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ABSTRACT Counting and localization of people in videos consisting of low density to high density crowds

encounter many key challenges including complex backgrounds, scale variations, nonuniform distributions,

and occlusions. For this purpose, we propose a scale driven convolutional neural network (SD-CNN) model,

which is based on the assumption that heads are the dominant and visible features regardless of the density of

crowds. To deal with the problem of different scales of heads in different regions of the videos, we annotate a

set of heads in random locations of the videos to develop a scale map representing the mapping of head sizes.

We then extract scale aware proposals based on the scale map which are fed to the SD-CNN model acting

as a head detector. Our model provides a response matrix rendering accurate head positions via nonmaximal

suppression. For experimental evaluations, we consider three standard datasets presenting low density to

high density crowd scenes. Our proposed SD-CNN model outperforms the state-of-the-art methods in terms

of both frame-level and pixel-level analyses.

INDEX TERMS Convolutional neural networks, non-maximal suppression, head detection, crowd counting,

motion analysis.

I. INTRODUCTION

With increase in population and rapid urbanization, crowd

occurrences are regularly observed in the form of concert,

political and religious gatherings. Although these gatherings

serve peaceful purposes, yet present a lot of problems to

security agencies and management. To ensure public safety,

it is critical to understand crowd dynamics and congestion

circumstances at crowded scenes [16], [39]. Crowd analysis

can be used in numerous applications, for example, in detect-

ing critical crowd levels, detecting anomalies, and tracking

individuals or group of individuals. Among them, the most

important and emerging application is to count the number of

people in the scene.

The problem of crowd counting is to estimate the num-

ber of people attending the event or participating in politi-

cal or religious gathering. This type of information is also

very important for both political and safety point of view.

Crowd counting can provide useful piece of information

that could provide support in future event planning and
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public space design. Moreover, crowd counting can substan-

tially reduce the cost by deploying exact number of security

personnel required for public safety and security. Though

crowd counting has numerous applications and has become

the prime focus of many researchers, acquiring information

about the localization of people in high density images has

received least attention from the research community. The

problem of localization is to find the exact location of the

people in the scene. With the localization information, one

can find out the distribution of people in the environment

which is very crucial for crowd managers. Moreover, local-

ization information can be used to detect and track [38] a

person in dense crowds. Localization can provide an aide

in generating the ground truth data that can be used to

rectify counting errors generated by automated counting

algorithms. Localization information provides the estimated

locations (bounding boxes or dots) of the individuals in

the image and the analyst can easily find and rectify the

errors by removing false positives. This process can pro-

vide huge support to the coders for annotating high density

images efficiently and effectively which is very tedious and

hectic job.
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Accurate crowd counting and localization are essential to

handle large crowds for public safety. Most of the exiting

crowd counting methods [2], [33], [37], [42], [43] are regres-

sion based that estimate the crowd count via regression of

density maps. However, these methods only estimate count,

they cannot localize individual pedestrian and therefore can-

not produce the distribution of pedestrians in the environ-

ment. On the other hand, traditional methods [3], [14], [41]

estimate the count via detecting individual pedestrians in the

scene. These methods perform well in low density situations,

where all parts of the pedestrian are fully visible. However,

the performance of these method degrade when applied in

high density situations. This attribute to the severe occlusion

and clutter in the scene due to which most parts of the human

body are not visible. In high density situations, where the

people stand very close to each other and due to the half body

occlusions, head is the only visible part. Although several

strides have been made in human head detection [20], [30],

[32] during the recent years, head detection in the images

is still a challenging task. Due to variation in scales and

appearances of heads, it remains a big problem to precisely

distinguish human heads from the background. Moreover,

the smaller sizes of the human heads make the problem even

worse.

Generally, most of the state-of-the-art methods treat head

detection as object detection problem. Object proposal gen-

eration is a pre-processing step and has been widely used in

modern object detection pipelines. Object proposals are used

to guide the search of objects and avoid exhaustive search

across all the image locations. Recent methods use low-level

image cues, such as saliency, gradient and edge informa-

tion [8], [36], [46] to hypothesize objects in images. Later

on, DeepBox [18] improved the proposals by re-ranking

the object proposals generated by EdgeBox [46]. In Deep-

Proposal [11] method, object proposals are generated by an

inverse cascade from the final to the initial layer. Multi-

Box [23] extracts object regions by bounding box regression

based on CNN features maps. However, person scenes and

images are usually complex and have large variations in

scales, appearances, and human poses. Consequently, the cur-

rent state-of-the-art region proposal methods are less effec-

tive and usually results in low recall rates when applied

to complex scenes. To address this problem, we propose a

different strategy for generating object proposals to detect

human heads in multiple scales. Our framework consists of

the following three major components:

1) We generate scale-aware object proposals by gener-

ating a scale map. Scale map is generated by first

sampling random person positions and then compute

perspective values for each sampled position based on

their relation to person’s head size and then a linear

regression is applied to fit the sampled values in each

image based on the perspective geometry.

2) The second part is an object proposal classification net-

work, which classifies each proposal into two classes

(head/background).

3) Non-maximal suppression is applied to the response

matrix and final detection results are produced at the

original resolution. The response map is a matrix

with resolution equal to the size of input image and

obtained after processing all the proposals. The values

of response map represent the classification score of all

input proposals.

Comparing to other state-of-the-art methods, our frame-

work has the following contributions:

• Ability to count and localize human heads in both low

density and high density crowd images.

• Handles scale variations by generating scale-aware pro-

posals.

• Generates density maps (response maps) which give the

distribution of humans in the scene.

• Unlike previous crowd counting models that only esti-

mate the crowd count, our method handles counting and

localization problems simultaneously.

We perform extensive experiments on standard bench-

marks datasets, i.e, UCSD dataset [4], and World-

Expo’10 [42] and UCF-CC-50 [13] to show the superiority

of our approach over state-of-the-art methods.

II. RELATED WORKS

Deep learning has achieved tremendous success in the recent

years. In the literature, various deep learning models are

proposed for image segmentation, object classification and

detection with excellent results. Inspired by the success of

deep learning, the CNN models have been proposed in litera-

ture to estimate the count of people from the image. Generally

deep learning models for crowd counting can be classified

into two major categories, 1) Regression based methods,

2) Detection based methods. Regression based methods esti-

mate the crowd count by performing regression between

the image features and crowd size. In CNN based methods,

density maps are generated from the image and count is

obtained by performing integration over the density map.

A Multi-column Convolutional Neural Network (MCNN) is

proposed in [44], which utilizes three columns with filter

size of different receptive field to compensate for perspective

distortion. The CNN regression model with two configura-

tions [42] estimates the number of people in a single image.

Switch-CNN [29] uses multiple CNN based crowd count-

ing architectures and proposes switching strategy to select

one network based on the performance. Contextual Pyramid

CNN [35] estimates the count by generating high-quality

crowd density by incorporating global and local contextual

information of crowd images. Different density estimation

methods are compared in [15]. Crowd density is estimated

in [45] by using different regression networks. Although the

Regression based methods work well in high density situa-

tions as they capture generalized density information from the

crowd image yet they suffer from the following limitations.

1) The performance of these methods degrade when applied

to low density situations due to overestimating the count.
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FIGURE 1. SD-CNN Model. We generate scale aware proposals based on the scale map which are fed to the SD-CNN model for rendering the response
map. We then apply non-maximal suppression to detect and localize heads in the scene.

2) These methods cannot localize pedestrian in the scene

and thus provide no information about the distribution of

pedestrians in the environment which is very crucial for the

crowd managers and security personnel.

On the other hand, detection based methods [30]–[32],

train object detectors to localize the position of each per-

son, where crowd count is the number of detections in the

scene. A hybrid method is proposed in [21] that incorporates

both regression and detection based counting and adaptively

decide the appropriate counting mode for different image

locations. Our proposed model is similar to [32] in a way that

we also train a head detector. Unlike feeding general object

proposal to the network as proposed in [32], we generate

scale-aware proposals by using a scale map. Scale map esti-

mates the object scales and use them to guide proposals rather

than exhaustive searching on all scales. From our experi-

ments, we observed that generating scale-aware proposals are

very effective and can reduce the search space and ignores

false positives at improper scales.

III. SCALE DRIVEN MODEL FOR COUNTING AND

LOCALIZATION

In this work, to count and localize the people in images

with large scale variations, we propose a new scale driven

convolutional network (SD-CNN) model. The pipeline of our

proposed model is shown in Figure 1. It comprises of three

main components. Firstly, we annotate the sizes of the heads

in random locations of the image to generate the scale map.

Secondly, the scale map is subsequently used to produce

scale aware proposals. This procedure is illustrated in details

in Fig. 2. Finally, the scale aware proposals are fed to the

SD-CNN model to detect and localize heads.

Object proposal generation is a pre-processing step and

has been widely used in modern object detection pipelines.

Object proposals are used to guide the search of objects

and avoid exhaustive search across all the image locations.

To generate object proposals, the first step is to estimate a

scale map S. In order to estimate the scale map S, we need

to understand the underlying factors that cause scale vari-

ations in the image. From empirical evidence, we confirm

that drastic perspective distortions in images cause scale vari-

ations in the image as illustrated in Figure 3 (left image).

The perspective distortion is related to camera calibration

FIGURE 2. Proposal generation. After we annotate the sizes of heads in
the image, we produce scale map depicting mapping of head sizes from
the original image.

FIGURE 3. The size of the person head drastically changes due to
perspective distortions as shown in the image on the left. The size of
head at the bottom (in green) is bigger than size of head on the top
(yellow) in the image. The estimated scale map on the right captures this
perspective distortion at every location in the image.

which estimates 6 degrees-of-freedom (DOF) [10] and indi-

cate the scale change from near to far in an image as shown

in Figure 3. Therefore, we exploit perspective information to

estimate the scale map S.

The value pi of any pixel i of the scale map S represents

a perspective value and defined as the number of pixels

representing one meter at that location in the real scene [42].

Hence, the perspective value is related to the observed size of

pedestrian in the image.We estimate the perspective value for

each pixel by using perspective geometry of pinnhole camera

as shown in Figure 4. In the Figure, a person of height PH
is walking on the ground, shot by the camera located at the
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FIGURE 4. Perspective geometry of pinnhole camera.

height CH from the ground. The head and feet of the person

is mapped on the image plane at yt and yb, respectively, and

f is the focal length. The cartesian coordinate system with y-

axis represents the vertical direction, while z-axis represents

the depth. From the perspective geometry of pinnhole camera,

we can solve the similar triangles as follows

yt =
f (CH − PH )

z1
, (1)

yb =
f (CH )

z1
(2)

From the above Equations 1 and 2, we compute the height

h of pedestrian as

h = yb − yt =
f (PH )

z1
(3)

we obtain height h by dividing both sides of Equation 3 by

yt as

h =
PH

CH − PH
yt (4)

After obtaining height h of pedestrian, the perspective

value p is given by:

p =
h

PH
=

1

CH − PH
yt (5)

In order to generate scale map for input image, we approx-

imate PH to be the average size of adults (1.76 m) [42] for

every pedestrian. To estimateCH , wemanually labeled height

of random adults at different locations. Then we find the

perspective value pi of pixel i as pi =
hi
1.76

. We then employ

linear regression method on Equation 5 and generate scale

map. The scale map shown in Figure 3 (right image), captures

the scale variations at every location in the image, with the

values decreased from bottom to top indicating the change in

person scale from front to remote end of the image and have

same values in the same row. The red colors in the scale map

represent bigger sizes in the image and blue color represents

smaller sizes. The vertical bar shows the range of scales in

the input image.

After generating the scale map S, the next step is to

generate object proposals. We uniformly overlaid a gird G

of points on the image and generate bounding boxes with

grid points as their centers. Let S(pi) represents the size of

pedestrian (in pixels) at location pi. For every point pi ∈ G,

we generate bounding box of size S(pi) with point pi as its

center. Ideally, the resolution of the gridG and scalemap S are

the same as the resolution of the input image I ; nonetheless

this would imply huge computational costs. In order to avoid

this problem, we define a parameter α, the value which is

in the range of {0 < α ≤ 1}, indicating the resolution of the

grid. Consider Rx ×Ry is the original resolution of the image.

The resulting resolution of the grid G is Gx × Gy, where

Gx = α(Rx) and Gy = α(Ry). Generally, the higher the value

of α increase the resolution of the grid which results in large

number of proposals. In this case, higher number of proposals

are concentrated near the areas which likely to contain a

pedestrian. However, the downside is that with lower values

of α will produce small number of proposals which result in

lower recall rates. This issue introduces a tradeoff in selection

of parameter α. From the experiments evidences, we found

that value of α = 0.65 is ideal for most of the cases, so we

fix α to 0.65 in the experiments.

The scale map S for the UCSD [4] andWorldExpo’10 [42]

datasets were generated by labeling the height of pedestrians.

However, for UCF-CC-50 [13] dataset having high dense

crowds, the above process of generating the scale map is

not applicable. The reason is the pedestrian bodies are not

visible for labeling in such dense scenes. In dense crowd

scenes, head is the only visible part and we noticed that

similarly to the observed pedestrian height, the size of the

head also changes due to perspective distortions. Therefore,

in this case we interpret perspective value pi by labeling head

size as shown in Figure 2 (zoomed view). After labeling

heads, instead of employing conventional linear regression,

we adopt a novel non-linear regression to fit the perspective

value. After computing mean perspective value at each sam-

pled row yt , we employ parametric tanh function to fit the

average values over the entire row of yt by

p = a · tanh(b · (yt + c)) (6)

where a, b and c are the parameters.

IV. DETECTION NETWORK

After generating scale-aware proposals, the next step is to

classify each proposal into two classes, i.e, head and back-

ground. Our detection network follows the classical R-CNN

mode [12] and instead of using selective search [40] for

proposal generation, we use scale-aware proposals. Before

feeding to the network, we extend the bounding box of each

proposal by a small margin and then image patch correspond-

ing to each proposal is resized to fit the input layer of the

CNN. For the head detection, we keep the square-like aspect

ratios ℜ ∈ [ 2
3
,
3
2
] for all bounding boxes.

The classical R-CNN is based onAlexNet architecture [17]

which is pretrained on ImageNet [9] dataset. In addition to

AlexNet, we used several other alternatives, for example,

VGGS [5], VGG-verydeep-16 [34], and Oquab et al. [25].

From the experiment, we noticed that VGGS slightly outper-

forms AlexNet but was slower in both training and testing.
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TABLE 1. Datasets. Summary of the three datasets including UCSD dataset [4], WorldExpo’10 [42], and UCF-CC-50 [13] is presented in terms of number of
frames, total scenes, resolution, frames per second, and crowd size.

TABLE 2. Comparative analysis with other techniques on UCSD [4]
dataset.

In the same way, VGG-verydeep-16 performed well but was

much slower. Oquab et al. on the other hand performed

better and achieved similar speed in both training and testing

compared to AlexNet. In this paper, we used Oquab et al. pre-

tained on ImageNet. For training the network, we assign each

bounding box to one of the two classes,i.e, head and back-

ground. We decide this assignment based on intersection-

over-union (IoU), which represents the overlap ratio between

the candidate bounding box and ground truth bounding box.

We fix a threshold value of 0.5 and any bounding box for

which IoU ≥ 0.5 will be assigned to positive class, while the

remaining bounding boxes will be assigned to the negative

class. We keep training batch size of 64 proposals. We ini-

tialize the parameter of the network using ImageNet pre-

trained network of Oquab et al. We minimize the parameter

of the network with stochastic gradient descent (SGD) with

momentum of 0.9 and weight decay 0.0005. We initialize the

learning rate at 0.01, and decrease it by a factor of 10 after

the validation error reaches saturation point.

For the localization task, to get the precise location of the

heads, we post-process the response map by finding local

peaks/ maximums based on fixed threshold. This process is

also known as non-maixmal suppression. We use 1-1 match-

ing strategy to compare the predicted locations with the

ground truth locations and use Precision and Recall metrics

TABLE 3. Comparative analysis with other techniques on
WorldExpo’10 [42] dataset using MAE metric.

TABLE 4. Comparative analysis with other techniques on UCF-CC-50 [13]
dataset.

for evaluation. The performance of the localization task is

mainly affected by changing the threshold value.

V. EXPERIMENT RESULTS

In this section we discuss both qualitative and quantita-

tive analysis of the results obtained from the experiments.

We evaluate our SD-CNN framework using three publicly

available datasets, UCSD dataset [4], WorldExpo’10 [42] and

UCF-CC-50 [13]. The summary of the datasets is described

in Table 1. Generally, these datasets are annotated in a way

that can only be useful for evaluating the performance of

regression models. Typically, in these datasets, every indi-

vidual pedestrian is annotated with a dot in the scene. These

dot annotations are not suitable for training our SD-CNN

model or other detection based methods. Therefore, we anno-

tated each pedestrian with a bounding box that cover whole

body of pedestrian. In the same way, we also annotated the

head of each pedestrian using the bounding box.

After annotation, we then trained different models dis-

cussed in Section IV on Titan Xp with learning rate at

0.01 and decrease it by a factor of 10 after the validation error

reaches saturation point.

71580 VOLUME 7, 2019



S. Basalamah et al.: SD-CNN Model for People Counting and Localization in Crowd Scenes

TABLE 5. Localization performance of different methods in terms of Average Precision (Avg), Average Recall (AvR) and Area Under Curve (AUC). The
values of AvP and AvR are represented in percentages.

For the sake of comprehensive evaluation, we divide the

experiment setup into two phases. In the first phase, we eval-

uate and compare the crowd counting performance while

in the second phase, we evaluate and compare localization

performance of our proposed SD-CNN model with other

state-of-the-art methods.

A. COUNTING PERFORMANCE

In this section, we evaluate the performance of different

crowd counting methods. We use Mean Absolute Error

(MAE) and Mean Square Error (MSE) as evaluation mea-

sures to compare the counting performance of the SD-CNN

against the state-of-the-art methods and is defined as.

MAE =
1

T

T∑

t=1

|µt − Gt | (7)

MSE =
1

T

T∑

t=1

(µt − Gt )
2 (8)

where T is the total number of testing frames. While µt and

Gt are the predicted and ground-truth count of pedestrians

respectively at frame t .

The UCSD dataset consists of 2000 frames of size 158 ×

238 captured from a single camera at 10 fps. We follow

the same settings as in [4] and use frames from 601 to

1400 as training, and the remaining 1200 are used in the

testing phase. The dataset captures low density crowds where

crowds are sparsely distributed. We evaluate and compare

our results with different regression and CNN based meth-

ods. The results of SD-CNN and other methods are reported

in Table 2. From the table, it is obvious that our SD-CNN

outperforms other state-of-the-art methods.

We next evaluate and compare the performance of

our framework and other state-of-the-art methods using

WorldExpo’10 dataset. This data set was first introduced

by Zhang et al. [42] and contains 1132 annotated video

sequences which are captured by 108 cameras from different

viewpoints. There are total of 199,923 head annotations that

span over 3980 frames. In training stage, total 3380 frames are

used and for the testing we used five different video scenes.

Thanks to the author of [42] for providing the perspective

maps. For the fair comparison, we use ROI regions provided

by the [42] in each test scene. We use the same evaluation

metric (MAE) and the results are presented in Table 3. It can

be observed from Table 3 that SD-CNN outperforms existing

approaches on an average scale while achieves compara-

ble performance in five different scenes. From the results,

we infer that the perspective information generally increases

the performance of our proposed SD-CNN considering var-

ious scenarios. Liu et al. [22] proposed regression based

crowd counting approach which works well in extreme dense

situations, since they can capture density dependent informa-

tion. The proposed method by Liu et al. [22] is dependent

on the density of crowd. Therefore, this is the reason that

Liu et al. [22] outperforms our method by a small margin in

scene S1 and S5, since these scenes contains high density

crowd with rich texture information. In most cases, when the

density of crowd changes, the performance of Liu et al. [22]

degrades. Moreover, Liu et al. [22] is regression based model

and cannot localize persons heads, and thus cannot provide

information about the distribution of pedestrians in the envi-

ronment which is very crucial for the crowd managers and

security personnel.

UCF-CC-50 [13] is a challenging dataset which contains

50 annotated images of different resolutions, view points,

and with the densities drastically changing from 94 per-

sons/image to 4543 persons/image. We followed the same

standard of 5-fold cross-validation proposed by [13] for eval-

uating and comparing the methods. We evaluate and compare

the results of different state-of-the-art methods in Table 4.

From Table 4, it is obvious that our proposed SD-CNN

outperforms other state-of-the-art methods. This experiment

signifies the importance of using perspective information

for estimating crowd count in images with widely varying

densities.

In Table 2, Table 3 and Table 4, we evaluated and compared

the performance of Faster-RCNN [28] on three datasets. The

results of our proposed method are significantly better than

Faster-RCNN. Faster-RCNN achieve good results only if

the size of objects is very large. Faster-RCNN is based on

PASCAL VOC dataset for training and testing where the

actual size of most objects in the dataset is large. However,

in our problem we are interested in detecting heads (size

of 10–15 pixels), which are usually small. The detection

network in Faster R-CNN has trouble to detect such small

objects. The performance of Faster-RCNN becomes worse

when applied to high density situations. The reason is that

the ROI-pooling layer builds features only from one sin-

gle high level feature map. For example, the backbone of
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FIGURE 5. Results of samples frames from UCSD (1st and 2nd rows), WorldExpo’10 (3rd and 4th rows)
and UCF-CC-50 datasets (5th and 6th rows). The first column represents the input sample images from
different datasets. The second column shows the corresponding responses maps (density maps), while
the third column shows the final detections. The yellow dot represents the groundtruth while the red
bounding box is the predicted location by our approach. The Figure can be best viewed in color.
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Faster-RCNN (e.g, VGG-16) model does ROI-pooling from

the ‘conv5’ layer, which has an overall stride of 16. When

the object size is less than 16 pixels, the projected ROI

pooling region is less than 1 pixel in the ‘conv5’ layer even

if the proposed region is correct. Thus the detector will have

much difficulty to predict the object class and bounding box

location based on information from only one pixel.

B. LOCALIZATION PERFORMANCE

In this section, We evaluate both qualitatively and quan-

titatively the localization performance of our framework.

In order to quantify the localization error, we associate the

center of estimated bounding box with the ground truth

location (single dot) through 1-1 matching strategy. We then

compute Precision and Recall at various thresholds and report

the overall localization performance in terms of area under the

curve. In order to estimate the location, we use the same den-

sity maps generated by state-of-the-art methods followed by

non-maxima suppression algorithm. The results are reported

in Table 5. It is obvious that our proposed model presents

higher Precision and Recall rates as compared to the state-

of-the-art methods. These results attribute to the fact that

our model generates scale-aware proposals that capture wide

range of head sizes in each image. It can also be observed that

all other methods present lower rates for UCF-CC-50 dataset

as compared to WorldExpo’10 and UCSD datasets. This

is due to the fact the UCF-CC-50 dataset contains more

dense images with heavy occlusions as compared to World-

Expo’10 and UCSD datasets. We also show some qualita-

tive results of our proposed method in Figure 5. From the

Figure 5, it is obvious that the sample images from

the UCSD dataset represent low density scene. The sam-

ple images taken from two different scenes of World-

Expo’10 dataset represent medium densities and the images

from UCF-CC-50 represent relatively more complex and

extreme high density scenes. From our experiments, we find

out that our method performs well in both high and low

density scenes and is independent of the scene density. As it

is clear from the figure, that in most of cases, our proposed

method precisely localizes the heads even in the complex

scenes.

Our method will incur computation time. We compute

the computation time of proposed framework using World-

Expo10 and UCSD dataset. We found that our frame work

took 0.87 and 0.34 seconds to process an image from World-

Expo10 and UCSD datasets, respectively. We further inves-

tigated time complexity of our proposed framework using

UCF-CC-50 dataset and found out that computation com-

plexity of our framework is directly related to the image res-

olution. UCF-CC-50 dataset contains different images with

various resolutions. High image resolution will lead to high

computation complexity, since large number of proposals will

be generated to estimate the response map. We compute the

computation time for each image and found out that average

computation time for UCF-CC-50 dataset is 1.78 seconds.

VI. CONCLUSION

This paper presented a novel SD-CNN model to estimate

the count by detecting and localizing the humans in dense

crowd scenes. To tackle the problem of scale variations,

we generated scale-aware head region proposals by exploit-

ing the perspective information. This strategy has signifi-

cantly reduced the classification time and also resulted in

boosting the detection accuracy. We evaluated SD-CNN on

three datasets, i.e, UCSD, WorldExpo’, and UCF-CC-50 and

have achieved noticeable improvements in the results.

In our future work, we would further improve the localiza-

tion results since the localization accuracy is mainly affected

by the post-processing step (non-maxima suppression in our

case).
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