�
X

n

j�1

βjβn�1�jr
2n�2

�n � 2; 3;…;M�: (26b)

Equation (26a) gives b1 � �1. When b1 changes from 1 to

�1, am will change to �am, which does not affect the final

results. Therefore, we let

b1 � 1: (27)

Then, equation (26b) can be rewritten as follows

bn �

�

P

n
j�1 βjβn�1�j

�

r2n�2 �
P

n�1
j�2�bjbn�1�j�cjcn�1�j � djdn�1�j��

2�c1cn � d1dn�
�n � 2; 3;…;M�: (28)

Because βn, cn, and dn are known for the given θ, using

equation (27), b2 can be obtained from equation (28); using

the known b1 and b2, b3 can be obtained from equation (28).

Similarly, b4;…; bM can be obtained from equation (28).

After b1; b2;…; bM are known, using equation (24b), we

have the following matrix equation:

10 30 	 	 	 �2M � 1�0

12 32 	 	 	 �2M � 1�2

..

. ..
. ..

. ..
.

12M�2 32M�2 	 	 	 �2M � 1�2M�2
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7

5

: (29)
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The coefficients am�m � 1; 2; :::;M� are obtained by solving
these equations. Some special cases are given in Appendix B.

Notice that b2; b3;…; bM are the function of θ, as are

am. To obtain a single set of coefficients, we may choose

an optimal angle. From equations (24a–d) and (28), we

can see that when θ is changed to nπ=2� θ, b2; b3;…; bM
are changeless, as are am. That is,

am�θ� � am�nπ=2� θ�: (30)

Therefore,

am�π=8� � am�π=8� nπ=4�: (31)

If θ � π=8 is used to solve the equation (28) and equation (29),

SFD modeling can reach the highest 2M-th-order accuracy

along these eight directions: θ � �2n � 1�π=8, (n �
1; 2;…; 8). Therefore, we calculate am by using θ � π=8.

3D SFD Stencil

For the 3D scalar wave equation,

∂

∂x

�

1

ρ

∂P

∂x

�

� ∂

∂y

�

1

ρ

∂P

∂y

�

� ∂

∂z

�

1

ρ

∂P

∂z

�

� 1

K

∂2P

∂t2
; (32)

we can obtain the following equation, which is similar to

equation (25):

�

X

∞

n�1

bnfn�0:5kh�2n�1
�

2

�
�

X

∞

n�1

bngn�0:5kh�2n�1
�

2

�
�

X

∞

n�1

bndn�0:5kh�2n�1
�

2

≈

�

X

∞

n�1

r2n�2βn�0:5kh�2n�1
�

2

; (33)

where

fn � �cos θ cosϕ�2n�1βn; gn � �cos θ sinϕ�2n�1βn;

(34)

θ is the plane wave propagation angle measured from the

horizontal plane perpendicular to z axis, and ϕ is the azimuth

of the plane wave.

Comparing coefficients of k2n in equation (33), we

obtain

b21�f21 � g21 � d21� � 1 �n � 1�; (35a)

and

X

n

j�1

bjbn�1�j�fjfn�1�j � gjgn�1�j � djdn�1�j�

�
X

n

j�1

βjβn�1�jr
2n�2

�n � 2; 3;…;M�: (35b)

Equation (35a) gives b1 � �1. When b1 changes from 1 to

�1, am will change to �am, which does not affect the final

results. Therefore, we let

b1 � 1: (36)

Then, equation (35b) can be rewritten as

bn �

�

P

n
j�1 βjβn�1�j

�

r2n�2 �
P

n�1
j�2�bjbn�1�j�fjfn�1�j � gjgn�1�j � djdn�1�j��

2�f1fn � g1gn � d1dn�
�n � 2; 3;…;M�: (37)

Because βn, fn, gn, and dn are known for the given θ and ϕ,

using the known b1 and equation (37), b2; b3;…; bM can be

obtained. The coefficients am are obtained by solving equa-

tion (29). It is obvious that if θ � 0 and ϕ � π=8 are used in

equation (37), the SFD modeling can reach the highest 2M-

th-order accuracy along 48 directions: θ � �m � 1�π,
ϕ � �2n � 1�π=8, (m � 1, 2; n � 1; 2;…; 8); θ �
�2m � 1�π=8, ϕ � �n � 1�π=2 (n � 1; 2;…; 8; m � 1, 2,

3, 4. Therefore, we calculate am by using θ � 0 and

ϕ � π=8. It can be deduced that 3D SFD coefficients from

these two angles are the same as 2D SFD coefficients from

angle π=8. Table 1 lists SFD coefficients am of the old and

new methods for M � 20 and different values of r.

Dispersion Analysis

1D Dispersion Analysis

We use equation (12) to define a parameter δ to describe

1D dispersion of FD:
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Table 1
SFD Coefficients am of Old and New Methods for M � 20 and Different r

r � 0:2 r � 0:3

m Old Method New 1D Method New 2D/3D Method New 1D Method New 2D/3D Method

1 0:12574 × 101 0:12463 × 101 0:12426 × 101 0:12326 × 101 0:12243 × 101

2 �0:12641 × 100 �0:12082 × 100 �0:11895 × 100 �0:11390 × 100 �0:10972 × 100

3 0:37233 × 10�1 0:35485 × 10�1 0:34902 × 10�1 0:33332 × 10�1 0:32030 × 10�1

4 �0:14041 × 10�1 �0:13371 × 10�1 �0:13148 × 10�1 �0:12548 × 10�1 �0:12049 × 10�1

5 0:56625 × 10�2 0:53907 × 10�2 0:53001 × 10�2 0:50567 × 10�2 0:48543 × 10�2

6 �0:22744 × 10�2 �0:21649 × 10�2 �0:21283 × 10�2 �0:20303 × 10�2 �0:19487 × 10�2

7 0:87683 × 10�3 0:83453 × 10�3 0:82042 × 10�3 0:78256 × 10�3 0:75107 × 10�3

8 �0:31710 × 10�3 �0:30179 × 10�3 �0:29668 × 10�3 �0:28297 × 10�3 �0:27157 × 10�3

9 0:10581 × 10�3 0:10069 × 10�3 0:98985 × 10�4 0:94409 × 10�4 0:90602 × 10�4

10 �0:32129 × 10�4 �0:30575 × 10�4 �0:30056 × 10�4 �0:28666 × 10�4 �0:27510 × 10�4

11 0:87668 × 10�5 0:83426 × 10�5 0:82011 × 10�5 0:78216 × 10�5 0:75059 × 10�5

12 �0:21218 × 10�5 �0:20191 × 10�5 �0:19849 × 10�5 �0:18930 × 10�5 �0:18165 × 10�5

13 0:44897 × 10�6 0:42724 × 10�6 0:41999 × 10�6 0:40054 × 10�6 0:38437 × 10�6

14 �0:81650 × 10�7 �0:77697 × 10�7 �0:76378 × 10�7 �0:72841 × 10�7 �0:69899 × 10�7

15 0:12490 × 10�7 0:11885 × 10�7 0:11683 × 10�7 0:11142 × 10�7 0:10692 × 10�7

16 �0:15615 × 10�8 �0:14859 × 10�8 �0:14606 × 10�8 �0:13930 × 10�8 �0:13367 × 10�8

17 0:15310 × 10�9 0:14569 × 10�9 0:14322 × 10�9 0:13658 × 10�9 0:13106 × 10�9

18 �0:11036 × 10�10 �0:10501 × 10�10 �0:10323 × 10�10 �0:98446 × 10�11 �0:94468 × 10�11

19 0:51973 × 10�12 0:49455 × 10�12 0:48615 × 10�12 0:46363 × 10�12 0:44490 × 10�12

20 �0:11995 × 10�13 �0:11414 × 10�13 �0:11220 × 10�13 �0:10700 × 10�13 �0:10267 × 10�13
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Figure 1. 1D dispersion curves of (a) the conventional and
(b) the new methods for different velocities. τ � 0:001 s,
h � 10 m, M � 20. The color version of this figure is available
only in the electronic edition.
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Figure 2. 1D dispersion curves of (a) the conventional and
(b) the new methods for different time steps. τ � 0:0025 s,
0.0030 s; that is, r � 0:75, 0.9 is added for the new method.
v � 3000 m=s, h � 10 m,M � 20. The color version of this figure
is available only in the electronic edition.
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Figure 3. 2D dispersion curves of (a, c, e) the conventional and (b, d, f) the new methods for different propagation angles and different
space point numbers 2M� 1. v � 3000 m=s, τ � 0:001 s, h � 10 m. The color version of this figure is available only in the electronic
edition.
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δ � vFD

v
� 2

rkh
sin�1

�

r
X

M

m�1

am sin��m � 0:5�kh�
�

: (38)

If δ equals 1, there is no dispersion. If δ is far from 1, a large

dispersion will occur. Because kh is equal to π at the Nyquist

frequency, kh only ranges from 0 to π when calculating δ.

Next, we compare the conventional and the new meth-

ods by the dispersion curves for different velocities and

time steps.

Figure 1 illustrates the effect of velocity on dispersion

for various parameters From this figure, it follows that the

conventional dispersion curves change significantly with the

variation of velocity, while the new dispersion curves change

a little. The dispersion characteristics of the new method,

mainly dependent on M, are more accurate and stable than

the conventional method.

Figure 2 shows the variation of the dispersion parameter

δ with kh for different time steps. For the conventional

method, its dispersion increases with the increase of time

step. Furthermore, larger time steps, such as 0.0025 s and

0.0030 s in this example, make the conventional recursion

unstable. However, the new recursion is still stable for these

larger time steps, and its dispersion varies slightly with the

variation of time step. Therefore, the new method can adopt

larger time steps and attain greater precision.

2D Dispersion Analysis

2D dispersion δ�θ� is defined by using equation (20):

δ�θ� � vFD

v
� 2

rkh
sin�1�r �����

q2
p �; (39)

where

q2 �
�

X

M

m�1

am sin��m � 0:5�kh cos θ�
�

2
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�

X

M
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am sin��m � 0:5�kh sin θ�
�

2
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Figure 4. 2D of dispersion curves of (a) the conventional and
(b) the new methods. v � 3000 m=s, τ � 0:001 s, h � 10 m,
M � 10. The color version of this figure is available only in the
electronic edition.
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Figure 5. (a) The variation of stability factor s withM and r for
the new method. (b) Stability condition of the conventional and the
new methods; the stability factor of the new method shown here is
the maximum value of s satisfying equation (41). The method is
stable when r ≤ s. The color version of this figure is available only
in the electronic edition.
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Because δ�θ� � δ�θ� π=2�, δ�θ� is a periodical function

with the period of π=2. Considering δ�θ� � δ�π=2 � θ�,
we only calculate δ�θ� with the variation of θ from 0 to π=4.

Figure 3 shows the 2D dispersion curves of the con-

ventional and the new methods along three directions for

different space point numbers. From the figure, we can

see that

• The dispersion generally decreases with the decrease of

wavenumber and the increase of M.

• The area where δ nearly equals 1 does not extend with the

increase of M for the conventional method, nevertheless

the area extends for the new method.

• The accuracy of the new method is generally greater

than that of the conventional method for a certain

Figure 6. 1D modeling seismograms by (left panels) the conventional methods and (right panels) the new methods for different
space point numbers. ①, ③, and ⑤ are analytic solutions; ②, ④, and ⑥ are modeling results. Distances between source center and these
three receivers are 100 m, 350 m, and 600 m, respectively. α2 � 1:6, v � 3000 m=s, h � 10 m, τ � 0:001 s, M values are as shown
in each panel.
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area of kh, and the width of this area increases with the

increase of M.

Figure 4 displays 2D dispersion curves of the conven-

tional and the new methods along five directions when

M � 10, which also demonstrates that the new method

has greater accuracy than the conventional method when

kh < 2.

3D Dispersion Analysis

Similarly, 3D dispersion δ�θ;ϕ� can be defined as

δ�θ;ϕ� � vFD

v
� 2

rkh
sin�1�r �����

q3
p �; (40)

where

q3 �
�

X

M

m�1

am sin��m � 0:5�kh cos θ cosϕ�
�

2

�
�

X

M

m�1

am sin��m � 0:5�kh cos θ sinϕ�
�

2

�
�

X

M

m�1

am sin��m � 0:5�kh sin θ�
�

2

:

Stability Analysis

Stability condition for n-dimensional scalar wave equa-

tion modeling by the FD method can be expressed as

r ≤ s; (41)

(see Appendix C), where s is a stability factor,

s � 1
���

n
p

�

X

M

m�1

jamj
��1

: (42)

1D Stability Analysis

The new method is always stable when r ≤ 1 because

new SFD coefficients are designed for the given M and r

(Liu and Sen, 2009c).

2D Stability Analysis

Figure 5a shows the variation of stability factor swithM

and r for the new method. The new method is unstable for

large values of r. The maximum value of s satisfying equa-

tion (41) is calculated and shown in Figure 5b with r for the

Figure 7. 1D modeling seismograms by (left panels) the conventional methods and (right panels) the new methods for different
velocities. ①, ③, and ⑤ are analytic solutions; ②, ④, and ⑥ are modeling results. Distances between source center and these three receivers
are 100 m, 350 m, and 600 m, respectively. α2 � 1:6, h � 10 m, τ � 0:001 s, M � 20, v values are as shown in each panel.
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conventional method. The figure demonstrates that the new

method can adopt a larger r than the conventional method

when M > 1.

Modeling Examples

1D Modeling

The initial conditions used in the following 1D numer-

ical modeling are

p�x; t�jt�0 � �x � x0�e�
α2

4h2
�x�x0�2 (43a)

and

∂p�x; t�
∂t

jt�0 � 0; (43b)

where x0 is the location of the source center, α
2 is an attenua-

tion coefficient.

Both the conventional and the new SFD methods are

used to simulate scalar wave propagation in 1D homoge-

neous media. Figure 6 shows the seismograms by the con-

ventional and the new methods for different space point

numbers. The figure demonstrates that the accuracy increases

with the increase of space point number. By comparing with

the analytic solutions, we observe that the modeling results

from the new method have less dispersion and that the wave-

forms retain their shapes better than in the conventional

Figure 8. 1D modeling seismograms for an inhomogeneous
model by (a,b) the conventional and (c) the new methods. The mod-
el has four layers, for which the velocities and densities are
(2500 m=s, 2000 kg=m3), (3000 m=s, 2200 kg=m3), (2600 m=s,
2000 kg=m3) and (3100 m=s, 2300 kg=m3), respectively, from
shallow to deep. Three interface depths are 300 m, 500 m, and
600 m; source depth is 100 m. α2 � 1:6, h � 10 m, M � 10.

Figure 9. 2D modeling snapshots for a homogeneous model by
(left panels) the conventional methods and (right panels) the new
methods. Time of the snapshots are (a) 0.10 s, (b) 0.6 s, and
(c) 1.2 s. The model is homogeneous, v � 3000 m=s. The model
size is 2000 m × 2000 m. τ � 0:001 s, h � 10 m, M � 10. The
source is located in the model center. A one-period sine function
with 50 Hz frequency is used to generate vibration.
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Figure 10. 2D scalar wave modeling snapshots at 1.6 s and seismograms for (a) the SEG/EAGE salt model of P-wave velocity
by (b, f) the conventional method and (c, g) the new method. Panels (d) and (e) are zoom images of panels (b) and (c), respectively;
and panels (h) and (i) are zoom images of panels (f) and (g), respectively. h � 20 m, M � 20, τ � 0:002 s. The source is located at
(6000 m, 20 m). A one-period sine function with 20-Hz frequency is used as the source wavelet. (Continued)
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method. Figure 7 shows the seismograms for different

velocities. The variation of the velocity affects the results

from the conventional method more than those from the

new method.

The conventional and the new methods are used to per-

form the numerical modeling for an inhomogeneous model.

The records obtained by the numerical modeling are shown

in Figure 8. Down-going and up-going waves can be clearly

seen in this figure. The conventional method has larger dis-

persion because the waveform in the record changes signifi-

cantly with the increase of receiver depth. Because the

waveform in the records retains its shape very well for the

different receiver depths, the new method is found to have

greater accuracy and it effectively suppresses the dispersion.

2D Modeling

The numerical modeling by the conventional and the

new methods is performed for a 2D homogeneous model

and a heterogeneous model under the same discretization.

Figure 9 displays the snapshots for the homogeneous

model. The waveform computed by the new method retains

its shape better than the conventional method, which demon-

strates that the new method has greater accuracy and smaller

dispersion. Figure 10 shows the snapshots and seismograms

for a so-called 2D Society of Exploration Geophysicists/

European Association of Geoscientists and Engineers

(SEG/EAGE) salt model. Grid dispersion effects can be seen

in the result from the conventional method; however, the new

method has less dispersion. The modeling results demon-

strate that the new 2D method has greater accuracy and less

dispersion than the conventional method.

Discussion

In this section, we discuss the time–space domain dis-

persion-relation-based spatial SFD scheme for elastic wave

equations. Appendix D derives time–space domain disper-

sion-relation equations (D38) and (D39) by SFD modeling

for 2D elastic wave equations. These equations have the same

form as those in equation (20). Using the method presented

in the Time–Space Domain Dispersion-Relation-Based Spa-

tial SFD Stencils section, we can obtain the SFD coefficients.

Figure 10. Continued.
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Note that two velocities, vp and vs, exist in each grid in

elastic media. However we use only one velocity to design

the SFD coefficients. Because the wavenumber of the Swave

is less than that of the P wave in each grid, we should use vs
to determine the SFD coefficients. However, vP should be

used if the medium is fluid.

To demonstrate how the SFD stencil determined by vS
works on the S wave and P wave, we calculate 2D P-wave

and S-wave dispersion curves using the conventional and

the new methods for various parameters (Figure 11). From

this figure, we observe that the accuracy of the new stencil

is greater than that of the conventional stencil when

kh < 2. The stencil works on Swaves better than onPwaves.

However, in the same medium, vS is less than vP and the

wavenumber of the P wave is less than that of the S wave,

so actually the difference of accuracy between S-wave disper-

sion and P-wave dispersion is smaller than it looks in

this figure. It can be concluded that the SFD stencil determined

by vS canwork on both theSwave and thePwave and is better

than that of the conventional method for a certain area of kh.

Conclusions

We have developed new 2D and 3D spatial SFD stencils

based on time–space domain dispersion relations for scalar

wave equations where the SFD coefficients are determined by

the space point number and the Courant number. The new

stencils have greater accuracy than the conventional one un-

der the same discretization. Also, the new stencils can adopt

a larger time step. Dispersion analysis and numerical mod-

eling results demonstrate that the new stencils have greater

accuracy and can effectively suppress the dispersion and

retain the waveform.
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Appendix A

Error Function of 1D Scalar Wave Equation
Modeling by the Conventional SFDM

The absolute error can be obtained from equation (5) by

using equation (6)
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Substituting equation (10) and equation (11) into equa-

tion (A1) and using v � ω=k and r � vτ=h to simplify it,

we have
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Appendix B

New Spatial SFD Coefficients for 2D Scalar Wave
Equation Modeling

According to the new 2D SFD method, spatial SFD coef-

ficients can be expressed as follows when M � 2, 3, 4:

1. When M � 2,

a2 � ξ2; a1 � 1 � 3a2; (B1)

2. When M � 3,

a3 � ξ3; a2 � ξ2 � 5a3;

a1 � 1 � 3a2 � 5a3; (B2)

3. When M � 4,

a4 � ξ4; a3 � ξ3 � 7a4;

a2 � ξ2 � 5a3 � 14a4;

a1 � 1 � 3a2 � 5a3 � 7a4; (B3)

where
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24�cos4 θ� sin4 θ� �
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24
; (B4)
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ξ2; (B5)
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Appendix C

Stability Conditions for Scalar Wave Equation
Modeling by SFDMs

First, we derive the 1D stability condition. The 1D recur-

sion equation of SFDMs can be obtain from equation (5) as

follows

p1
0 � 2p0

0 � r2
X

M

m�1

X

M

n�1

aman��p0
m�n�1 � p0

m�n�

� �p0
�m�n � p0

�m�n�1�� � p�1
0 : (C1)

Using the conventional eigenvalue method of stability

analysis, we let

q0m � p�1
m ; U0

m � �p0
m; q

0
m�T � W0eikmh: (C2)

According to equation (C1) and equation (C2), we obtain

W1 � GW
0 � g �1

1 0

� �

W
0; (C3)
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where G is a transition matrix,

g � 2 � 4r2
�

X

M

m�1

am sin��m � 0:5�kh�
�

2

: (C4)

When the absolute values of the transition matrix eigenvalues

are less than or equal to 1, the recursion is stable. If jgj ≤ 2,

the roots of the eigenvalue equation λ2 � gλ� 1 � 0 will be

less than or equal to 1. Thus, we have the stability condition

r2
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am sin��m � 0:5�kh�
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2

≤ 1: (C5)

When

r ≤
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jamj
��1

; (C6)

equation (C5) will be satisfied. Therefore, equation (C6) is

the 1D stability condition.

Similarly, we obtain 2D and 3D stability conditions of
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(C7)

and
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Appendix D

Time–Space Domain Dispersion-Relation Formulas
of the SFD Solution for 2D Elastic Wave Equations

In this appendix, based on the SFD scheme for 2D elastic

wave equations, we derive the time–space domain disper-

sion-relation formulas.

SFD Algorithm for 2D Elastic Wave Equations

The elastic wave equations in 2D heterogeneous media

are

∂vx
∂t

� b
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∂z

�

; (D1)
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∂τ zz
∂t

� λ
∂vx
∂x

� �λ� 2u� ∂vz
∂z

; (D4)

and

∂τ zx

∂t
� μ

�

∂vz

∂x
� ∂vx

∂z

�

(D5)

(Virieux, 1986). In these equations, �vx; vz� is the velocity

vector, �τ xx; τ zz; τxz� is a vector containing three components

of stress, λ�x; z� and μ�x; z� are Lamé coefficients, b�x; z� is
the inverse of density.

The derivatives of elastic wave equations in the stag-

gered square grids can be discretized as follows (Virieux,

1986)
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where h is grid size, τ is time step, am are SFD coefficients,
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unm;j � vx�x�mh; z� jh; t� nτ�; (D15)
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2D Dispersion Relation

Using the plane wave theory, we let
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where ω is the angular frequency, �kx; kz� is the wavenumber

vector, i �
�������

�1
p

. Substituting equations (D20)–(D24) into

(D1)–(D5) and simplifying them, we obtain

gA≈ bfxD� bfzE; (D25)

gC≈ bfxE� bfzF; (D26)

gD≈ �λ� 2μ�fxA� λfzC; (D27)

gF≈ λfxA� �λ� 2μ�fzC; (D28)

gE≈ μfzA� μfxC; (D29)

where,
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Eliminating A, C, D, E, and F from equations (D25)–(D29),

we have

g4 � ��b�λ� 2μ�f2x � bμf2z� � �bμf2x � b�λ� 2μ�f2z��g2

� �b�λ� 2μ�f2x � bμf2z��bμf2x � b�λ� 2μ�f2z�
� b2�λ� μ�2f2xf2z ≈ 0: (D33)

Solving this equation, we obtain

g2 ≈ v2P�f2x � f2z� (D34)

or

g2 ≈ v2S�f2x � f2z�; (D35)

where

v2P � b�λ� 2μ� (D36)

and

v2S � bμ: (D37)

Substituting equations (D30)–(D32) into equation (D34) and

equation (D35), we obtain

158 Y. Liu and M. K. Sen



�

X

M

m�1

am sin��m � 0:5�kxh�
�

2

�
�

X

M

m�1

am sin��m � 0:5�kzh�
�

2

≈ r�2P sin2�0:5ωτ� (D38)

or
�

X

M

m�1

am sin��m � 0:5�kxh�
�

2

�
�

X

M

m�1

am sin��m � 0:5�kzh�
�

2

≈ r�2S sin2�0:5ωτ�; (D39)

where
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and
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h
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Equation (D38) and equation (D39) are time–space domain

dispersion-relation formulas by SFD modeling for 2D elastic

wave equations.

State Key Laboratory of Petroleum Resource and Prospecting

China University of Petroleum
Beijing 102249, China
wliuyang@vip.sina.com

(Y.L.)

The Institute for Geophysics
John A. and Katherine G. Jackson School of Geosciences

The University of Texas at Austin
10100 Burnet Road, R2200
Austin, Texas 78758, USA
mrinal@ig.utexas.edu

(M.K.S.)

Manuscript received 12 February 2010

Scalar Wave Equation Modeling with Finite-Difference Schemes 159

All in-text references underlined in blue are linked to publications on ResearchGate, letting you access and read them immediately.


