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Abstract The fundamental problem that we face is that a variety of
large-scale problems in security, public safety, energy, ecology, health care
and basic science all require that we process and understand increasingly
vast amounts and variety of data. There is a growing impedance mismatch
between data size/complexity and the human ability to understand and
interact with data. Visual analytic tools are intended to help reduce that
impedance mismatch by using analytic tools to reduce the amount of
data that must be viewed, and visualization tools to help understand the
patterns and relationships in the reduced data. But visual analytic tools must
address a variety of scalability issues if they are to succeed. In this paper, we
characterize the scalability and complexity issues in visual analytics. We discuss
some highlights on progress that has been made in the past 5 years, as well
as key areas where more progress is needed.
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Introduction

In 2004, the US Department of Homeland Security chartered the National
Visualization and Analytics Center™ (NVAC™) to lead the research and
development of visual analytic techniques for homeland protection. One of
the first steps in that process was the development of a long-term research
and development (R&D) agenda, which was published in the book Illumi-
nating the Path.1 The R&D agenda focused on developing visual analytic
tools to support three primary objectives: preventing terrorist attacks,
protecting borders and improving emergency response. One of the grand
challenges described in Illuminating the Path is the Scalability Challenge.
This paper examines and elaborates that challenge.

Our ability to collect data is increasing at a faster rate than our ability
to analyze it. EMC2 reports that the Digital Universe as of May 2009
contained 500 exabytes, and will double every 18 months. They also
point out that creation of digital information in 2008 exceeded the total
capacity to store it. Analysts, emergency response teams and border protec-
tion personnel have massive amounts of information available to them
from multiple sources, but the important information may be hidden
in a few nuggets. We must create new methods to allow the analyst to
examine massive, multi-dimensional, multi-source, time-varying informa-
tion streams to make effective decisions in time critical situations.

In the 5 years since the NVAC R&D agenda was proposed, some progress
has been made toward addressing scalability challenges. However, scala-
bility issues can never be fully resolved as long as the scale of the problems
keeps increasing. We need to continually discover ways to handle larger and
larger problems. Hence, the basic goals outlined in the agenda remain the
same, and much work remains. In addition, visual analytic techniques can
be applied to many domains other than homeland security. For example,
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these techniques can be used for analytic problems in the
areas of energy, the environment and basic science,3 as
well as for business intelligence and health care. As we
gain experience with visual analytic techniques, some new
scalability issues have been observed.

In this paper, we will characterize the scalability and
complexity issues in visual analytics. We will discuss
some highlights on progress that has been made in the
past 5 years, identify key areas where more progress is
needed, and describe new scalability issues that must be
addressed.

Data Characteristics

The following primitive data types contribute to informa-
tion overload for analysts.

Textual data. Massive textual data can come from docu-
ments, speeches, e-mail messages or web pages. These
data are ever increasing in volume. One target reported in
20051 was to be able to support analysis of data volumes
growing at a rate of one billion new structured messages or
transactions per hour, and one million new unstructured
messages or documents per hour. These were estimates of
what would be required in the intelligence community to
detect terrorist threats. Of course, this is a moving target
as the total amount of information acquired continues to
grow.

Numeric data. The revolution in miniaturization for
computer systems has resulted in the production of many
types of sensors. The sensors can collect numeric data
about their environment (location, proximity, tempera-
ture, light, radiation and so on), can analyze these data
and can communicate among themselves. Collections
of sensors can produce very large streaming sets of data.
Methods are needed for analyzing numeric data to effi-
ciently incorporate the data into computerized models.

Image data. Consider the data collected by satellites that
image the earth. Commercial satellites can create images
at 1-m resolution and collectively create an image of the
planet’s land surface in a very short time. New methods are
needed to permit efficient understanding of image data,
especially in the context of other types of data mentioned
here.

Video data. Video is often used to enhance the effectiveness
of high-risk security and public safety operations. Video
recording and content analysis are being used in concert
as a powerful tool for improving business processes and
customer service. New techniques must be developed to
integrate these capabilities for analyzing streaming video
data into the analyst’s toolbox.

Audio data. Consider the processing of audio from phone
calls, 911 calls, radio intercepts, radio traffic during emer-
gency response, and commercial radio and television
broadcasts. Techniques exist for word spotting in audio
streams. However, that may be insufficient as the volume

of audio data increases, because these techniques fail to
take context into account.

These primitive data types are organized into collec-
tions of various kinds (files, directories, databases and so
on). The nature of these organizations and the methods
for processing these data are discussed in the companion
paper on Data Transformations for Computation and
Visualization.4

Data present challenges not only because of their diver-
sity, volume and dynamic nature but also because data
contain errors and are ambiguous, incomplete, uncertain
and potentially intentionally deceptive. Data of multiple
types must often be analyzed in concert to gain insight.
Important data needed for correct interpretation may
be missing, but this may or may not be apparent to
the analyst. We must provide mechanisms that help the
analyst visually understand the nature of the data being
evaluated.

A grand challenge is to support the analyst in distilling
the relevant nuggets of information from widely disparate
information streams and create an information space
containing relevant information that can be used by the
analyst in reaching the most timely and well-informed
assessment of the situation. We must provide mechanisms
that can visually represent the connections between the
relevant information in the information streams and
allow the analyst to relate concept to data.

A Variety of Scalability Issues

Current technologies cannot support the scale and
complexity of the growing analytical challenge. New
techniques and underlying scientific foundations are
needed to deal with the scale of the problems we are
facing in security (threat analysis, emergency manage-
ment and border protection), global issues of energy,
the environment, basic science, health care and business
development. Issues of scale cut across every aspect of
this challenge.

When considering scalability issues, it is important
to understand the context of the development of the
computer industry as well as natural human skills and
limitations. Moore’s Law suggests that basic computer
technology performance (processor speed and memory
density) will double every 18 months. This trend has
continued for 45 years and some projections say it
will continue for at least another 5 years before funda-
mental limitations of physics are encountered.5 Recently,
graphics technology has been improving performance at
an even faster rate, doubling every 6 months.6 Much of
the future growth in computational power will come from
parallel processing, which is difficult to exploit (this issue
is discussed later in the section on computational scala-
bility). All of this added processing power and memory
density has enabled the gathering and processing of vast
amounts of data.
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However, basic human skills and abilities do not
change significantly over time. It is true that technology
advances, applied carefully, can enable us to use a higher
percentage of natural human abilities, but there are basic
limits that we are asymptotically approaching. This situ-
ation gives rise to the popular notion of information
glut. That is, we are able to access far more information
than we, as humans, can possibly process. The situation
also makes scalability issues more difficult to resolve.
In addition, analytical challenges often require coping
with, sharing, and using information at multiple scales
simultaneously. Ultimately, large-scale problems have to
be reduced to a scale that humans can comprehend and
act on.

Scale may bring opportunities as well. For example,
increased scale may help reduce uncertainty of an
emerging situation by providing more evidence to
either confirm or deny hypotheses. Large data volumes
allow analysts to discover more complete informa-
tion about a situation. As a result, analysts may be
able to determine more easily when expected informa-
tion is missing; sometimes the fact that information is
missing offers important clues in the assessment of a
situation.

Here, we consider five of the major scale issues that
must be addressed: information scalability, visual scala-
bility, display scalability, human scalability and computa-
tional scalability.

Information Scalability

Information scalability implies the capability to extract
and make sense of relevant information from massive
data streams. Methods of information scalability include
methods to filter and reduce the amount of data,
techniques to represent the data in a multi-resolution
manner and methods to abstract the data sets. The
companion paper on Data Transformations for Compu-
tation and Visualization4 discusses these methods and
techniques, as well as the challenges that must be
overcome.

A second form of information scalability has to do with
the rate of change of the information. Many existing
systems are dynamically updated as data change, but
published techniques only deal with modest rates of
change. There are two issues that must be addressed with
changing data; the new data must be assimilated into the
current views the analyst is using, and in some cases, the
analyst must be made aware of what has changed. Existing
techniques can do both if the rate of change is modest.
But, suppose the rate of change radically increased, going
from several thousand new data elements per day to
several million. Existing techniques would have difficulty
keeping up with such a large volume of change, and
would also fail to show the analyst what had changed.

Finally, information presentations must be scaled
or adapted to the audience. For example, an analyst’s

presentation to other analysts will contain far more
detail than the summary analysis presented to senior
management. Current techniques require that this be
done manually in an ad hoc fashion. In fact, current
practice often involves copying or abstracting parts of
an analysis from tools designed for analysis to different
tools designed for presentation. One problem with this
approach is that during a presentation, there may be
limited (or no) tools available to show details of how an
analysis was done, or to explore alternatives. An integra-
tion of analysis and presentation tools would improve
the process. The Scalable Reasoning System7 is a recent
example of a system that integrates analysis and dissemi-
nation, as well as provides a means of scaling or adapting
the analysis/presentation to the audience.

Relevant information may appear at a variety of scales;
the user must be able to change between scales in a
way that is easy to understand and track, and must be
able to understand cross-scale interactions. We must
be able to handle a wide range of dynamic change,
and develop systems that semi-automatically scale or
adapt information presentations to match a target
audience.

One notable recent advance reported by Ingram et al.8

is Glimmer, a multi-level algorithm for multi-dimensional
scaling (MDS) designed to run on modern graphics
processing unit hardware. MDS is a key technique for
reducing high-dimensional data onto a low-dimensional
target for presentation. The use of MDS has been some-
what limited because it has been too slow for interactive
use when the number of dimensions is scaled up. The
Glimmer approach increases speed by a factor of 10–15
for large data sets, making it possible to use MDS inter-
actively on larger data sets. More advances like this are
needed.

Visual Scalability

Visual scalability is the capability of visualization repre-
sentation and visualization tools to display effectively
massive data sets, in terms of either the number or the
dimension of individual data elements.9 Factors affecting
visual scalability include the quality of visual displays,
the visual metaphors used in the display of information,
the techniques used to interact with the visual represen-
tations, and the perception capabilities of the human
cognitive system.

Ware10 argues that the optimal display is a 4000×4000
pixel resolution monitor, based on human perceptual
capabilities such as visual acuity and spatial contrast
sensitivity. If each of those 16 million pixels represented
one data element, the viewer would see a black screen.
If the visual representation of the information requires
showing links or labels, as well as separation of the indi-
vidual objects, then perhaps a few tens of thousands of
data elements could be displayed on such a display. For
most user tasks, the effective number of data elements
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that can be displayed is probably much smaller. So, the
fundamental problem of visual scalability is how to visu-
ally represent a very large number of data elements in a
much smaller number of visual display elements, so that
the user’s task can be performed. Some user tasks can be
addressed by filtering the data and showing only the most
relevant data; this is information scalability. Other tasks
require showing an overview of all of the data (or a very
large part of the data) so that large-scale relationships can
be seen; this is visual scalability.

Most published techniques in the field of information
visualization handle data sets with hundreds to thou-
sands of elements. Some techniques can scale to handle
tens of thousands of elements and a very few can handle
hundreds of thousands up to one million elements. The
InfoVis 2003 Contest focused on the problem of visual-
izing and comparing large hierarchies. The best technique
was TreeJuxtaposer,11 which could handle two trees
of about 100 000 elements and one tree up to 500 000
elements. TreeJuxtaposer used a technique called Accor-
dion Drawing. Later work reported by Beerman et al.12

extended these ideas in a system called TJC, to support
browsing trees up to 15 million nodes.

However, as described previously, some extreme situ-
ations may demand the processing tens of millions of
new documents per day, with a total database size of tens
of billions of documents. It is reported that at least one
existing database has 120 billion documents.1 It seems
likely that these database sizes will increase over time.
Clearly the current state of the art is far from being able
to visually represent today’s data collections, and the
need will continue to grow. New techniques are needed
to bridge this gap.

One notable recent advance on visual scalability was
reported by Chan et al.13 at VAST 2008. The authors
describe ATLAS, a visualization tool for temporal data that
enables interactive access to a network traffic data set of
more than one billion records. They accomplish this by
combining high-performance database technology with
predictive caching and level of detail management. This
approach is limited in the kinds of visual analytic tasks
that can be performed rapidly. For example, searching for
interesting patterns across time periods cannot be done
effectively with predictive caching. Hence more work
is required to support the full range of analytic tasks
interactively on large data sets.

Another example of recent work in visual scalability
is the GreenGrid visualization for electric power grid
analytics, reported by Wong et al.14 While the North
American power grid has about 50 000 electrical buses,
losing 10 of these can generate an enormous number
(1040) of scenarios to analyze. GreenGrid uses a weighted
force-directed multi-level graph visualization to enable
visual analysis of problems at this scale. The system
demonstrates how a combination of node and link
weighting can make visual analysis significantly easier
than the traditional geographic visualization of the
power grid.

Display Scalability

Most published visualization techniques are designed for
one size display, generally a desktop display (typically
1280 × 1024 pixels). We need to develop techniques that
scale to a variety of display form factors to take advan-
tage of whatever capabilities are available to support
analysis and collaboration. Tools should be able to make
effective use of everything from a wall-sized display in an
emergency response situation room to a personal digital
assistant (PDA) or phone-sized display in the hands of a
first responder in the field. Studies need to be done to
determine how to display information effectively, partic-
ularly on small displays.

One recent exploration of display-scale independence
was reported by Smith et al.15 in a description of FacetMap,
a scalable browser for faceted data. FacetMap is designed
to work on any size display, adapting its information
layout to reveal more information with larger displays.
The same visual representation and interaction tech-
niques are used for all display sizes. This works well
until you get down to PDA or phone-sized displays,
where the amount of information displayed requires
too many interactions to be effective. FaThumb16 was
an alternative facet-based interface for mobile devices
with a numeric keypad. It was optimized for the small
display. Display scale-independence reduces the need for
retraining or learning multiple systems for different-sized
displays. However, the experience with FacetMap and
FaThumb suggests that effectiveness of systems for very
small displays is perhaps more important than display
scale-independence.

One thread of recent research has begun to examine
the issues of information visualization specifically on
large displays. Recent work by Yost et al.17 has shown
that displays larger than visual acuity (for example, wall
sized), and requiring physical navigation, can be more
effective and preferred over smaller displays for some
tasks, if the appropriate visualization techniques are used.
This is a surprising result, as the larger displays require
more complex interaction techniques, including physi-
cally moving in order to see and interact with parts of
the display.

Another example of recent work on display scalability
has to do with table displays (also known as surface
computing). Isenberg18 is exploring the use of table
displays for interacting with and sharing information
visualizations during collaboration of small collocated
teams. As with large displays, surface computing requires
exploration of new interaction techniques, including
more use of gestures. This is also an example of human
scalability work, which is further discussed next.

Human Scalability

Although human skills and abilities do not scale (that
is, they are relatively fixed), the number of humans
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involved in analytical problem-solving activities does
scale. Most published techniques for supporting analysis
are targeted for a single user at a time. We must develop
techniques that gracefully scale from a single user to a
collaborative (multi-user) environment. Much of the rele-
vant collaboration research is focused on small groups of
collaborators (two or three people). In the scenarios we
envision, users may be collaborating from within the same
team in an organization, at different levels of an organi-
zation or even in different organizations. Each of these
cases has its own set of problems that must be solved.
One scenario might involve a number of first respon-
ders, several regional emergency management centers
and a national emergency management center – that
is, dozens of users collaborating through the use of shared
analytical tools and focusing on different levels of infor-
mation accessible by everyone involved.

Collaboration issues extend beyond analytical problem-
solving activities to decision-making processes. Decision
making for an individual or a small team is straight
forward compared to the complexity that arises for coor-
dinated decision making in multiple teams, especially if
these teams are from different levels of an organization or
from different organizations. Visual analytic tools must
support the decision-making processes even in these
complex situations.

One recent exploration of human scalability is the
Many Eyes website,19 launched in 2007 to enable users
to do collaborative analysis by uploading data, creating
interactive visualizations and annotating others’ work to
engage in discussions. Another web-based collaborative
visualization and analysis system is Swivel,20 launched
in late 2006. Although Many Eyes provides a much richer
set of visualizations than Swivel, it lacks Swivel’s ability
to mash up parts of multiple data sets. Kosara21 provides
an informal comparison of these two social visualization
systems. Both systems seek to make data available to,
gain insights from, and share insights with a very large
and diverse set of web users. Note that both of these
systems involve asynchronous collaboration and anal-
ysis. Synchronous collaboration involves many of the
same issues, but often requires the addition of some form
of turn-taking or floor control to ease the interactions
between the people involved.

Computational Scalability

The National Science Foundation has an ongoing 5-year
goal for high performance computing to enable petascale
computing (1015 operations per second) for investiga-
tions of computationally challenging problems in science
and engineering by the year 2010.22 In 2007, three
Town Hall meetings were held to discuss the challenges
of developing exascale computing (1018 operations per
second) to address global issues of energy, ecological
sustainability, basic science and security,3 The belief is
that general-purpose exascale computing will be techno-

logically feasible within the next 15 years. These systems
are likely to have 10–100 million processing elements or
cores. Adoption of 1000-processor multi-core systems will
require a substantial revolution in software and program-
ming techniques for a workforce that has inadequate
parallel programming skills. Current code, algorithms,
tools and visualization approaches will not work at the
exascale level without a paradigm shift.

The report of the exascale computing Town Hall
Meetings3 discusses many of the same topics that we
discussed earlier. However, some issues change as we
approach petascale and then work towards exascale
computing. For example, in reference to handling massive
data sets, the report observes, ‘Data can be the result of
an exascale simulation that must be post-processed for
human interpretation, or it can form the input to complex
problems via data assimilation. Browsing or looking at
data is no longer possible as we near a petabyte. To visu-
alize 1% of 1 petabyte at 10 MB/s takes 35 workdays. There
is an enormous need for methods to dynamically analyze,
organize, and present data by variability of interest’.

In reference to mathematics for data analysis, the
report states, ‘A particular gap exists in the mathematics
needed to bring analysis and estimation methodology
into a data-parallel environment. Parallel linear algebra
methods go a long way toward enabling data-parallel
analysis, but they do not solve it, just as they would not
solve a climate simulation problem. For example, the
standard principal component analysis computation does
not become data-parallel with a parallel singular value
decomposition (SVD) solver, even though the SVD is the
core computation in that analysis. Data-parallel solutions
for applications on exascale resources will require new
mathematics that considers an entire estimation problem
for developing scalable data-parallel algorithms in data
analysis’.

Exascale applications will generate several terabytes
of data per second. Because it is not practical to store
raw data generated at such a rate, dynamic reduction of
data by incremental summarization, subset selection and
other filtering methods will be necessary. For exascale
computing, visual analytic methods will be critical for
handling the growing impendence mismatch between
the size/complexity of data and an analyst’s ability to
understand and interact with that data.

Other Scalability Issues

In addition to the five major scalability issues just
discussed, there are a number of other scalability issues
that must ultimately be addressed.

Software scalability. The capability of software systems to be
configured to interactively manipulate data sets of various
sizes is called software scalability. This includes the gener-
ation of new algorithms that scale to the ever-increasing
information sets that we generate today. We wish to
avoid the hidden costs that arise when we build and
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maintain monolithic, non-interacting, non-scalable soft-
ware models.

Temporal scalability. Sensemaking often involves temporal
reasoning and may require handling data at different time
scales. For example, it may be necessary to understand
long-term patterns by looking at data over a period of years
or even decades and simultaneously understand near-term
effects by looking at data over a period of hours or less.
Moreover, it may be necessary to integrate and perform
correlative analysis on data collected at different temporal
scales based on acquisition technology. For instance, in
understanding fundamental principles of rain formation
in clouds, it may be necessary to integrate data collected
1000 times per second with data collected every several
minutes (radar data), and this information may then feed
into climate models that work on the scale of years and
decades.

Cross-scale issues. Tools are needed that scale to handle
‘systems of systems’. These problems are common in
science and engineering and may require analysis and
combination of data across scales. For example, macro-
biology analysis may require understanding the inter-
actions of data simultaneously at the genome, protein,
cell, organ, human, country and ecosystem levels. Cancer
care treatment requires understanding and integrating
data from the biomarker level (for example, integrating
metabolics, lipidomics, genomics and proteomics data
already at multiple scales), cancer processes at the organ
level, environmental exposure, and socioeconomic factors
that affect the success and completion of treatment
regimens.

Privacy and security issues. Cutting across many scalability
issues are concerns with privacy and security, particularly
when scaling to multi-user environments. Data privacy
and security laws and policies must be adhered to rigor-
ously, which means that software must address challenges
such as protecting information from inappropriate access,
down to the data item and individual user level. While this
may appear to be a universal problem, it is exacerbated
by the human scalability problem. For example, when the
analytic team involves multiple organizations, some of
the data and analysis may not be accessible to everyone
involved in the analysis, making the analysis more chal-
lenging and potentially making the results less accurate.

Language issues. Scalability issues also arise in dealing
with geographically dispersed teams speaking different
languages or using different terminology within the
same language, and working across teams of people with
differing expertise. This is an extension of the human
scalability problem. As analytic teams grow in size and
become more geographically dispersed, the chances
increase that team members will not be using the same
terminology or even speaking the same language. Recog-
nition of the potential problem is essential; some form of
translation may be needed to resolve the problem.

Conclusion

The fundamental problem that we face is that a variety
of large-scale problems in security, public safety, energy,
ecology, health care and basic science all require that we
process and understand increasingly vast amounts and
variety of data. There is a growing impedance mismatch
between data size/complexity and human ability to under-
stand and interact with those data. Visual analytic tools
are intended to help reduce that impedance mismatch by
using analytic tools to reduce the amount of data that
must be viewed (for example, by filtering, summarization
and abstraction), and visualization tools to help under-
stand the patterns and relationships in the reduced data.
But visual analytic tools must address a variety of scala-
bility issues if they are to succeed.

Scalability and complexity issues in visual analytics are
themselves quite complex and intertwined. In many cases,
what an analyst needs most are simple visualizations of
the right subset of the data. This is the information scal-
ability problem; how do you extract the relevant data
from a massive stream of data? In other cases, the key
insight sought by an analyst requires viewing an overview
of the data. This is the visual scalability problem; how do
you visualize enormous amounts of data? In either case,
the analyst or user of the visual analytic tools may be
using those tools on different display devices at different
times. The display scalability problem addresses this issue;
how do you avoid learning a different system for each
size display you work with? As we deal with larger-scale
issues, it is often necessary to collaborate on analysis.
This leads to the human scalability problem; how do we
design visual analytic tools that can gracefully scale from
a single user to a collaborative multi-user environment?
These tools are all built on a computing infrastructure that
is currently approaching petascale capability. Projections
indicate that over the next 15 years, exascale computing
will become possible. However, it is highly likely that
exascale computing will require a paradigm shift in our
approach to computing, as it will be highly parallel. This
leads to the computational scalability problem; how do
we redesign our analysis and visualization tools for exas-
cale computing?

There is no formal research program on scalability
issues in visual analytics. Rather, the problems are typi-
cally addressed in other visual analytics research and
development where the specific scalability issues create a
roadblock. Hence, some areas have received more atten-
tion than others. The areas that have received the most
attention are information scalability for methods to filter
data, and visual scalability. However, the solutions to
date are point designs that solve specific problems. The
areas that have received the least attention are infor-
mation scalability for large-scale dynamic change, infor-
mation presentation scaling, display scalability, human
scalability and computational scalability. While we must
continue to develop point designs that address specific
scaling issues that block other visual analytics research
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and development, we also need to work on systematic
solutions to the broader set of scalability issues.

Many of these scalability issues were posed in the NVAC
R&D agenda published in Illuminating the Path1 5 years
ago. The basic issues published then remain the same,
with the addition of several new issues (computational
scalability, temporal scalability and cross-scale problems).
Although some progress has been made on many of the
goals, dealing with scalability and complexity issues in
visual analytic tools will continue to be a challenge as long
as the volume of data continues to grow as it has.
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