REPORT No. 502

SCALE EFFECT ON CLARK Y AIRFOIL CHARACTERISTICS FROM N.A.C.A. FULL-SCALE WIND-TUNNEL TESTS

By ABE SILVERSTEIN

SUMMARY

Tests were conducted in the N.A.C.A. full-scale wind tunnel to determine the aerodynamic characteristics of the Clark Y airfoil over a large range of Reynolds Numbers. Three airfoils of aspect ratio 6 and with 4-, 6-, and 8-foot chords were tested at velocities between 25 and 118 miles per hour, and the characteristics were obtained for Reynolds Numbers (based on the airfoil chord) in the range between 1,000,000 and 9,000,000 at the low angles of attack, and between 1,000,000 and 6,000,000 at maximum lift. With increasing Reynolds Number the airfoil characteristics are affected in the following manner: The drag at zero lift decreases, the maximum lift increases, the slope of the lift curve increases, the angle of zero lift occurs at smaller negative angles, and the pitching moment at zero lift does not change appreciably.

The Clark Y airfoil characteristics obtained from the tests in the full-scale tunnel are compared with those from the variable-density and the propeller-research tunnels, and with the theoretical values. An analysis of the comparative experimental data indicates that the air stream of the full-scale tunnel has a relatively low turbulence. This inference is substantiated by the close agreement obtained between the characteristics of airplanes measured in the full-scale tunnel and those from flight tests, and by sphere drag measurements that show the tunnel has a turbulence similar to free air. It is therefore believed that the effects of turbulence on the characteristics of an airfoil tested in the full-scale tunnel are small, and may be neglected in applying the data to design.

INTRODUCTION

The aerodynamic characteristics of airfoils ascertained from different wind-tunnel investigations are frequently not in agreement. The reasons for these discrepancies are generally understood, having been revealed partly by theory and partly through experiment. The complete force equation, which includes the terms expressing dynamic similitude, shows theoretically that comparable wind-tunnel results should be obtained when airfoils having similar surfaces are tested at the same Reynolds Number in wind tunnels with like turbulences. Experimental research has indicated, however, that it is unusual to obtain the same results from several tunnels, even when these fundamental similitude requirements are satisfied. Some of the more important sources of experimental discrepancies are wind-tunnel boundary interference, airfoil-support interference, and air-stream irregularities and asymmetries.

As a result of the failure of wind-tunnel testing to fulfill the exacting requirements of similarity in both the flow and the test procedure, disagreements occur in published results purporting to give the experimentally obtained characteristics of airfoils of the same section. These conflicting results from tests in numerous wind tunnels confront the designer with an arduous task. The variety of data must not only be analyzed and interpreted for application to the particular design problem, but it must also be extrapolated to flight Reynolds Number. This extension of the data has usually been necessary because experimental information has not been available above a Reynolds Number of about 3,000,000, whereas the flight range lies between 2,000,000 and 25,000,000. There is no exact and rational method for making a transformation from the best wind-tunnel information to the desired flight characteristics, although experience serves as a useful guide.

With the idea of helping the designer to span this gap between small-tunnel information and flight conditions the study of airfoil characteristics has been continued in the N.A.C.A. full-scale wind tunnel. Here unique equipment is available for testing large size airfoils at Reynolds Numbers comparable with those of flight. The full-scale tunnel has a further advantage over smaller tunnels in that the full-scale-tunnel data on airplanes may be directly compared with those obtained in flight tests, thus disclosing any disturbing tunnel effects and checking the wind-tunnel testing conditions and technic.

Tests were therefore made in the tunnel to determine the aerodynamic characteristics of the Clark Y airfoil over a large range of Reynolds Numbers. By tests of airfoils with the same aspect ratio and chords of 4, 6, and 8 feet at velocities from 25 to 118 miles per hour, the characteristics were investigated over a Reynolds Number range from about 1,000,000 to 9,000,000, although data were not secured above a Reynolds Number of about 6,000,000 at maximum lift. A portion of these results was used in an experimental veri-

FIGURE 1.—The 6 by 36 sirfoil mounted in the full-scale tunnel.

fication of the theoretical jet-boundary correction for the elliptical-jet wind tunnel which has been reported in reference 1.

EQUIPMENT AND AIRFOILS

The N.A.C.A. full-scale wind tunnel and equipment are described in reference 2. Since the general equipment and apparatus used in these tests were essentially the same as reported in the aforementioned reference, a further description will not be given.

During the tests the airfoils were mounted in the jet, as shown in figure 1, on supports that attach to the airfoils at the one-quarter-chord point, and transmit the forces to the balance below. The small diagonal streamline arms connected to the rear of the airfoil serve to change the angle of attack by pivoting it about the main support pins. The lower ends of these diagonal arms are attached to screw mechanisms by means of which the angle is adjusted to within $\pm 0.05^{\circ}$. The fairings over the airfoil supports are not connected to the balance but are independently supported at the balance-house roof. The short exposed upper portions of the main supports have Navy no. 1 strut sections, and taper to a cross section of about 1 by 3 inches where they connect to the airfoil.

Three metal Clark Y airfoils with 4-, 6-, and 8-foot chords and of aspect ratio 6 were used. The airfoil covering of χ_{e} -inch aluminum sheet was attached to a rigid internal structure by means of flush countersunk screws. The spars were steel beams and the profile was formed by aluminum ribs spaced at 12-inch intervals. Access to the airfoil support pins was provided by removable plates which were screwed flush with the surface during the tests. Tapped openings for fitted eyebolts were spaced over the airfoil for attachments when taking tare measurements. Flush screw plugs

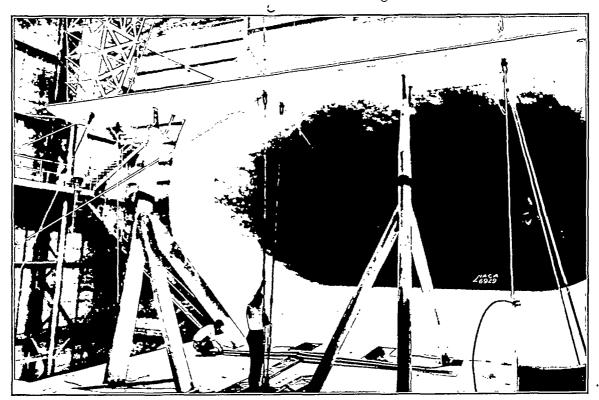


FIGURE 2.-- A tare-force set-up with inverted 6 by 36 alrfoll.

were inserted in these openings during the regular force tests. The smooth aluminum surfaces of the airfoil were covered with a protective coat of varnish. The airfoils were manufactured under careful inspection so as to maintain the specified ordinates, and were accurately measured just before testing. The specified and measured ordinates are given in table I. No appreciable twists, deformations, or local irregularities changed the airfoil accuracy during the period of the tests.

TESTS

The lift, drag, and pitching moments were measured at six speeds between 25 and 118 miles per hour over a range of angles of attack from -8° to 24°. These tests were made with the airfoils in an upright position in the tunnel, and then repeated through an angle range of -8° to 5° with the airfoils inverted.

Tare forces on the supports were measured with the airfoils in the test position but supported independently of the regular supports and rigidly held in place by auxiliary cables (fig. 2). The tare-force measurements therefore include the interference of the airfoils upon the supports. Tare forces were measured for all the airfoils at five angles of attack and at all test speeds.

The interference of the supports upon the 8 by 48 airfoil was ascertained by adding duplicate supporting struts to the normal installation (fig. 3). As these dummy struts were not connected to the airfoil or balance, any changes in the measured characteristics with the struts in place could be attributed to their interference. A similar method was employed for the tests of the 4 by 24 airfoil using, however, only a single dummy support and doubling the interference effect when applying the results to the airfoil. Interference drag for the 6 by 36 airfoil was interpolated from data on the other two airfoils.

- Static and dynamic pressure surveys were made several chord lengths ahead of the 4 by 24 and 8 by 48 airfoils to determine the blocking effect of the airfoils upon the tunnel stream. These surveys were made at a number of angles of attack between zero and maximum lift. For the 6 by 36 airfoil the blocking effect was interpolated from data on the other two airfoils.

CORRECTION OF DATA

The uncorrected lift and drag forces on the airfoils were measured on recording scales, and the pitching moment was computed by multiplying the lift and drag forces by the proper lever arms. The observed wind-tunnel data were then corrected in the following manner:

(a) The first process in correcting the data was to adjust the measured dynamic pressures. The dynamic pressure of the wind-tunnel jet is measured with a manometer, which indicates the pressure difference between the return passage and the test chamber (reference 2). The dynamic pressure in the jet is obtained by a calibration. Previous study has shown that this indicated velocity head, obtained from a calibration with no body in the jet, is in error owing to the blocking action of the body in the air stream. The blocking increases with the angle of attack; the Reynolds Numbers of the tests are therefore slightly different at the low and high angles of attack. A full discussion of the correction as applied to the airfoil data is given in reference 1. The magnitude of

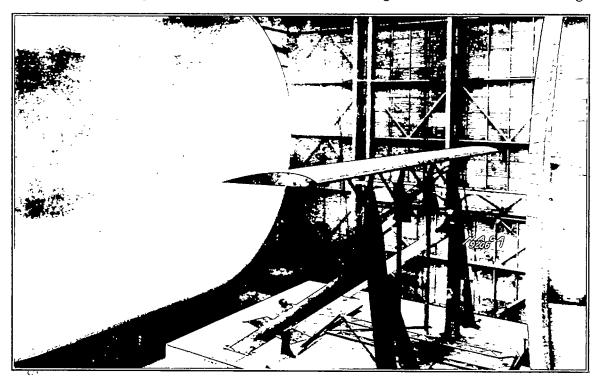


FIGURE 3.-Dummy supports added to the 8 by 48 airfoil set-up for interference tests.

the blocking effect of the three airfoils is shown in figure 4.

(b) Tare force and moment coefficients were then computed and deducted from the gross force coefficients to obtain net values. The tare drag is about 2 percent of the minimum drag for the 8 by 48 airfoil

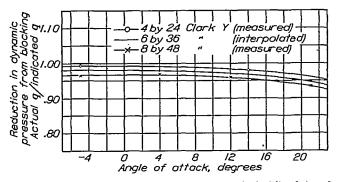


FIGURE 4.-Blocking corrections for the three airfoils tested in the full-scale tunnel.

and 10 percent of the minimum drag for the 4 by 24 airfoil. The tare lifts and moments are negligible.

(c) Interference effects of the struts on the airfoils were then included. Figure 5 illustrates the interference caused by two struts on the lower surface of the 8 by 48 airfoil. The effect on the drag is quite

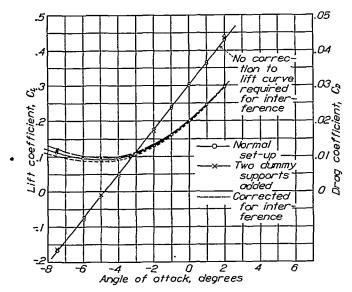


FIGURE 5.—The effect of strut interference on the characteristics of the 8 by 48 Clark Y airfoil when tested upright. Reynolds Number, 6.12×10³.

large in the region of zero lift, but decreases and becomes negligible at higher lift coefficients. The interference effect on the lift is negligible and within the experimental error.

The support interference on the 4 by 24 airfoil had an effect similar to changing the camber of the airfoil. The angle of zero lift was changed by the interference when the airfoil was tested both in the upright and inverted positions. A comparison of the measured drag values at zero lift, with and without the dummy support struts, showed that the supports exerted a large unfavorable interference in the upright tests, and a slightly favorable one when the airfoil was inverted. In all cases for the upright tests the effects became very small on both drag and lift above a lift coefficient of 0.3.

(d) Upright and inverted tests on the airfoils indicated that the air stream had an initial downflow angle; it was necessary to correct the characteristics for this effect. In order to determine the magnitude of the air-stream angle, plots were made of the D/Lagainst C_L for the upright and inverted airfoil tests (fig. 6). The D/L ordinate between the two curves is equal to 2 sin β , where β is the air-stream angle. A check on the air-stream angle is possible by noting the separation of the upright and inverted lift curves.

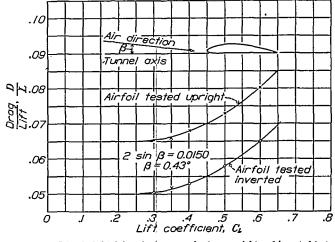
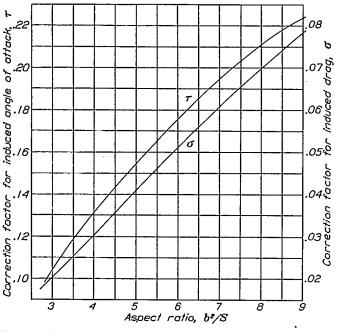



FIGURE 6.—Method of obtaining air stream angles from upright and inverted tests. Reynolds Number, 6.12×10°, 8 by 48 airfoll.

Since the separation of the upright and inverted lift curves, when plotted as values of C_L against α , is due to the air-stream angle, the value of the air-stream deflection is equal to one-half the angle between the two curves. If the interference effects are not properly accounted for, the values of the air-stream angle, from the two methods, will not agree. The angles determined by these two methods generally agreed within about 0.1°. The average value was taken as the true air-stream angle, although no rational excuse can be offered for this practice, except that the probable percentage of error is reduced.

(e) The limited boundaries of the wind-tunnel jet are a source of error in ascertaining the characteristics of any body tested therein. A correction for this boundary interference was therefore applied to the airfoil angle of attack and the drag coefficient. For these tests the correction factor was determined experimentally by an extrapolation of the airfoil data to free air values. A complete description of this

method with the values of the experimental and theoretical corrections.¹ is given in reference 1.

FIGURE 7.—Correction factors for transforming rectangular airfoils from finite to infinite aspect ratio.

(f) The corrected characteristics for the airfoils with aspect ratio 6 were then transformed into infinite-

¹ The corrections reported in this reference were from the results of tests at a Reynolds Number of 2,000,000. When the complete results of the airfolls at all Reynolds Numbers were analyzed it was found that values were obtained for the jot-boundary correction which were slightly different from those reported, and approached even more closely the theoretical values given in reference 1. These corrected factors have been applied to the present data.

aspect-ratio characteristics by the following formulas:

$$\alpha_0 = \alpha - \frac{C_L}{\pi R} (1+\tau) 57.3$$
$$C_{D_0} = C_D - \frac{C_L^2}{\pi R} (1+\sigma)$$

where

- α_0 is the angle of attack in degrees at which an airfoil with infinite span would give the same lift coefficient as the airfoil tested in the tunnel.
- $C_{\mathcal{D}_0}$, the profile-drag coefficient.
- R, the aspect ratio.
 - au, a factor correcting the induced angle of attack, to allow for the change from elliptical span loading to one resulting from the use of an airfoil with rectangular plan form.
 - σ , a factor correcting the induced drag, to allow for the change from elliptical span loading to one resulting from the use of an airfoil with rectangular plan form.

and where α , C_L , and C_D , are the corrected characteristics for finite aspect ratio. The angle of attack, α , . is in degrees. Values of τ and σ are taken from figure 7, and are based on the assumptions of a theoretical rectangular loading, and a value of 0.101 for the slope of the infinite-aspect-ratio lift curve. Experimentally the rectangular airfoils did not have a loading identical to the theoretical, owing to jet-boundary effects and velocity asymmetries. This variation would require the use of values for σ and τ slightly larger than those in figure 7. Since results were not available to indicate

the pressure distribution over the airfoils in the tunnel, this effect, which is small in magnitude, is not included.

RESULTS

The corrected results are tabulated giving values of C_L , α , C_D , L/D, and c.p. for the Clark Y airfoil with aspect ratio 6, and values of α_0 , C_{D_0} , and C_m for the airfoil with infinite aspect ratio. These data for the three airfoils at all Reynolds Numbers tested are presented in tables II to XX, inclusive. Values of c.p. are given in percent chord. A typical plot of the data from table XVIII is given in figure 8.

The curves summarizing variations of the principal airfoil characteristics with Reynolds Number are of

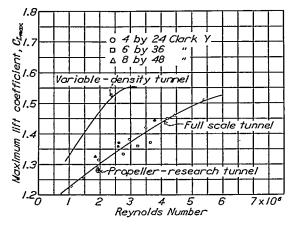


FIGURE 9.—Variation with Reynolds Number of maximum-lift coefficients for the Clark Y airfoll. Propeller-research-tunnel value from reference 3. Variable-density-tunnel data from reference 4.

particular interest. Figure 9 shows the variation of the maximum lift coefficient for the Clark Y airfoil over a Reynolds Number range from 1,000,000 to 6,000,000. In this figure the results of Clark Y tests

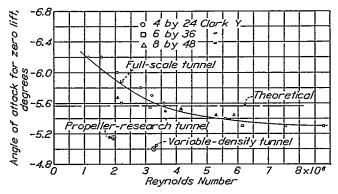


FIGURE 10.—Variation with Reynolds Number of the Clark Y angle of attack at zero lift. Propeller-research-tunnel value from reference 3. Variable-densitytunnel value from reference 4. Theoretical value from reference 5.

in the N.A.C.A. variable-density wind tunnel over a range from 1,000,000 to 3,000,000 are also given. A single point gives the maximum lift obtained on the Clark Y airfoil in the propeller-research tunnel at a Reynolds Number of about 2,000,000. Figure 10

covers the change in the angle of attack for zero lift with Reynolds Number. Results from the variabledensity and propeller-research tunnels, as well as a

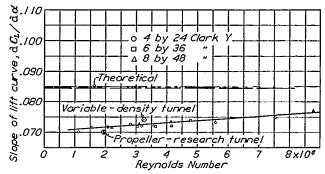


FIGURE 11.—Variation with Reynolds Number of the slope of the lift curve for the Clark Y airfoll (slope for an airfoll of aspect ratio 6; α in degrees). Propeller-research tunnel value from reference 3. Variable-density-tunnel value from reference 6. Theoretical value from reference 5.

theoretical value from reference 5, are also included on this figure. In a similar manner, figure 11 presents the change in slope of the lift curve with scale. The

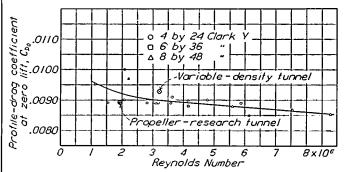


FIGURE 12.—Variation with Reynolds Number of the Olark Y profile-drag coefficient at zero lift. Propeller-research-tunnel value from reference 3. Variabledensity-tunnel value from reference 6.

airfoil profile-drag coefficient at zero lift is shown on figure 12 over a Reynolds Number range from 1,000,000 to 9,000,000, and values from the variable-density and

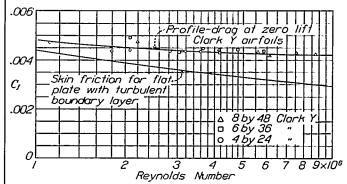


FIGURE 13.—Comparison of the Clark Y profile-drag coefficient at zero lift with the skin-friction drag coefficient for a flat plate having a completely turbulent boundary layer. C_f for airfoils based on actual surface area.

the propeller-research tunnels are again included. In figure 13 the profile-drag coefficient at zero lift for the airfoil is compared with the skin-friction drag coefficient for a flat plate with turbulent boundary layer.

514

Curves in figure 14 represent the profile-drag coefficient at C_L values of 0.1 and 0.2 plotted against Reynolds Number. The variation of pitching-moment coefficient at zero lift and the maximum value of L/D are plotted against the Reynolds Number in figures 15 and 16, respectively.

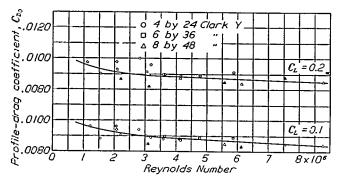


FIGURE 14.—Variation with the Reynolds Number of the Clark Y profile-drag coefficient at lift coefficients of 0.1 and 0.2.

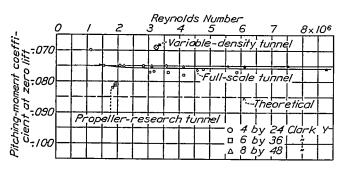


FIGURE 15.—Variation with Reynolds Number of the Olark Y pitching-moment coefficient at zero lift. Propeller-research-tunnel value from reference 3. Variabledensity-tunnel value from reference 6. Theoretical value from reference 5.

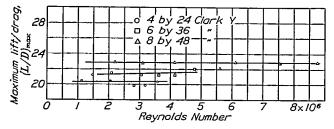


FIGURE 16.—Variation with Reynolds Number of the maximum value of L/D for the Olark Y airfoil.

PRECISION

The number of variables involved makes the precision of all wind-tunnel results exceedingly difficult to estimate. The reference for gaging the precision of wind-tunnel airfoil results should be the characteristics which the specified airfoil would have in flight at the particular Reynolds Number. Wind-tunnel results would then include accidental errors of measurement, errors in the application of wind-tunnel interferences, and variations of the characteristics due to differences in airfoil accuracy and turbulence. If the turbulence is considered as a parameter with which characteristics vary rather than as a source of error in precision, the reference base may be changed to the hypothetical characteristics which the airfoil would have in free air at the same Reynolds Number and turbulence. This attitude has been adopted in considering the accuracy of the results found in this investigation.

The exactness with which the final precision may be predicted depends upon the thoroughness with which the following factors are known:

(a) Regularity and accuracy in measuring airstream velocity and angularity.

(b) Rigidity of airfoil supports and accuracy of setting the angle of attack.

(c) Accuracy of balance readings.

(d) Accuracy of the airfoils.

(e) Accuracy of measured support interferences.

(f) Accuracy of the applied jet-boundary correction.

Repeat runs indicated that the accidental errors, such as are to a large extent included in (a), (b), and (c) of the foregoing, were small, and within the following limits:

$$\alpha = \pm 0.05^{\circ}$$

$$C_{L_{max}} = \pm 0.01$$

$$\frac{\mathrm{d}C_L}{\mathrm{d}\alpha} = \pm 0.001 \text{ per degree}$$

$$C_{D_0} = \pm 0.0002 \ (C_L = 0)$$

$$C_{D_0} = \pm 0.0010 \ (C_L = 1)$$

$$C_{m_{c/4}} = \pm 0.001$$

A deflection of the airfoil supports introduces an error into the pitching-moment coefficients. In these tests, however, the strong tripod type of construction used in the airfoil supports and the relatively short cantilever section reduced deflections to negligible amounts. Errors from this source may therefore be disregarded.

It was found impossible to evaluate the loss in precision due to differences between the specified and measured airfoil ordinates. Variable-density-tunnel tests have shown that small errors in the nose profile of model airfoils are quite critical, while differences farther back along the chord are not of great importance. From an examination of table I, it may be seen that the airfoils were not constructed exactly in accordance with the specified ordinates, and that there were small differences between measured and specified ordinates at the airfoil nose; the surfaces, however, were fair in all cases. The lack of any serious systematic disagreement in the results from the several airfoils indicates that errors from this source were not large enough to be significant.

The experimentally derived values of wind-tunnel and support interference were subject to the same accidental and inherent errors as the tests proper, but these errors would have only a secondary effect on the final results. From a consideration of all the contributing errors the estimated final precision is as follows:

$$\alpha = \pm 0.1^{\circ}$$

$$C_{L_{max}} = \pm 0.03$$

$$\frac{dC_L}{d\alpha} = \pm 0.0015 \text{ per degree}$$

$$C_{D_0} = \pm 0.0004 \ (C_L = 0)$$

$$C_{D_0} = \pm 0.0015 \ (C_L = 1.0)$$

$$C_{m_{e/4}} = \pm 0.003$$

DISCUSSION

Lift.-The maximum lift coefficient, the angle of zero lift, and the slope of the lift curve for the Clark Y airfoil vary with the Reynolds Number (figs. 9, 10, and 11). Perhaps of greatest interest because of their significance in regard to the question of turbulence are the maximum lift coefficients, particularly in comparison with those from the variable-density tunnel (reference 4) and the value from the propellerresearch tunnel (reference 3) shown in figure 9. There is an excellent agreement between the value of the maximum lift coefficient from the propeller-research tunnel and the full-scale tunnel at a Reynolds Number of about 2,000,000; however, the variable-densitytunnel results are from 10 to 13 percent higher than those from the full-scale tunnel at the same Reynolds Numbers. This difference between variable-density and full-scale-tunnel maximum lift coefficients is believed to be largely due to the unlike turbulences in the two tunnels; the agreement with the propellerresearch tunnel suggests that it has the same turbulence as the full-scale tunnel.

Several experimenters have shown that one of the effects of turbulence on medium-cambered mediumthick airfoils, such as the Clark Y, is to increase the maximum lift coefficient. This beneficial effect of turbulence is attributed to the mixing and eddying flow in the turbulent boundary layer around the airfoil, which provides for a larger transfer of momentum from the general flow to the boundary layer than is possible in a laminar stream. When changing from laminar to turbulent flow, the augmented momentum in the boundary layer serves to move the separation point of the flow rearward along the upper surface of the airfoil. This rearward motion allows the airfoil to attain a higher angle of attack and lift coefficient before the separation point moves forward again, with increasing angle, to the point at which the general flow breaks down. A complete discussion of this phenomenon is given in reference 7, and the results of tests included in this reference show that it is possible to increase the lift coefficient of an N.A.C.A. 2412 airfoil as much as 30 percent by the introduction of turbulence. Earlier tests in the variable-density tunnel (reference 4) on the effects of turbulence on a

Clark Y airfoil gave similar results. It may therefore be stated that the comparatively low values of maximum lift coefficients in the full-scale tunnel signify a small turbulence. Results of other tests indicate the existence of a turbulent condition in this tunnel similar to that in free air. The critical Reynolds Number for a sphere investigated in the full-scale tunnel (fig. 17)

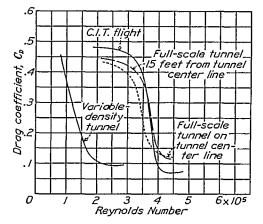


FIGURE 17.—Sphere drag coefficients obtained from flight and wind-tunnel tests. Critical Reynolds Number occurs at C_D equals 0.3. Flight results from reference 8. Variable-density-tunnel results from reference 4.

agrees closely with the critical value obtained in flight (reference 8). Based on the method of Dryden (reference 9), the turbulence in the full-scale tunnel is about 0.35 percent, which value is almost identical with the value obtained by measurements in free air. The critical Reynolds Number in the variable-density tunnel (reference 4) indicates a turbulence of about 2.5 percent.²

The good agreement between full-scale tunnel and flight characteristics on airplanes presents further evidence of the small effects of turbulence on the wiudtunnel measurements. The following tabulated data illustrate the comparison between wind tunnel and flight results.

Airplane	Approxi- mate Reynolds Number	Source of results	¹ CL _{mes}	¹ C _{Dmin}
Martin XBM-1 Do Fairchild F-22 Do Boeing PW-9 Do Do	$\begin{array}{c} 3,000,000\\ 5,000,000\\ 13,000,000\\ 3,500,000\\ 6,000,000\\ 6,000,000\\ 3,500,000\\ 3,500,000\\ 7,000,000\\ \end{array}$	Full-scale tunnel Filght Full-scale tunnel Flight full-scale tunnel Full-scale tunnel Flight do	1.40 1.36 1.19 1.21	0.005 .064 .062 .058 .058 .054 .054

COMPARISON OF FULL-SCALE WIND TUNNEL AND FLIGHT RESULTS ON SEVERAL AIRPLANES

¹ The missing values were not measured.

In all cases the checks are within the experimental limits of accuracy. An appreciable change of minimum drag coefficient with Reynolds Number is to be observed in the case of the XBM-1, where the

516

² Slight modifications have been made to the variable-density tunnel since these turbulence measurements were made.

Reynolds Number reached in flight is considerably higher than those of the tunnel.

The experimental evidence suggests that the turbulence of the full-scale tunnel is small and exerts

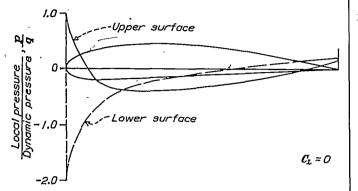


FIGURE 18.—Theoretical pressure distribution on a Clark Y airfoil at the angle of zero lift. Reproduced from reference 5.

only a negligible effect on the characteristics of bodies tested.

The change in the angle of zero lift with Reynolds Number (fig. 10) is, to a large extent, a phenomenon similar to the variation of maximum lift. The angle of zero lift occurs at smaller negative angles with increasing Reynolds Number. This phenomenon can be explained by reference to the pressure distribution over the airfoil for the zero-lift condition (fig. 18). Owing to the large adverse gradient of pressure at the forward portion of the lower surface of the airfoil (a condition similar to that on the upper surface at maximum lift) the stability of the flow is critical; at low Revnolds Numbers there is an early breakdown of this flow. This large adverse pressure gradient not only causes an early breakdown of the flow, but also results in an earlier separation of the flow, which reduces the slope of the lift curve in the range of zero lift, and requires that the airfoil be turned to a larger negative angle to reach zero lift. With large Reynolds Numbers and considerable initial turbulence the breakdown of flow is delayed so that zero lift is reached at smaller negative angles. The smaller negative angles of zero lift from the more turbulent variable density tunnel tests shown in figure 10 agree well with this conception. The experimental value for the angle of zero lift from the full-scale wind tunnel agrees with the theoretical value (reference 3) at a Reynolds Number of 3,500,000.

The slope of the lift curve (fig. 11) shows a constant increase with Reynolds Number. The experimental slope varies from about 85 to 90 percent of the slope theoretically predicted in reference 5. The slope of the lift curve, obtained from the variable density tunnel tests on an airfoil of this thickness (reference 6), at a Reynolds Number of 3,000,000 is slightly greater than the value found in the present tests, whereas the propeller research tunnel value is slightly less. Increased turbulence for the Clark Y may have the same effect upon the lift-curve slope as increased Reynolds Number, which might explain the slightly higher variable density tunnel result.

Drag.—Figure 12 indicates that the profile-drag coefficient at zero lift for the Clark Y airfoil decreases rapidly between the Reynolds Numbers of 1,000,000 and 3,000,000, and then decreases at a constant but much lower rate over the range between 3,000,000 and 9,000,000. The considerable scattering of the experimental points at the lower Reynolds Numbers may possibly be accounted for either by the decreased precision in measuring the extremely small forces or by the uncertain nature of the flow over the lower surface of the airfoil at this angle of attack. The latter factor was discussed when considering the angle of attack for zero lift. Since the greater proportion of the profile drag at zero lift is friction drag, the decrease with Reynolds Number is to be expected. The manner in which the friction drag of flat plates changes with the Reynolds Number has been subjected to the most complete theoretical and experimental study, and a comprehensive review of the subject is given in reference 10. Figure 13 presents the drag curve of the flat plate with completely turbulent boundary layer from this reference. The profile-drag coefficients at zero lift from the present airfoil tests are also shown on this curve. These coefficients have been reduced to the same form as those for the flat plate by using the true surface area of the airfoil in the drag equation. The values for the airfoils lie above those for the flat plate with completely turbulent boundary layer, and the shape of the curve suggests that it might lie on one of the intermediate transition curves between those for the laminar and turbulent flow if the pressure drag were deducted.

The profile-drag coefficients calculated from the results of airfoil tests in the propeller-research and variable-density tunnels are presented in figure 12, and their values are in fair agreement. The propellerresearch-tunnel value is within the experimental scattering of the points from the full-scale tunnel; the variable-density-tunnel value is only slightly higher. The variable-density-tunnel value for an airfoil with the corresponding thickness and camber taken from the results of tests on related airfoil (reference 6) has been given rather than the results from an earlier test on a Clark Y airfoil, because the more recent tests are believed to be more accurate.

A characteristic of great interest to the designer is the profile-drag coefficient at the lift coefficient for maximum speed. These high-speed lift coefficients usually lie in a range from about $C_L=0.1$ to 0.2, and the values of the profile-drag coefficient for these two lift coefficients are plotted against Reynolds Number in figure 14. These curves have the same general characteristics as the drag at zero lift.

The pitching-moment coefficient at zero lift (fig. 15) does not change with increase in scale, which indicates

that the pressure distribution along the chord does not vary greatly with the Reynolds Number. The maximum L/D values (fig. 16) show a considerable scattering of results. For the three Clark Y airfoils no definite change in maximum L/D ratio with Reynolds Number was observed.

CONCLUDING REMARKS

The appreciable variations of Clark Y characteristics with Reynolds Number have their greatest significance in reemphasizing the importance of a more complete and thorough knowledge of the scale effect on all airfoil sections. Results of tests that have already been conducted in the variable-density tunnel indicate that thin, medium, and thick airfoils with different cambers respond differently to changes in scale.

The appreciable effects of turbulence are shown, by comparison of data from the full-scale and variabledensity tunnels, to be equally as important as Reynolds Number effect and, for this reason, make the formation of rules or formulas for transforming small-tunnel data to the equivalent full-scale results questionable until further large- and small-scale information is available on the effects of turbulence on a number of airfoil sections. A program for continuing the study of the effects of scale and turbulence upon the characteristics of air-foils has been planned for both the variable-density and full-scale tunnels and has already been started in the variable-density tunnel.

In general, it may be stated that a complete quantitative evaluation of the factors that are the sources of experimental discrepancy must be made for each wind tunnel before correlation and standardization of windtunnel data to a flight basis can be effected.

LANGLEY MEMORIAL AERONAUTICAL LABORATORY,

NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS, LANGLEY FIELD, VA., June 14, 1934.

REFERENCES

- 1. Theodorsen, Theodore, and Silverstein, Abe: Experimental Verification of the Theory of Wind-Tunnel Boundary Interference. T.R. No. 478, N.A.C.A., 1934.
- DeFrance, Smith J.: The N.A.C.A. Full-Scale Wind Tunnol. T.R. No. 459, N.A.C.A., 1933.
- Wood, Donald H.: Tests of Large Airfoils in the Propeller Research Tunnel, Including Two with Corrugated Surfaces. T.R. No. 336, N.A.C.A., 1929.
- Stack, John: Tests in the Variable Density Wind Tunnel to Investigate the Effects of Scale and Turbulence on Airfoil Characteristics. T.N. No. 364, N.A.C.A., 1931.
- Garrick, I. E.: Determination of the Theoretical Pressure Distribution for Twenty Airfoils. T.R. No. 465, N.A.C.A., 1933.
- Jacobs, Eastman N., Ward, Kenneth E., and Pinkerton, Robert M.: The Characteristics of 78 Related Airfoil Sections from Tests in the Variable-Density Wind Tunnel. T.R. No. 460, N.A.C.A., 1933.
- von Kármán, Th.: Quelques Problèmes Actuels de L'Aérodynamique. Paper read before Journées Techniques Internationales de L'Aéronautique, Chambre Syndicale des Industries Aéronautiques, Dec. 1, 1932.
- 8. Millikan, C. B., and Klein, A. L.: The Effect of Turbulence. Aircraft Engineering, August 1933, pp. 169-174.
- Dryden, Hugh L.: Reduction of Turbulence in Wind Tunnels. T.R. No. 392, N.A.C.A., 1931.
- von Kármán, Th.: Turbulence and Skin Friction. Jour. of the Aero. Sciences vol. I, no. 1, January 1934, pp. 1-20.

TABLE I

SPECIFIED AND AVERAGE MEASURED ORDINATES OF THE CLARK Y AIRFOILS

	Standard	ordinates		4- by 24-foot				6- by 3	36-foot		8- by 48-foot			
Distance from leading edge in	in percent	t of chord	Upper	surface	Lower	Lower surface		Upper surface Lower surface		surface	Upper surface		Lower surface	
of chord	Upper surface	Lower surface	Specified inches	Average measured inches	Specified inches	Average measured inches	Specified inches	Average measured inches	Specified inches	A verage measured inches	Specified inches	A verage measured inches	Specified inches	Averago measured inches
0 1.25 2.5 5 7.5 10 15 20 30 40 50 60 70 80 90 95 100	3,50 5,45 6,50 7,90 8,85 9,60 10,68 11,38 11,70 11,62 9,15 7,35 5,22 2,80 1,12	3.50 1.93 1.47 .93 .63 .42 .15 .00 .00 .00 .00 .00 .00 .00 .0	1.68 2.62 3.79 4.25 4.61 5.545 5.62 4.38 3.251 4.383 2.251 1.372 .06	2.63 3.11 3.77 4.24 4.60 5.13 5.43 5.61 5.61 5.64 4.38 8.50 2.50 1.34 1.34	$\begin{array}{c} 1.68\\ .93\\ .71\\ .45\\ .30\\ .20\\ .07\\ .01\\ .00\\ .00\\ .00\\ .00\\ .00\\ .00\\ .00$	0.92 .68 .43 .29 .20 .00 .00 .00 .00 .00 .00 .00 .00 .00	2.52 3.92 4.68 5.88 5.37 6.91 7.68 8.18 8.42 8.42 7.57 5.52 5.22 5.22 5.22 5.22 5.22 5.2	3.92 4.67 5.69 6.37 6.92 7.71 8.20 8.48 8.48 8.48 8.48 8.48 8.48 8.48 1.44 1.14 .11	2.52 1.39 1.06 .67 .45 .30 .01 .02 .00 .00 .00 .00 .00 .00 .00 .00 .00	1.39 1.05 .66 .45 .30 .01 .01 .01 .02 .02 .02 .01 .01	3.36 5.23 6.24 7.58 8.62 9.21 10.25 10.91 11.23 10.94 10.09 10.09 10.09 10.09 10.09 1.43 .12	5.25 6.28 7.58 8.62 9.22 10.20 10.91 11.25 10.95	3.35 1.85 1.41 .00 .00 .00 .00 .00 .00 .00 .0	1.85 1.40 .80 .61 .40 .40 .00 .00 .00 .00 .00 .00 .00 .00

TABLE II

4 BY 24 CLARK Y AIRFOIL CHARACTERISTICS R.N.: ZERO LIFT= 1.12×10^6 , MAX. LIFT= 1.07×10^6

C_L	α	C_D	L/D	c.p.	C _{₩eH}	C_{D_0}	α
-0.2 -0.2 -1 0 .1 .3 .4 .5 .67 .89 1.0 1.1 1.227 1.2 1.1 1.09 .8	$\begin{array}{c} -9.0 \\ -7.7 \\ -6.2 \\ -4.8 \\ -3.3 \\ -1.9 \\ -5.2 \\ -3.3 \\ -1.9 \\ -5.2 \\ -5$	0.0120 .0100 .0107 .0102 .0120 .0125 .0200 .0320 .0320 .0320 .0320 .0393 .04933 .0493 .0493 .0493 .0493 .0493 .0493 .0493 .0493 .0493 .049	$\begin{array}{c} -16.7\\ -10.0\\ 0\\ 9.8\\ 16.7\\ 19.6\\ 20.0\\ 19.7\\ 18.8\\ 17.9\\ 16.2\\ 17.9\\ 17.9\\ 17.9\\ 18.2\\ 17.9\\ 18.2\\ 17.9\\ 18.2\\ 1$		-0.072 -070 -068 -068 -065 -065 -065 -065 -065 -065 -065 -065	0.0098 0094 0096 0098 0103 0111 0115 0120 0119 0137 0160 0181 0297 0415 0758 0758 2202 2938 23594	$\begin{array}{c} & & & & \\ & & & & \\ & & & & \\ & & & & $

TABLE III

4 BY 24 CLARK Y AIRFOIL CHARACTERISTICS R.N.: ZERO LIFT=1.55×10°, MAX. LIFT=1.48×10°

CL	α	CD	L/D	с.р.	C ≠ c/4	CDg	α0
$\begin{array}{c} -0.2 \\1 \\ 0 \\ .2 \\ .3 \\ .4 \\ .5 \\ .6 \\ .7 \\ .8 \\ .9 \\ 1.0 \\ 1.1 \\ 1.2 \\ 1.2 \\ 1.2 \\ 1.1 \\ 1.0 \\ .9 \end{array}$	$\begin{array}{c} & & & & & \\ & & & & & \\ -9,0 & & & & \\ -7,7 & & & & \\ -6,2 & & & & \\ -4,9 & & & & \\ -3,4 & & & & \\ -2,2 & 0 & & \\ -3,4 & & & \\ -2,2 & 0 & & \\ -3,4 & & & \\ -2,2 & 0 & & \\ -3,4 & & & \\ -2,2 & & & \\ -3,4 & & & \\ -2,2 & & & \\ -3,4 & & & \\ -2,2 & & & \\ -3,4 & & & \\ -2,2 & & & \\ -3,4 & & & \\ -2,2 & & & \\ -3,4 & & & \\ -2,2 & & & \\ -3,4 & & & \\ -2,2 & & & \\ -3,4 & & & \\ -2,2 & & & \\ -3,4 & & & \\ -2,2 & & & \\ -3,4 & & & \\ -2,2 & & & \\ -3,4 & & & \\ -2,2 & & & \\ -3,4 & & & \\ -2,2 & & & \\ -3,4 & & & \\ -2,2 & & & \\ -3,4 & & & \\ -2,4 & & \\$	0.0120 0.0090 0092 0093 0112 0145 0192 0242 0395 0485 0485 0485 0485 0485 0485 0485 048	$\begin{array}{c} -16.7 \\ -10.1 \\ 0 \\ 10.8 \\ 20.7 \\ 20.8 \\ 20.6 \\ 19.2 \\ 17.9 \\ 16.5 \\ 14.3 \\ 12.8 \\ 11.6 \\ 8.1 \\ 5.7 \\ 4.1 \\ 3.5 \\ 3.0 \\ \end{array}$	-13.1 -50.7 99.9 61.7 48.7 48.7 48.7 48.7 48.7 48.7 38.0 35.6 33.8 33.8 33.5 33.2 7 30.7 30.7 30.3 31.0 23.8 34.5 36.4 38.3	-0.076 076 077 074 073 071 085 082 062 062 062 063 063 064 075 094 118 128	0.0098 .0093 .0088 .0087 .0090 .0095 .0103 .0103 .0122 .0129 .0129 .0129 .0143 .0186 .0291 .0664 .1986 .2343 .2589	$^{\circ}43231$ $^{\circ}7.6331$ $^{\circ}7.6432$ $^{\circ}7.6431$ $^{\circ}1.11$ $^{\circ}1.13337$ $^{\circ}7.4215$ $^{\circ}1.1587$ $^{\circ}1.1587$ $^{\circ}1.1587$ $^{\circ}1.1587$ $^{\circ}1.1587$

TABLE IV

4 BY 24 CLARK Y AIRFOIL CHARACTERISTICS R.N.: ZERO LIFT=2.06 \times 10⁶, MAX. LIFT=1.96 \times 10⁶

CL	α	C_D	L/D	с.р.	Cm ./4	C_{D_0}	α0
$ \begin{array}{c} -0.2 \\1 \\ 0 \\ .1 \\ .2 \\ .3 \\ .4 \\ .5 \\ .6 \\ .7 \\ .8 \\ .9 \\ 1.0 \\ 1.1 \end{array} $	8.4 -7.6 -1.4 -1.1.4 -1.2 -1.2 -1.2 -1.2 -1.2 -1.2 -1.2 -1.2	0.0116 .0095 .0090 .0118 .0151 .0167 .0255 .0104 .0490 .0612 .0749 .0901	$-17.2 \\ -10.5 \\ 0 \\ 10.1 \\ 16.9 \\ 19.9 \\ 20.3 \\ 19.6 \\ 18.5 \\ 17.3 \\ 16.8 \\ 14.7 \\ 13.4 \\ 12.2 \\ 12.2 \\ 10.1 \\ 1$	-13.1 -49.7 99.8 61.7 49.0 42.5 39.0 36.5 34.7 33.4 32.3 31.5	-0.076 075 075 074 073 073 070 070 069 068 065	0.0094 .0089 .0090 .0093 .0096 .0101 .0108 .0116 .0125 .0131 .0134 .0162 .0192 .0192	°810009988834569

•

TABLE V

4 BY 24 CLARK Y AIRFOIL CHARACTERISTICS R.N.: ZERO LIFT=2.81 $\times10^{\circ}$, MAX. LIFT=2.62 $\times10^{\circ}$

CL	α	Cd	L/D	c.p.	C _{meft}	C _D	a,
$ \begin{array}{c} -0.2 \\1 \\ 0 \\ .2 \\ .3 \\ .4 \\ .6 \\ .7 \\ .9 \\ 1.0 \\ 1.3 \\ 1.3 \\ 1.1 \\ 1.0 \\ \end{array} $	$\begin{array}{c} & \circ \\ -8.5 \\ -7.2 \\ -5.8 \\ -4.4 \\ -3.0 \\ -1.6 \\ -1.2 \\ 2.5 \\ 3.9 \\ 6.3 \\ 9.8 \\ 11.5 \\ 13.1 \\ 14.4 \\ 16.4 \\ 17.4 \\ 16.4 \\ 17.4 \\ 20.0 \\ 22.1 \\ \end{array}$	0.0110 00%8 00%9 0100 0157 02011 0285 0330 04111 0507 0420 0411 10%2 1260 1405 2015 2205 22788 3260	$\begin{array}{c} -18.3\\ -10.2\\ 0\\ 10.0\\ 16.7\\ 19.1\\ 19.9\\ 18.9\\ 18.0\\ 17.6\\ 8\\ 14.5\\ 12.2\\ 11.1\\ 10.4\\ 9.7\\ 6.5\\ 3.39\\ 3.1\end{array}$	-13.6 -51.7 100.8 62.2 49.0 42.5 38.4 33.5 33.5 31.5 33.5 30.8 30.8 30.3 29.9 29.9 31.5 33.5 33.5 33.5 33.5 33.5 33.5 33.5	-0.077 -077 -0775 -0775 -074 -072 -074 -077 -067 -068 -085 -0	0.0088 .0090 .0090 .0094 .0098 .0107 .01126 .0130 .0130 .0151 .0170 .0227 .0226 .0250 .0318 .0360 .1458 .2114 .2703	°7.888877684448977884588877684448977888887778844489778898881118

TABLE VI

4 BY 24 CLARK Y AIRFOIL CHARACTERISTICS R.N.: ZERO LIFT=3.19 $\times10^6$, MAX. LIFT=2.96 $\times10^6$

TABLE VII

4 BY 24 CLARK Y AIRFOIL CHARACTERISTICS R.N.: ZERO LIFT=3.59 $\times10^6$, MAX. LIFT=3.50 $\times10^6$

	CL	æ	CD	L D	c.p.	C m ,,,i	C_{D_0}	αo
•	-0.2 -1 0 12.3 .5 .6 .7 .5 .6 .7 .5 .6 .7 .10 112 13 14 1420 14 1420 14 1421 14 1421 14 1421 14 1421 14 1421 14 1421 1441	$\begin{array}{c} \bullet & 8.4 \\ \bullet & -7.0 \\5.6 \\2.8 \\2.8 \\2.8 \\2.8 \\1.4 \\2.8 \\$	0.0108 .0094 .0094 .0117 .0150 .0199 .0230 .0420 .0530 .0421 .0770 .0681 .0770 .0681 .0770 .0681 .0770 .06941 .0770 .06941 .0770 .06941 .0770 .06941 .0770 .06941 .0770 .06941 .0694 .0694 .0694 .0694 .0694 .0694 .0694 .0694 .0694 .0694 .0694 .0694 .0694 .0694 .0694 .0694 .0695 .0694 .0695 .0694 .0695 .0	-18.5 -10.6 0 0 10.6 17.1 20.1 19.2 17.8 16.7 15.1 14.1 13.0 11.1 14.1 13.0 11.1 14.3 9.6 9.3 8.9 9.5 3 8.5 4.4 4.4	-13.0 -19.7 99.7 61.6 49.0 42.8 33.0 42.8 33.4 33.4 33.3 33.4 33.2 2 33.1 4 30.7 30.2 29.8 32.9 32.9 32.9 32.9 32.9 32.9 32.9 32.9	-0.075 -075 -075 -075 -074 -073 -074 -073 -073 -073 -073 -073 -073 -073 -073	0,0086 0088 0088 0099 0099 0100 0121 0133 0174 0191 0246 0278 0246 0246 0278 0318 0318 0318 0318 0406 0485 1492 2308 2708 2708	- - - - - - - -
	1.0	23.2	. 3355	3.0	1		1	

TABLE VIII

6 BY 36 CLARK Y AIRFOIL CHARACTERISTICS R.N.: ZERO LIFT=2.07×10⁶, MAX. LIFT=1.90×10⁶

CL	α	CD	ЦD	¹ с.р.	¹ C=_a/4	$C_{D_{3}}$	ag
$ \begin{array}{c} -0.1 \\ 0 \\ .1 \\ .2 \\ .3 \\ .4 \\ .6 \\ .7 \\ .8 \\ .9 \\ 1.0 \\ 1.2 \\ 1.2 \\ 1.1 \\ 1.2 \\ 1.1 \\ 1.0 \\ 1.1 \\ 1.0 \\ 1.1 \\ 1.0 \\ 1.1 \\ 1.0 \\ 1.1 \\ 1.0 \\ 1$	$\begin{array}{c} -7.0\\ -5.7\\ -4.3\\ -2.8\\ -1.3\\ -3.3\\ 2.7\\ 4.0\\ 5.4\\ 6.9\\ 8.3\\ 10.1\\ 11.7\\ 13.6\\ 18.1\\ 19.7\\ 21.5\end{array}$	$\begin{array}{c} 0,0110\\ 0,0102\\ 0,0102\\ 0,0117\\ 0,0159\\ 0,0234\\ 0,00382\\ 0,038\\ 0,008\\ 0,008\\ 0,008\\ 0,008\\ 0,008\\ 0,008\\ 0,008\\ $	$\begin{array}{c} -9.0 \\ 0 \\ 9.8 \\ 17.1 \\ 20.7 \\ 21.2 \\ 21.4 \\ 20.0 \\ 18.3 \\ 16.8 \\ 16.2 \\ 14.1 \\ 12.7 \\ 11.8 \\ 10.2 \\ 5.3 \\ 4.2 \\ 8.2 \\ \end{array}$			0.0105 0100 0096 0091 0095 0100 0120 0120 0120 0134 0151 0179 0218 0344 1463 1932 2534	$\begin{array}{c} & 0 \\ -6.6 \\ -4.7 \\ -3.5 \\ -1.$

¹ Not measured.

TABLE IX

6 BY 36 CLARK Y AIRFOIL CHARACTERISTICS R.N.: ZERO LIFT= $3.04 \times 10^{\circ}$, MAX. LIFT= $2.75 \times 10^{\circ}$

CL	α	C₽	LĮD	c.p.	Cm _{c/i}	C_{D_0}	æ
-0.1 0 .1 .2 .3 .4 .5 .6 .7 .8 .9 L0	-6.9 -5.62 -2.8 -1.4 0 1.4 2.8 4.1 5.0 8.3	0.0098 .0038 .0093 .0112 .0145 .0189 .0239 .0310 .0397 .0476 .0555 .0397	-10.4 0 10.8 17.8 20.7 21.2 20.9 19.4 18.1 16.8 15.4 14.3	-54.7 99.7 59.2 47.3 41.2 37.8 35.3 33.7 32.2 31.3 30.6	-0.030 077 074 063 065 064 062 061 051 057 056	0.0090 .0093 .0097 .0090 .0095 .0100 .0110 .0114 .0120 .0120 .0145	066666
1.1 1.2 1.3 1.330 1.3 1.2 1.1 1.0	10.0 11.5 13.3 14.2 14.7 18.9 20.7 22.0	.0843 .0990 .1180 .1307 .1485 .2440 .2828 .3295	13.0 12.1 11.0 10.2 8.8 4.9 3.9 3.0	29.8 29.2 23.8 25.9 30.0 32.2 34.2 36.2	053 050 049 052 065 087 104 117	.0163 .0188 .0238 .0322 .0543 .1638 .2154 .2638	6.1 7.2 8.7 9.5 10.1 14.6 16.8 18.4

TABLE X

6 BY 36 CLARK Y AIRFOIL CHARACTERISTICS R.N.: ZERO LIFT=3.64 \times 10⁶, MAX. LIFT=3.22 \times 10⁶

CL	a	C₽	L/D	c.p.	C _{■ e/i}	C _{D0}	æ ₀
$\begin{array}{c} -0.1 \\ 0 \\ .1 \\ .2 \\ .3 \\ .4 \\ .5 \\ .6 \\ .7 \\ .8 \\ .9 \\ 1.0 \\ 1.1 \\ 1.2 \\ 1.3 \\ 1.36 \\ 1.3 \\ 1.2 \\ 1.1 \end{array}$	$\begin{array}{c} \circ \\ -6.9 \\ -4.2 \\ -2.7 \\ -2.7 \\ -1.1 \\ 1.5 \\ 2.2 \\ 5.7 \\ 7.0 \\ 8.4 \\ 9.9 \\ 11.4 \\ 13.0 \\ 14.7 \\ 15.0 \\ 19.2 \\ 21.6 \end{array}$	0,0101 .0090 .0095 .0112 .0145 .0194 .0246 .0396 .0396 .0396 .0396 .0396 .0585 .0708 .0585 .0708 .0585 .0708 .11555 .1383 .1555 .2545 .3033	-9.9 0 0 10.5 17.97 20.6 21.3 19.2 19.3 11.3 11.3 11.3 9.8 4 4.7 8	-57.6 103.8 62.6 42.0 33.5 5 33.5 31.0 30.5 30.0 29.3 29.0 29.3 29.0 29.7 33.2 29.0 29.7 33.2 29.7 35.2	-0.033 078 078 071 063 063 060 060 060 060 060 060 060 060 060 060 060 060 065 061 065 065 065 065	$\begin{array}{c} 0,0095\\ 0,0090\\ 0089\\ 0090\\ 0095\\ 0095\\ 0095\\ 0012\\ 0112\\ 0123\\ 0134\\ 0147\\ 0154\\ 0176\\ 0213\\ 0353\\ 1743\\ 2359 \end{array}$	°55 -655 -655 -655 -124 -124 -124 -124 -124 -124 -124 -124

.

TABLE XI

.

6 BY 36 CLARK Y AIRFOIL CHARACTERISTICS R.N.: ZERO LIFT=4.15×10°, MAX. LIFT=3.64×10°

CL	α	CD	L D	c.p.	C=+/i	C _{₽0}	α,
$ \begin{array}{c} -0.2 \\1 \\ 0 \\ .2 \\ .4 \\ .5 \\ .6 \\ .7 \\ .8 \\ .9 \\ 1.0 \\ 1.3 \\ 1.3 \\ 1.2 \\ 1.1 \\ 1.3 \\ $	$\begin{array}{c} & & & & & & \\ & & & & & & \\ & & & & & $	0,0088 0088 0094 0111 0145 0191 0243 0318 0478 0585 0478 0585 0701 0841 0989 1167 1382 1695 2338 2358		-58,6 102,8 62,6 49,4 42,2 38,5 33,8 33,5 33,8 33,5 31,0 30,3 30,3 30,3 30,3 30,4 32,9 33,4 34,1	-0,084 -0,080 -077 -076 -073 -069 -063 -063 -063 -063 -062 -061 -060 -058 -057 -055 -057 -055 -073 -062 -069 -058 -057 -058 -057 -058 -057 -058 -057 -058 -057 -058 -058 -058 -058 -058 -058 -058 -058	0.0092 .0083 .0089 .0089 .0095 .0102 .0104 .0113 .0115 .0115 .0132 .0136 .0134 .0144 .0160 .0187 .0225 .0334 .0753 .1536 .2184	$\begin{array}{c} \circ, 7.6 \\ \circ, 7.6 \\ \circ, 6.6 \\ \circ, 6.6 \\ \circ, 6.6 \\ \circ, 7.6 \\ \circ, 6.6 \\ \circ, 6.6 \\ \circ, 6.6 \\ \circ, 7.6 \\ \circ, 7.$

TABLE XII

6 BY 36 CLARK Y AIRFOIL CHARACTERISTICS R.N.: ZERO LIFT=4.77×10⁹, MAX. LIFT=4.20×10⁹

TABLE XIII

6 BY 36 CLARK Y AIRFOIL CHARACTERISTICS R.N.: ZERO LIFT=5.86×10⁶

CL	α	Cp	L D	c.p.	C= •/4	C _{Dg}	α
-0.1 0 .1 .2 .3 .4 .5 .6 .7 .8	-6.9 - 5.5 - 4.4 - 2.6 - 1.2 2 1.7 3.1 4.3 5.8 5.8	0.0097 .0090 .0094 .0112 .0147 .0200 .0254 .0322 .0402 .0496	10, 3 0 10, 6 17, 9 20, 4 20, 0 19, 7 18, 6 17, 4 16, 2	-58.5 98.7 60.1 47.7 41.8 38.0 35.6 34.0 32.9	0.032 077 073 068 065 065 064 063 063	0.0091 .0090 .0088 .0090 .0097 .0111 .0115 .0122 .0129 .0140	°.5.5.5.3.2.2.1 -1.5.5.5.5.3.2.2.1 -1.5.5.5.3.2.2.1 -1.5.5.5.3.2.2.1 -1.5.5.5.3.2.2.1 -1.5.5.5.3.2.2.1 -1.5.5.5.3.2.2.1 -1.5.5.5.5.3.2.2.1 -1.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5

.

TABLE XIV

8 BY 48 CLARK Y AIRFOIL CHARACTERISTICS R.N.: ZERO LIFT=2.20×10⁴, MAX. LIFT=1.84×10⁴

<i>CL</i>	α	C_D	L D	с.р.	Cm4/5	C_{D_0}	α _θ
-0.2 1 0 .1 .5 .6 .7 .8 .9 1.0 1.1 1.2 1.3 1.325 1.3 1.1 1.1 1.0	-8.40 -5.62 -4.23 -4.23 -1.4 -1.4 -2.14 -1.4 -2.14 -1.4 -2.14 -1.4 -2.14 -1.4 -2.5 -1.4 -2.5 -1.4 -2.5 -1.4 -2.5 -1.4 -2.5 -1.4 -2.5 -1.4 -2.5 -1.4 -2.5 -1.4 -1.4 -2.5 -1.4 -1.4 -2.5 -1.4 -1.5 -1.4	0.0131 0103 0099 0099 0099 0110 0134 0175 0230 0305 0483 0590 0721 0721 0590 1040 0576 1233 1399 1644 2133 2591 3191	$\begin{array}{c} -16.3\\ -9.3\\ 0\\ 10.1\\ 1224\\ 22.9\\ 21.7\\ 19.7\\ 18.6\\ 15.3\\ 13.9\\ 12.6\\ 11.5\\ 10.5\\ 7.9\\ 5.6\\ 4.2\\ 3.1\end{array}$	-15.6 -52.5 98.7 60.6 48.4 42.5 38.8 38.3 34.4 33.1 32.2 31.5 31.5 31.5 31.0 33.0 33.0 33.0 33.0 33.0	-0.081 -0.073 -0778 -0773 -0771 -0770 -0700 -0683 -0685 -0685 -0685 -0685 -0685 -0685 -0685 -0685 -0695 -0695 -0695 -0695 -0695 -079 -068 -079 -	0.0109 0103 0099 0083 0084 0084 0091 0104 0104 0104 0104 0104 0127 0139 0164 0127 0139 0164 0127 0139 0122 0223 0223 0223 0223 0223 0223 0223	7.66 -7.66

TABLE XV

8 BY 48 CLARK Y AIRFOIL CHARACTERISTICS R.N.: ZERO LIFT=3.10×10⁶, MAX. LIFT=2.59×10⁶

C _L	α	CD	L/D	c.p.	C=+/1	C _{D0}	α0
$\begin{array}{c} -0.2 \\ -0.1 \\ 0 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 1.0 \\ 1.2 \\ 1.3 \\ 1.2 \\ 1.3 \\ 1.2 \\ 1.3 \\ 1.2 \\ 1.1 \\ 1.0 \\ 1.1 \\ 1.0 \\ 1.1 \\ 1.0 \\$	$ \begin{array}{c} \circ & 8.3 \\ -8.3 \\ -5.5 \\ -4.1 \\ -2.7 \\ -1.3 \\ 1.5 \\ 2.8 \\ 4.2 \\ 5.6 \\ 7.0 \\ 8.6 \\ 7.0 \\ 8.6 \\ 10.1 \\ 11.8 \\ 13.6 \\ 15.2 \\ 16.4 \\ 18.4 \\ 18.4 \\ 20.6 \\ 22.8 \end{array} $	0.0130 .0101 .0091 .0033 .0106 .0131 .0180 .0234 .0389 .0389 .0389 .0389 .0481 .0590 .0721 .0590 .0771 .1046 .1228 .1442 .1772 .2331 .2811 .3256	-15.4 -9.9 0 22.9 22.2 21.4 19.7 18.0 16.6 15.8 13.8 13.8 13.8 11.5 10.6 9.4 7.3 6.1 8.9 8.1	-17.0 -54.6 -54.6 54.6 	-0.084 -080 -075 -076 -076 -067 -067 -067 -067 -067 -067	0.0108 0.0095 0091 0087 0084 0095 0104 0095 0104 0116 0125 0138 0164 0164 0168 0125 0138 0164 0164 0125 0138 0164 0125 0138 0164 0125 0125 0125 0125 0125 0125 0125 0125	$\begin{array}{c} & \circ & \circ \\ -7.6 & \circ \\ -8.5 & \circ \\ -8.5 & \circ \\ -3.4 & \circ \\ -1.3 & \circ \\ -1.4 & \circ \\ -1.4 & \circ \\ -1.7 $

TABLE XVI

8 BY 48 CLARK Y AIRFOIL CHARACTERISTICS R.N.: ZERO LIFT= 4.13×10^{4} , MAX. J IFT= 3.78×10^{4}

CL.	α	CD	L/D	c.p.	Cme/i	C _{D0}	α
$ \begin{array}{c} -0.2 \\1 \\ 0 \\ .2 \\ .3 \\ .4 \\ .6 \\ .7 \\ .8 \\ .9 \\ 1.0 \\ 1.1 \\ 1.2 \\ 1.3 \\ 1.4 \\ 1.445 \\ 1.4 \\ 1.445 \\ 1.4 \\ 1.445 \\ 1.4 \\ 1.445 \\ 1.4 \\ 1.445 \\ 1.4 \\ 1.445 \\ 1.4 \\ 1.445 \\ 1.4 \\ 1.445 \\ 1.4 \\ 1.445 \\ 1.4 \\ 1.445 \\ 1.4 \\ 1.445 \\ 1.4 \\ 1.445 \\ 1.4 \\ 1.445 \\ 1.4 \\ 1.445 \\ 1.4 \\ 1.4 \\ 1.445 \\ 1.4 \\ $	$\begin{array}{c} & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & &$	0.0126 .0100 .0090 .0095 .0109 .0137 .0137 .0137 .0228 .0228 .0228 .0228 .0255 .0573 .0465 .0573 .0465 .0573 .0465 .0573 .0465 .0573 .0465 .0598 .0598 .1182 .1398 .1550 .2058	15.9 10.0 0 10.5 18.4 21.9 221.9 221.9 21.9 21.9 21.9 21.9 21	-17.1 -53.6 98.7 60.6 48.4 42.5 39.0 38.5 33.0 33.5 32.6 31.1 30.5 33.0 30.5 32.0 31.1 30.5 32.0 30.4	-0.084 -079 -075 -075 -075 -075 -075 -070 -070 -070	0.0104 0094 0080 0087 0087 0086 0089 0084 0094 0104 0109 0122 0132 0150 0196 0196 0196 0196 0196 0196 0196 0241 0306 0241 0306 0241 0306 0241	-7.5 -6.5 -6.5 -6.5 -6.5 -6.5 -2.5 -2.5 -2.5 -2.5 -2.5 -2.5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5
1.3 1.2	19. 0 21, 6	. 2492 . 2832	5.2 4.2	32.3 34.8	095 120	. 1551 . 2304	14.4 17.8

TA	BLE	XVII	

8 BY 48 CLARK Y AIRFOIL CHARACTERISTICS R.N.: ZERO LIFT=5.58 $\times10^{6}$, MAX. LIFT=4.43 $\times10^{6}$

	α	C_D	LID	c.p.	C=_e/i	<i>C</i> _{<i>D</i>₀}	α ₀
-0.2 -0.1 .0 .1 .3 .3 .5 .5 .7 .9 10 11 122 1.3 1.4 1.4 1.4 1.3 1.2	$\begin{array}{c} \circ & 1 \\ - \& 1 \\ - \& 1 \\ - \& 2 \\ - \& 2 \\ - & 2 \\$	0.0119 0.0038 00983 00911 0106 0137 0183 0234 0465 0465 0465 0465 0465 0465 0465 046	-16.8 -10.3 0 11.0 21.9 21.9 21.9 21.4 19.8 18.3 18.2 12.0 11.0 10.1 9.1 7.9 8.3 7	$\begin{array}{c} -15.1\\ -51.7\\ 100.6\\ 62.6\\ 39.7\\ 43.5\\ 39.6\\ 38.8\\ 35.0\\ 33.8\\ 33.6\\ 33.8\\ 33.6\\ 33.6\\ 33.6\\ 33.6\\ 30.2\\ 30.0\\ 30.0\\ 30.0\\ 29.7\\ 30.0\\ 31.9\\ 35.2\end{array}$	-0.080 -0.076 076 075 075 074 074 071 070 063 065	0.0097 .0092 .0083 .0086 .0086 .0087 .0094 .0095 .0094 .0095 .0102 .0109 .0115 .0127 .0153 .0201 .0211 .0240 .0241 .0246 .1251 .2406	-7.4 -6.4 -8.33 -2.33 -7.7 -2.4 -2.33 -7.7 -2.67 -3.77 -2.67 -3.77 -

TABLE XVIII

.

8 BY 48 CLARK Y AIRFOIL CHARACTERISTICS R.N.: ZERO LIFT= 6.12×10^{4} , MAX. LIFT= 5.38×10^{4}

C_L	α	CD	L _l D	c.p.	C _{≡ c/4}	C _D	a
-0.2 1 .0 .1 .2 .3 .4 .5 .6 .7 .8 .9 1.0 1.1 1.2 1.3	-8.1 -6.7 -5.3 -8.9 -2.6 -1.2 1.5 2.1 5 2.1 5 4.2 5 6 6 9 8.4 9.8 11.3 9	0.0124 .0097 .0086 .0089 .0108 .0139 .0181 .0234 .0305 .0382 .0476 .0581 .0696 .0583 .0696 .0593 .0696 .0593	$\begin{array}{c} -16.1\\ -10.3\\ 0\\ 10.2\\ 18.9\\ 21.6\\ 22.1\\ 19.7\\ 18.3\\ 16.8\\ 15.6\\ 14.4\\ 13.2\\ 12.0\\ 11.0\\ \end{array}$	-15.0 -54.0 -54.0 49.5 43.0 30.5 37.0 35.0 35.0 34.0 35.0 32.1 81.3 30.9 30.3	-0.080 078 076 075 072 072 071 071 071 071 070 070 070 070 070	0.0102 0091 0086 0083 0089 0092 0095 0104 0109 0120 0130 0139 0162 0186	-7.4 -6.3 -4.3 -3.3 -1.3 -1.3 -1.3 -7.4 -3.3 -1.3 -7.4 -3.3 -7.4 -3.3 -7.4 -3.3 -7.4 -3.3 -7.4 -3.3 -7.4 -3.3 -7.4 -3.3 -7.4 -3.3 -7.4 -3.3 -7.4 -3.3 -7.4 -3.3 -7.4 -3.3 -7.4 -3.3 -7.4 -3.3 -7.4 -3.3 -7.4 -3.3 -7.4 -3.3 -7.4 -3.3 -7.4 -3.3 -7.4 -7.4 -3.3 -7.4 -7.4 -7.4 -7.4 -7.4 -7.4 -7.4 -7.4
1.4 1.51 1.4 1.3 1.2	14.7 16.7 17.3 19.2 22.0	.1880 .1660 .1910 .2570 .3150	10.1 9.1 7.3 5.1 8.8	30.0 29.9 29.8 33.6 34.9	070 070 068 110 118	.0286 .0390 .0816 .1631 .2346	9.7 11.3 12.3 14.6 17.7

TABLE XIX

8 BY 48 CLARK Y AIRFOIL CHARACTERISTICS R N.: ZERO LIFT=7.53×10⁶

5 ·	α	CD	LID	c.p.	C.,4	C _D	α ₀
0.2	$-8.8 \\ -6.8 \\ -5.3 \\ -2.3 \\ -1.0 \\ .3 \\ 1.6 \\ 2.9 \\ 4.3 \\ 5.6 \\ -1.0 \\ .3 \\ .5 \\ .5 \\ .5 \\ .5 \\ .5 \\ .5 \\ .5$	0. 0128 . 0097 . 0088 . 0092 . 0112 . 0147 . 0183 . 0240 . 0305 . 0385 . 0464	-15.9 -10.3 0 10.9 17.9 20.4 21.8 20.8 19.7 18.2 17.3	-15.1 -51.7 99.6 61.6 48.7 42.5 39.0 36.7 35.0 33.9	-0.080 077 075 074 073 071 070 070 070 070 071	0.0104 .0091 .0036 .0096 .0090 .0097 .0094 .0101 .0104 .0112 .0108	-7.6 - 6.4 - 5.3 - 4.2 - 3.0 - 2.1 - 1.2 - 2 .8 1.8 2.7

TABLE XX

8 BY 48 CLARK Y AIRFOIL CHARACTERISTICS R.N.: ZERO LIFT=8.77×10⁸

C_L	α	CD	L _l D	с.р.	Cm _{e/4}	C _{D0}	۳,
$-0.1 \\ .0 \\ .1 \\ .2 \\ .3 \\ .4 \\ .5 \\ .6$	-7.2 -5.4 -3.7 -2.3 -1.0 .2 1.5 2.8	0.0095 .0087 .0091 .0108 .0139 .0180 .0229 .0285	10.5 0 11.0 18.5 21.6 22.2 21.8 21.6 21.6	-55.7 99.6 61.6 49.0 42.8 39.2 37.0	-0.081 078 074 073 072 070 071 072	0.0089 .0087 .0085 .0086 .0089 .0091 .0090 .0084	-6.8 -5.4 -4.1 -2.1 -1.2 3 .6