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Abstract. Segmenting dendritic trees and corneal nerve fibres is chal-
lenging due to their uneven and irregular appearance in the respective
image modalities. State-of-the-art approaches use hand-crafted features
based on local assumptions that are often violated by tortuous and point-
like structures, e.g., straight tubular shape. We propose a novel ridge de-
tector, SCIRD, which is simultaneously rotation, scale and curvature in-
variant, and relaxes shape assumptions to achieve enhancement of target
image structures. Experimental results on three datasets show that our
approach outperforms state-of-the-art hand-crafted methods on tortu-
ous and point-like structures, especially when captured at low resolution
or limited signal-to-noise ratio and in the presence of other non-target
structures.

1 Introduction

Segmenting automatically curvilinear structures such as blood vessels, dendritic
arbors, or corneal nerve fibres has been the subject of much research as a funda-
mental pre-processing step, e.g. for lesion quantification and evaluation of ther-
apy progress [1–9]. Most of the methods estimate a local tubularity measure (e.g.
vesselness in [2,9]) based on hand-crafted features (henceforth, HCFs) modelling
local geometrical properties of ideal tubular structures; enhancement filters are
then built based on such models [2,3,5,9]. Recently, combining hand-crafted and
learned filters, or using HCF in the learning process, has been shown to improve
detection [7, 8]. It is therefore important to identify HCF sets leading to high
detection performance, to be used either separately or in combination with learn-
ing; this is the purpose of this paper. While HCF methods are typically fast, they
are based on assumptions that might be violated in some cases. For instance,
highly fragmented and tortuous structures violate two usual assumptions of most
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HCF models, i.e. continuous and locally straight tubular shapes. While discon-
tinuity can be addressed by elongated kernels (e.g., Gabor [3]), no hand-crafted
ridge detector for non-straight tubular shapes has been proposed so far. Here
we present a novel hand-crafted ridge detector, SCIRD (Scale and Curvature
Invariant Ridge Detector) which is simultaneously rotation, scale and curvature
invariant, and removes the assumption of locally straight tubular structures by
introducing a curved-support Gaussian model (Figure 1). Our tubularity measure
is obtained by convolving the image with a filter bank of second-order directional
derivatives of such curved-support Gaussians. To cope with irregular, point-like
structures, we generate a subsets of directionally elongated kernels, similar to
a Gabor filter bank [3]. Experimental results on three challenging datasets [7]
show that our approach outperforms state-of-the-art HCF methods on tortuous
structures.

2 Methods

Curved-Support Gaussian Models. Our HCF model is inspired by the
curved-Gaussian models introduced by Lin and Dayan [10] who analyzed the
correlation between currencies in time (exchange rate curvature analysis). Con-
sider a multivariate zero-mean (n-D) Gaussian function with diagonal covariance
matrix,
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where ϕ = (ϕ1, ϕ2, . . . , ϕn) represents a point in the {ϕ} coordinate system,
and σ = (σ1, σ2, . . . , σn) describes its amount of dispersion around the average
(set to 0 without loss of generality). To bend the support of this Gaussian,
we consider a volume-preserving non-linear transformation T : Rn �→ R

n with
T (x) = ϕ = (ϕ1, ϕ2, . . . , ϕn) of the form

ϕn = xn +

n∑

i=1

knimni(x1, x2, . . . , xn−1) (2)

where kni are weights (see below) and the non-linear functions mni(x1, x2, . . . ,

xn−1) (and their inverses) have continuous partial derivatives [10]. Now, using
the change of variable theorem, the non-linear transformation of the normalised
G(ϕ;σ) in the {ϕ} coordinate system will be already normalised in the new {x}
coordinate system since the transformation considered is volume-preserving. In
the 2-D case (i.e. n = 2), the application of the transformation T to G(ϕ;σ) in
Eq. (1) leads to the curved-support bivariate Gaussian function:
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If we now consider quadratic non-linear functions mni = x2

i for 0 < i < n

and mn0 = 1, some of the parameters kni have the intuitive interpretation of
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Fig. 1. An example of our “curved” shape model (left), its gradients map (centre) and
the derived filter used to detect tortuous and point-like structures (right).

curvatures [10]. In fact, we observe that k11 controls the elongation imbalance
of the shape (i.e. k11 �= 0 makes one side tail longer than the other), k21 its
curvature and k20 is simply a translation parameter. We are now in a position
to define our shape model:
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where (x1, x2) is a point in the principal component coordinate system of the tar-
get structure 1, (σ1, σ2) control the elongation of the shape (“memory”) and its
width, respectively; in fact, the first term of Γ (x1, x2;σ, k) controls the longitu-
dinal Gaussian profile of the model, while the second controls the cross-sectional
Gaussian profile. We set k11 = 0 and k20 = 0. Importantly, we add a new param-
eter, k, to control the curvature of the Gaussian support (see Figure 1 - left).

Unsupervised SCIRD. Various detectors of tubular image structures compute
the contrast between the regions inside and outside the tube or ridge [2,3,9]. We
extend this idea to curved-support Gaussian models by computing the second-
order directional derivative in the gradient direction at each pixel.

Let I(x, y) represent the grey-level of a monochrome image at the location
(x, y) in image coordinates. The grey-level at this location can be expressed

using the first-order gauge coordinate system (v,w), where w = ∇I(x,y)
‖∇I(x,y)‖ and

v = w⊥. Our “curved tubularity” measure is

Iww(x, y) = Dw [DwI(x, y)] = Dw

[
wT∇I(x, y)

]
� wTHIw, (5)

where Dw is the directional derivative operator along w.

HI =

[
Ixx(x, y) Ixy(x, y)
Iyx(x, y) Iyy(x, y)

]

(6)

1 Notice that this formulation requires a prior knowledge of the structure orientation.
Later, we remove this constraint using multiple rotated kernels.
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is the Hessian matrix, and ∇I(x, y) = [Ix(x, y), Iy(x, y)]
T is the gradient of

I(x, y). Substituting Eq. (6) in Eq. (5):

Iww =
(IxIxx + IyIyx)Ix + (IxIxy + IyIyy)Iy

I2x + I2y
. (7)

where we have omitted arguments (x, y;σ, k) for compactness. However, comput-
ing these differential operators separately and then combining them is very ex-
pensive; hence we differentiate by convolving with derivatives of curved-support
Gaussian, which simultaneously smooths noise [2]. This leads to an efficient
tubularity enhancement filter:

Iww(x, y;σ, k) = I(x, y) ∗Kww(x, y;σ, k), (8)

where Kww represents our tubularity probe kernel (see example in Figure 1 -
right):

Kww =
(Γ̃xΓxx + Γ̃yΓyx)Γ̃x + (Γ̃xΓxy + Γ̃yΓyy)Γ̃y

Γ̃ 2
x + Γ̃ 2

y

. (9)

Here, Γ̃ is a curved-support Gaussian model (our model) with a constant (i.e.
non-Gaussian) longitudinal profile, whose gradient direction is orthogonal to the
centreline (Figure 1 - centre). To achieve scale and curvature invariance in the
discrete domain, we create a filter bank from multiple kernels generated by mak-
ing σ2 and k span scale and curvature range for the specific application at hand.
Rotation invariance is obtained augmenting our filter bank with kernel replicas
rotated by angles θ ∈ [0, 2π), i.e., symbolically, Kww(x, y;σ, k, θ). Fragmented
(point-like) structures are dealt with by tuning the “memory” parameter σ1 (see
Section 3 for how to tune σ1). Figure 2(a) shows some of the kernels used in our
experiments. Finally, SCIRD selects the maximum response over all kernels. No-
tice that since we are interested in ridge-like structures, we set SCIRD(x, y) = 0
for all (x, y) locations such that SCIRD(x, y) < 0 [2].

We observed that in some cases, e.g. in vivo confocal microscopy, non-linear
contrast variations across the image can make interesting structures appear thin
and poorly contrasted. In other cases, e.g. bright-field micrographs, such struc-
tures may not be interesting and therefore they should not be enhanced. To
address this, we introduce a contrast normalization term and a parameter α ∈ R

that is positive in the former case (enhancement required) and negative in the
latter, obtaining

SCIRD(x, y) =

max
σ,k,θ

Iww(x, y;σ, k, θ)

1 + α IC(x, y)
, (10)

where
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is a contrast measure based on multiscale gradient magnitude estimation aver-
aged on a patch (N+1)× (N+1) around the pixel (x, y). Notice, N is not a free
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parameter, but the width (and height) of the largest filter in the SCIRD filter
bank (N = 8σ2max)

2. Since SCIRD is designed to respond maximally at the
centreline, it can be employed for both curvilinear structure segmentation and
centreline detection. The former is achieved, e.g., by thresholding directly the
tubularity map obtained from Eq. (10). The latter is achieved, e.g., by Canny-like
non-maxima suppression.

Supervised SCIRD. Segmentation and centreline detection using unsuper-
vised SCIRD can be improved by introducing a supervised classifier. Hence, we

combine n feature maps (I
(i)
ww, i = 1, . . . , n) obtained using our filter bank with

unsupervised SCIRD to form a feature vector f :

f =
[

SCIRD, I(1)ww, I
(2)
ww, · · · , I

(n)
ww

]T

. (12)

We employ a Random Decision Forest [7,11] to classify each pixel. Thresholding
directly the resulting probability map (which can be seen as a tubularity map)
leads indeed to a more accurate and less noisy segmentation (see precision-recall
curves in Section 3). Supervised centreline detection is obtained using Canny-like
non-maxima suppression on the tubularity map. As local orientation for both
supervised and unsupervised centreline detection we choose that of the kernel
responding maximally.

3 Experiments and Results

Datasets. We validate SCIRD on 3 datasets including low and high resolu-
tion images of corneal nerve fibres and neurons, showing very diverse curvilinear
structures as illustrated in Figure 2(b). IVCM [1] is a dataset of 100 384× 384
confocal microscopy images of the corneal subbasal nerve plexus with different
grades of tortuosity. Nerve centrelines were manually traced by a specialist as
ground truth. Low resolution, non-uniform and poor contrast, tortuosity, and
fibre fragmentation make this dataset particularly challenging. As usually done
to evaluate methods extracting onepixel-wide curves [12], we introduce a tol-
erance factor ρ: a predicted centreline point is considered a true positive if it
is at most ρ distant from a ground truth centreline point. In our experiments
we set ρ = 2 pixel. Following the usual benchmarking procedure [7], we aver-
age performance measures over 10 random sub-sampling cross-validation runs,
using 50 images for training and the rest for testing in each run. The resulting
precision-recall curves are reported in Figure 4 (mean and standard deviation
of the results from individual runs). The BF2D dataset [7] consists of two min-
imum intensity projections of bright-field micrographs that capture neurons,
annotated by an expert. The images have a high resolution (1024 × 1792 and
768×1792) but a low signal-to-noise ratio because of irregularities in the staining
process; the dendrites often appear as point-like (fragmented) structures easily
mistaken for noise. As a consequence, the quality of the annotations themselves is

2 Source code available at http://staff.computing.dundee.ac.uk/rannunziata/.

http://staff.computing.dundee.ac.uk/rannunziata/
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(a) (b)

Fig. 2. (a) A subset of SCIRD filters used in our experiments. Notice, the model
includes straight support too; (b) original images (top), supervised SCIRD tubularity

maps (bottom) from IVCM (left), BF2D (centre), VC6 (right) testing sets.

limited [7]. We adopted the same set partition described in [7]. The VC6 dataset
was created by the authors in [7] from a set of publicly available 3D images show-
ing dendritic and axonal subtrees from one neuron in the primary visual cortex.
It consists of three images obtained computing minimum intensity projections of
a subset of 3-D images, with numerous artifacts and poor contrast, hence chal-
lenging for automatic segmentation. We retained two images for training and
the third one for testing, adopting the same set partition in [7].

Parameters Setting. SCIRD’s key parameters are σ1, σ2 and k controlling the
filter memory, width and curvature, respectively. The ranges of σ1 over datasets
were chosen considering the level of fragmentation. We set σ2 values taking
into account the maximum and minimum width of the target structures in each
dataset as they depend on resolution; curvature values were set according to
the level of tortuosity shown by the specific curvilinear structures. The contrast
normalisation parameter α was set as discussed in Section 2. We set the range
of θ and k for all the datasets: θ =

{
π
12 ,

π
6 , · · · , 2π

}
, and k = {0, 0.025, · · · , 0.1}.

We set other parameters separately, given the significant difference in resolution
between datasets. For the IVCM, σ1 = {2, 3, 4}, σ2 = {2, 3}, α = 1; for the BF2D
dataset, σ1 = 5, σ2 = {2, 3, 4}, α = −0.075; for the VC6, σ1 = 3, σ2 = {2, 3},
α = 0. For the supervised SCIRD, we used the same range of θ and k, but we
doubled the discretisation steps for computational efficiency. We trained Random
Forests with the number of decision trees and maximum number of samples in
each leaf set using the out-of-bag error. We randomly selected 50, 000 pixels from
the training set for each dataset. Parameters for SCIRD and baseline methods
were tuned separately to achieve their best performance on each dataset to
provide a fair comparison.

Results and Discussion. We compare SCIRD against 3 HCF ridge detectors:
Frangi [2], based on Hessian matrix eigenvalue analysis, Gabor [3] and the recent
Optimally Oriented Flux (OOF) [5], widely acknowledged as excellent tubular
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Fig. 3. Qualitative comparison: tubularity estimation results on IVCM. SCIRD (our
approach) shows better connectivity and higher signal-to-noise ratio than others.

Fig. 4. Precision-recall curves for SCIRD and baselines on IVCM, BF2D and VC6
datasets. Curves are obtained applying different thresholds on the tubularity maps.

structure detectors. Qualitative (Figure 3) and quantitative (Figure 4) results
show that SCIRD outperforms the other methods on all datasets. Specifically,
SCIRD shows higher precision from medium to high recall values for the IVCM
dataset, suggesting that our filters behave better than others at low resolution
and low SNR when dealing with tortuous and fragmented structures. The low
number of false positives when false negatives are low, implies that SCIRD se-
lects target structures with higher confidence. Notice that contrast enhancement
(“SCIRD α �= 0”, α = 1) boosts performance on this dataset achieving the level
of performance obtained in the supervised setting (“SCIRD, RF”), at a lower
computational cost. For the BF2D dataset, unsupervised SCIRD shows a sig-
nificant improvement from low to high recall values, suggesting that fewer non-
target structures are detected and targets are enhanced with higher accuracy
(e.g. point-like structures are correctly reconnected, tortuous structure profiles
are better preserved). Contrast reduction (“SCIRD α �= 0”, α = −0.075) proves
helpful for these images. Supervised classification improves performance further.
For the VC6 dataset, SCIRD shows better performance from low to medium
recall values, indicating a better discrimination between curvilinear structures
and artifacts, in addition to a more accurate profile segmentation for tortuous
structures. Contrast enhancement did not help for this dataset, while supervised
classification contributes significantly to improve results. The time to run SCIRD
on Intel i7-4770 CPU @ 3.4 GHz and MATLAB code is 0.86s (IVCM), 0.62s
(VC6) and 8.75s (BF2D). Since SCIRD is highly parallelizable the time to run
can be reduced further.
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4 Conclusion

We designed a novel HCF ridge detector based on curved-support Gaussians,
which is simultaneously invariant to orientation, scale, and, unlike its peers,
curvature invariant. Experimental results show that SCIRD outperforms current
state-of-the-art HCF ridge detectors on 3 challenging datasets, two of which used
in the recent literature for similar methods. Our future work will investigate the
combination of SCIRD with learned filters (e.g. [13]) in order to capture or
discard structures difficult to model (e.g. crossings and artifacts).
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