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Abstract

The protein structure is a cumulative result of interactions between amino acid residues interacting with each other through
space and/or chemical bonds. Despite the large number of high resolution protein structures, the ‘‘protein structure code’’
has not been fully identified. Our manuscript presents a novel approach to protein structure analysis in order to identify
rules for spatial packing of amino acid pairs in proteins. We have investigated 8706 high resolution non-redundant protein
chains and quantified amino acid pair interactions in terms of solvent accessibility, spatial and sequence distance, secondary
structure, and sequence length. The number of pairs found in a particular environment is stored in a cell in an 8 dimensional
data tensor. When plotting the cell population against the number of cells that have the same population size, a scale free
organization is found. When analyzing which amino acid paired residues contributed to the cells with a population above
50, pairs of Ala, Ile, Leu and Val dominate the results. This result is statistically highly significant. We postulate that such pairs
form ‘‘structural stability points’’ in the protein structure. Our data shows that they are in buried a-helices or b-strands, in a
spatial distance of 3.8–4.3Å and in a sequence distance .4 residues. We speculate that the scale free organization of the
amino acid pair interactions in the 8D protein structure combined with the clear dominance of pairs of Ala, Ile, Leu and Val is
important for understanding the very nature of the protein structure formation. Our observations suggest that protein
structures should be considered as having a higher dimensional organization.
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Introduction

A key challenge for protein science is to understand the

structure and dynamics of the complex web of interactions in

proteins that contribute to the 3D structure and function. Proteins

attain their function through their 3D structure which is the

cumulative result of numerous interactions between amino acid

residues interacting with each other through space and/or

chemical bonds. 1288 different folds have been identified [1,2].

Kauzmann [3], Bernal [4] and Tanford [5,6] proposed that the

hydrophobic effect drives protein folding. The speed at which the

protein attains its folded state is staggering: out of a near infinitude

of possible ways to fold, a protein picks one in just tens of

microseconds. Levinthal [7] speculated in 1969 that if a 100 amino

acid protein has 3 conformational states available for each of the

two dihedral angles in each of the 99 peptide linkages then the

protein needs to explore 3198 conformational states if it searches

the conformational space exhaustively. If each state can be

explored in 1 picosecond (a characteristic time for a bond

vibration), then the protein needs more time than the age of the

universe in order to search all conformational states exhaustively.

Yet we know that a protein attains its structure in a matter of

milliseconds. Levinthal concludes that a guiding mechanism or

principle must be available to the protein. Four decades ago, C.B.

Anfinsen hypothesized that ‘‘information dictating the native fold

of protein domains is encoded in their amino acid sequence’’ [8].

Despite the explosive growth in the number of high-resolution 3D

protein structures, the elusive ‘‘fold code’’ has not been identified

[9–14]. Several models exist for the folding mechanism of proteins.

In the nucleation-condensation model the folding is initiated by

the formation of a meta-stable transition state [15]. The transition

state, called the nucleus, consists of a particular pattern of amino

acid contacts and serves as template for the rapid structure

condensation. The concurrent buildup of secondary and tertiary

contacts is a defining feature of this model which contradicts the

hydrophobic collapse model. Here proteins fold via an initial

collapse driven by hydrophobic effects. Secondary structural

elements are formed in the collapsed state early in this process,

condensing into the tightly packed tertiary structure. Protein

denaturation induced by organic solvents is consistent with
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hydrophobicity being essential for the fold. Both models point to

the fact that the protein structure has both a local and non-local

sequence component, and that a protein’s secondary structure is as

much a consequence of the tertiary structure as it is a cause of it

[12,13]. Protein structure is not likely to be dominated by

electrostatic interactions among charged residues because most

proteins have relatively few charged residues and they are

concentrated in high-dielectric regions on the protein surface.

A possible approach to analyzing a protein structure is to

perceive it as the cumulative result of all interactions between

amino acid pairs in the protein. Higher order contributions

involving more than 2 amino acid residues are possible as well, but

in this first approach we will limit ourselves to pair interactions.

Several parameters influence the contribution of the amino acid

pair interaction to protein stability. In the present work we

quantify the interaction between two amino acid residues in terms

of 8 parameters: the type of each amino acid residue interacting

(AA1, AA2), their solvent accessibility, the secondary structural

element where they are located (SS1, SS2), the protein size

(sequence length), the sequence and spatial distances between the

interacting amino acid residues. We have established an 8-

dimensional tensor compiling information about the 3D structural

environment of all pairs of amino acids found in 8706 protein

structures in terms of the 8 parameters described above. This

hyper dimensional tensor represents our model of protein

structural space. Each cell in the resulting 8D tensor contains

the number of times a pair of two particular amino acids has been

found in a location in the higher dimensional space. A highly

populated hyper cube cell indicates that that particular type of

amino acid pair is found repeatedly in exactly the same location in

the 8 dimensional space. Of some reason Nature has found this

particular constellation optimal for protein structure formation.

In the present paper we present a detailed analysis of the 8D

data cube. We show that the amino acid pair interactions in folded

proteins are consistent with a scale free organization model. In

recent years there has been a rapidly growing understanding of the

rules that guide self-organization of various structures such as the

World Wide Web [16], metabolic networks as well as disease

networks [17,18]. In all these cases a scale free organization that

seemingly forms spontaneously is reported. It appears prudent to

see the scale free organization as a guiding principle for self-

organizing structures. We here report that exactly the same

phenomenon is found for protein structures. We suggest that

achieving a particular protein structure and securing protein

stability should be considered as a process taking place in a higher

dimensional space and that pairs formed among the amino acids

Ala, Ile, Leu and Val form highly populated structural nodes in the

final structure. We believe our findings provide new insight into

key interactions essential to protein structure and structural

stability.

Results

Scale Free Behavior
The topology of the protein high dimensional space is

characterized by densely populated clusters as well as sparsely

populated regions. While the maximum population of a cell is

1004, the average cell population is 3.12 counts. We have

investigated the nature of this spread by analyzing the values found

in the non-zero cells of the matrix. When plotting cell population

against the number of cells that has the same population size, a

scale free behavior is found: v(R) =R2l, where R is the rank or

population of a cell, and v(R) is the number of times such a cell

population was encountered [23]. When plotting log2(v(R))

against log2(R), a straight line with slope 22.333 is obtained

[Fig. 1(A)]. Any given point in the scale free plot corresponds to a

set of cells in the matrix that share the same population (rank).

Given that we know the set, we can extract which location(s) in the

8 dimensional space that contributed to the set, in terms of amino

acid types, solvent accessibility, Euclidian distance, secondary

structures as well as sequence distance and protein length.

In principle the scale free organization could originate from the

distribution of amino acid pairs. Collapsing the 8D matrix

information onto the 2D amino acid plane (only AA1 and AA2

dimensions are included) resulted in 400 cells that differed strongly

from scale free behavior [Fig. 1(B)]. When expanding the subspace

to include the solvent accessibility dimension we observe some

indications of scale free behavior [Fig. 1(C)]. Adding the Euclidian

distance dimension it seems possible that the 4 dimensional data is

organized in a scale free manner [Fig. 1(D)]. Including all 8

dimensions, the scale free feature becomes very distinct and well

defined [Fig. 1(A)]. In order to verify such claims we have fitted the

data. When using the 3 dimensions AA1, AA2, and SA [Fig. 1(C)]

and fitting the data, a straight line with slope 21.104 is obtained

(RMS of 0.893). When using the 4 dimensions AA1, AA2, SA and

Dist [Fig. 1(D)] and fitting the data, a straight line with slope

21.650 is obtained (RMS of 0.952). The value of the exponent

lambda is now closer to the expected value for a scale free

network, where l is generally between 2.1 and 3 [23]. The RMS

of the fit has definitely improved upon adding Dist as the 4th

dimension. When using the 8 dimensions [Fig. 1(A)] and fitting the

data, a straight line with slope 22.333 is obtained (RMS of 0.988).

Working with the full 8 dimensional dataset allows us to extract

all protein structural features for a given cell. Thus, for any

particular rank, we are able to identify amino acid types, solvent

accessibility, Euclidian distance, secondary structures as well as

sequence distance and protein length.

We have analyzed which minimal subset of observables in our

8-dimensional space would still give a reasonable scale-free

approximation with an exponent lambda closest to the value of

2.3 extracted from the full data set. Here we provide a sorted list of

the fit results that resulted in a fit with better or equal than 0.980

RMS deviation. Data is displayed in Table 1. The left text column

indicates which dimensions were included: AA1, AA2 (amino

acid1 and 2); SA (solvent accessibility); Dist (Cartesian distance);

SS1 and SS2 (secondary structure for amino acid 1 and 2); Plen

(protein length) and Seq Dist (sequence distance). The following

column is the slope =2(exponent lambda). Finally the RMS value

for the fit is given in the extreme right column. As judged by the

RMS value the best fit is obtained for the 7 dimensional case: AA1

AA2 SA Dist SS1 PLen SeqDist. However, the improvement is

marginal compared to the 8 dimensional case.

In Figure 2(A) is displayed the cumulative number of amino acid

pairs found above a given rank. In Figure 2(B) we investigate if the

individual pairs containing a particular amino acid behave

similarly to the cumulative behavior depicted in Figure 1(A), by

displaying the log log plots of the individual amino acid as a

function of rank (from 1:300). All 20 curves can be interpreted as

having a scale free nature. The vertical red line corresponds to

rank 50. Alanine, Isoleucine, Leucine and Valine display a linear

behavior in the log-log plot, whereas the titratable residues

Arginine, Lysine, Aspartate, Glutamate, Histidine and Cysteine

exhibit a power law with exponential cutoff. After making a linear

fit to each curve displayed in Figure 2(B), the intersection with the

log2(Rank) axis could be determined. The maximum rank (cell

population) achieved by the individual residues were Alanine

(298), Arginine(46), Asparagine(49), Aspartate(61), Cysteine(78),

Glutamine(40), Glutamate(55), Glycine(295), Histidine(53), Iso-
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leucine(298), Leucine(299), Lysine(24), Methionine(122), Phenyl-

alanine(294), Proline(130), Serine(113), Threonine(110), Trypto-

phan(60), Tyrosine(99), Valine(300).

Amino Acid Pair Preferences
In Figure 3A is displayed the amino acid pairs distribution for

rank 1 (1.15*106 amino acid pairs) while in Figure 3B is displayed

the amino acid pairs distribution for rank $50 (1.07*106 amino

acid pairs). Each amino acid is represented by its one letter code.

2D histograms of Euclidian distance (in Å) between the amino

acids in a pair vs solvent accessibility (SA) seen for rank 1 and for

rank $50 are displayed in Figure 3(C) and 3(D), respectively. Data

shows that cells of rank 1 display no single amino acid preference

[Fig. 3(A)]. In contrast, when analyzing which amino acid pairs

contributed to the cells with a population above 50 (rank 50), 4 of

the 20 amino acids dominate: Alanine, Isoleucine, Leucine and

Valine [Fig. 3(B)]. Such pairs are preferentially buried in protein

structures (SA #10) in a spatial distance of 3.8–4.3Å [Fig. 3(D)]

and in a sequence distance .4 residues (data not shown).

In contrast to what was observed at rank $50, no focal

preferences are observed in the rank 1, SA versus Distance

subspace [Fig. 3(C)]. It is clear from the graph that the buried state

is preferred, and that the majority of pairs are observed with a

Euclidian distance exceeding 3.8Å. In Figure 4 is displayed the

number of amino acid pairs containing each specific amino acid

residue as a function of cell rank. It can be observed that only the

curves containing Alanine, Isoleucine, Leucine and Valine remain

populated at high rank values. It is crucial for a proper

understanding of the 8D matrix, that one can search for a

particular cell or cell content as is the case for the 1004 Leu Leu

pairs, or one can project the full 8D matrix onto a subspace, such

as a subspace defined by the solvent accessibility and the metric

distance between the two amino acids (see e.g. figure 3C and D).

Whereas Figure 3B have taught us that amino acid pairs

containing Ala, Ile, Leu and Val dominate the rank $50 set

(and contains more than 1 million amino acid pairs), followed by

Phe and Gly, Figure 3D is a projection of the 8D data matrix onto

the subspace SA – distance. More than 1 million amino acid pairs

Figure 1. The fold matrix used in the present study is 8 dimensional. Its content can be projected onto any subspace one may define. The
cell content (rank or number of amino acid pairs) is plotted against the frequency that such a rank is found in a log-log plot: in (A) is shown the log-
log plot for the full 8 dimensional fold matrix. A linear fit to the points resulted in a slope of 22.2660.05 and an intercept at 14.3, (B) depicts the 2-
dimensional amino acid type subspace data, (C) the 3 dimensional subspace consisting of 2 amino acid types and 1 solvent accessibility dimension,
and (D) the 4 dimensional subspace consisting of 2 amino acid types, 1 solvent accessibility and 1 distance dimension.
doi:10.1371/journal.pone.0041322.g001
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are contacts made between the four mentioned residues thus

constituting more than 18% of the total amount of amino acid

pairs.

In Figure 5 is displayed the natural occurrence of amino acid

residues in proteins and the occurrence of amino acid pairs

containing a particular amino acid residue retrieved from the 8D

matrix. It is observed that despite the higher occurrence of the four

residues (Ala, Ile, Leu and Val) in amino acid pair interactions in

proteins [Fig. 5(B)], they are not the four most abundant residues

in proteins [Fig. 5(A)]. The four most abundant amino acid

residues are Leu, Ala, Glu and Pro, followed by Val and Gln. The

normalized abundance plot of the randomized dataset is displayed

in Fig. 5C. It can be seen that upon randomization the distribution

plot reflects the natural occurrence of the amino acids in proteins

[Fig. (5A)]. The clear preference for Ala, Ile, Leu and Val in amino

acid pairs is not observed in Figure 5C while it was clear in

Figure 5B. In Figure 5C the residues that display a larger number

of pairwise interactions are Leu, Ala, Gly, Val, Glu and Asp(Ile or

Ser).

The resulting 8 dimensional matrix contains 77.41 million cells.

In our analysis of 8670 protein 3D chains, 5.89 million amino acid

pair observations were found and loaded into 1.89 million cells in

the matrix. Each of these cells contains the number of times a pair

of two particular amino acids has been found in a location in the

8D space. In many cells only a single observation has been

allocated, whereas the Leu-Leu pair scores the highest single cell

count: 1004. In Figure 6 is displayed the number of amino acid

pairs and the type of amino acid forming pairs in cells with

population $50 (rank 50). It can be observed that the Leu-Leu

pair is the most abundant pair [Fig. 6, red column and Fig. 7(A)].

We can deduce from the cell coordinates that this pair is found in a

buried location with a Euclidian distance of 3.8–4.3Å. Both

residues are located in a-helices [see Fig. 8(B)], in an average

length protein (300–400 AA) and in a sequence distance exceeding

4 residues (data not shown). An insert is displayed with a 2D

projection of the same graph. It can be observed that pairs among

Ala, Ile, Leu and Val are dominant in cells with population $50

(rank $50). Interestingly, all four residues display a larger number

of contacts with Leu. Figure 7(A) shows the number of pairs

observed in cells with rank $50. Clearly it can be seen that the 10

most abundant pairs involve the residues Leu, Val, Ile and Ala.

The next three most abundant pairs involve interactions between

Phe and the three most hydrophobic residues: Phe-Leu, Phe-Val

and Phe-Ile.

In order to determine the statistical significance of the

coordinates of the observed pairs, the ratio between the actual

findings and the randomized value has been plotted [see Fig. 7(B)].

It can be observed that the found pairs are statistically significant

since they are more frequent in the actual protein database than in

the randomized reference database. Interestingly, the most

abundant pairs are Ile-Ile, Val-Ile, Leu-Ile, Ile-Ala and to Phe-

Leu, Phe-Val and Phe-Ile followed by pairs between Gly and Val,

Ala and Leu. The bars with stripes displayed in Figure 7B are

highly significant since they are abundant in the protein 8D matrix

but have not been seen in the randomized reference dataset, which

leads to an infinite ratio. For example, 40638 Ile-Ile pairs, 9915

Phe-Val pairs, 8724 Phe-Ile pairs, and 8724 Ile-Phe pairs are seen

in the 8D matrix (in those cells with more than 50 amino acid

pairs, i.e. rank $50) while none of these pairs are seen in the

randomized reference 8D matrix.

Secondary Structural Preferences
Figure 8A shows how the secondary structure assignment

changes with rank. The log2 of the cell population against the

log2 of rank is displayed. Red codes for alpha-helix, green for

beta-strand, blue for coil and black for turn. A scale free

organization is observed also at the secondary structural level.

The alpha and beta categories appear almost linear in the log-log

plot, whereas both the coil and turn categories appear to follow a

power law with exponential cutoff. At rank = 1 all 4 types of

secondary structures are well populated. When the rank

increases, all secondary structures become less populated, but

the turn and coil categories lose population faster than the alpha

and beta categories. The vertical red line is located at rank 50.

When analyzing which amino acid pairs contributed to the cells

with a population above 50 (rank $50), we observe that the

above mentioned preferred pairs of Alanine, Isoleucine, Leucine

and Valine are preferentially located in either alpha-helices (red

curve) or beta-strands (green curve). They are also seen in coil

elements (blue curve) but not in turns (black curve). In Figure 8B

are displayed the secondary structure preferences of each amino

when in a pair located in a cell with a population equal or above

50 (rank $50). Data shows that the pairs containing the highly

connected residues (Alanine, Leucine, Isoleucine, Valine) have

clear secondary structural preferences. For example, pairs

containing Alanine and Leucine are predominately located in

alpha-helices whereas pairs containing Isoleucine and Valine are

preferentially located in beta-strands. Further details are

displayed in Figure 8B.

Table 1. Dimensions that lead to a fit with better or equal
than 0.980 rms deviation.

Dimensions Slope =2exponent l RMS

AA1 AA2 SA Dist SS1 PLen SeqDist 22.291 (22.312 22.270) 0.992

AA1 AA2 SA Dist SS2 PLen SeqDist 22.291 (22.312 22.270) 0.992

AA1 AA2 SA SS1 SS2 PLen SeqDist 22.279 (22.301 22.256) 0.991

AA1 AA2 Dist SS1 SS2 PLen SeqDist 22.279 (22.301 22.256) 0.991

AA1 AA2 SA Dist SS1 PLen 22.220 (22.242 22.197) 0.990

AA1 AA2 SA Dist SS2 PLen 22.220 (22.242 22.197) 0.990

AA1 AA2 SA Dist SS1 SS2 PLen SeqDist 22.333 (22.360 22.307) 0.988

AA1 AA2 SA Dist SS1 SS2 PLen 22.296 (22.322 22.270) 0.988

AA1 AA2 SA SS2 PLen SeqDist 22.186 (22.211 22.160) 0.987

AA1 AA2 Dist SS1 PLen SeqDist 22.186 (22.211 22.160) 0.987

AA1 AA2 SA SS1 PLen SeqDist 22.165 (22.191 22.139) 0.987

AA1 AA2 Dist SS2 PLen SeqDist 22.165 (22.191 22.139) 0.987

AA1 AA2 SA Dist SS1 SeqDist 22.148 (22.177 22.119) 0.983

AA1 AA2 SA Dist SS2 SeqDist 22.148 (22.177 22.119) 0.983

AA1 AA2 SA SS1 SS2 PLen 22.189 (22.219 22.159) 0.982

AA1 AA2 Dist SS1 SS2 PLen 22.189 (22.219 22.159) 0.982

AA1 AA2 Dist PLen SeqDist 22.008 (22.038 21.978) 0.981

AA1 AA2 SA PLen SeqDist 22.009 (22.039 21.979) 0.981

AA1 AA2 SA SS1 SS2 SeqDist 22.073 (22.103 22.043) 0.980

AA1 AA2 Dist SS1 SS2 SeqDist 22.073 (22.103 22.043) 0.980

The left text column indicates which dimensions were included: AA1, AA2
(amino acid1 and 2); SA (solvent accessibility); Dist (Cartesian distance); SS1 and
SS2 (secondary structure for amino acid 1 and 2); Plen (protein length) and Seq
Dist (sequence distance). The following column is the slope =2(exponent l).
Lambda ranges from 2.008 to 2.333. Following this column is the 95%
confidence interval for the exponent in parenthesis. Finally the RMS value for
the fit is given in the extreme right column.
doi:10.1371/journal.pone.0041322.t001
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In Figure 9 are highlighted the amino acid pairs containing Ala,

Ile, Leu and Val residues in the 3MA9.pdb structure, which is the

crystal structure of the N-heptad repeat of HIV-1 gp41 mimetic 5-

Helix complexed with two antibody fragments (Fab). The distance

between the displayed paired residues was limited to 3.8–4.8Å

[please see Fig. 3(D)]. Residues with solvent accessibility #20%

were displayed in yellow. It can be seen that the pairs containing

Ala, Ile, Leu or Val residues connect different secondary structural

elements (alpha-helices and beta-sheets). Pairs containing these

residues located at the end of beta-strands link those strands (chain

L). The displayed pairs are the ones with special the characteristics

displayed in Figure 3D.

Discussion

Protein structure emerges from the sum of the interactions

among the different amino acid residues. These interactions are

responsible for protein function. A major challenge of protein

science is to embark on an integrated theoretical and experimental

program to map out, understand and model in quantifiable terms

the topological and dynamic properties of the inner protein

structure network that is responsible for protein structural stability

and protein function. Rapidly developing theory of complex

networks (e.g. social, technological) is proving quite useful in

understanding e.g. biological networks, including protein-protein

interactions, metabolic, signaling and transcription-regulatory

networks. Like the structure of a protein is a result of the sum of

the interactions among the different amino acid residues, various

types of networks, or interaction webs such as protein-protein

interactions and other cellular networks, emerge from the sum of

the interactions among different molecules.

It is necessary for the discussion of the results presented in this

paper that the concepts of random networks, scale-free networks,

degree of a node, power-law, and hub are introduced. We will

start by describing briefly 2 out of 3 types of network models,

which are crucial for understanding complex networks and help to

explain the origin of observed network characteristics. All 3 models

have a direct impact on our understanding of biological networks

[24]. Random networks are characterized by the fact that most

nodes have approximately the same number of links and the node

degrees follow a Poisson distribution. Degree of a node in a

network is the number of connections it has to other nodes. The

tail (high k region) of the degree distribution P(k) decreases

exponentially, which indicates that nodes that significantly deviate

from the average are extremely rare. One of the earliest

observations relevant to the topology of a large e.g. protein-

protein interaction network was that it possesses the ‘‘scale-free’’

property, i.e., the nodal degree distribution of the network is a

power-law distribution [23–25]. Power-law is a function f(x) where

the value y is proportional to some power of the input x, y = f(x)

,x2a. Degree distribution is the probability distribution of the

degrees over the whole network. In a scale-free network the

probability that a node has k links follows P(k) a k2c. Hub is the

name given to a few nodes which establish a large number of links.

Figure 2. Enumeration of amino acid pairs. (A) Cumulative number of amino acid pairs found above a given rank. (B) Log log plots of the
individual amino acid as a function of rank 1:300. The vertical line is rank 50. The maximum rank achieved by the individual residues were Alanine
(298), Arginine(46), Asparagine(49), Aspartate(61), Cysteine(78), Glutamine(40), Glutamate(55), Glycine(295), Histidine(53), Isoleucine(298),
Leucine(299), Lysine(24), Methionine(122), Phenylalanine(294), Proline(130), Serine(113), Threonine(110), Tryptophan(60), Tyrosine(99), Valine(300).
doi:10.1371/journal.pone.0041322.g002
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When analyzing direct physical interactions in protein-protein

interactions networks for example, it is observed that most proteins

interact with only a few other proteins while a small number of

proteins (hubs) have many interaction partners [26]. So, it is the

high frequency of interactions by a small numbers of proteins the

reason for calling that group of small proteins the ‘‘hubs’’. It is also

reported that the per protein distribution of the interactions

follows an inverse power law [27], indicating a typical scale-free

network topology [19–24]. Most cellular networks within the cell

approximate a scale-free topology. The first evidence came from

the analyses of metabolism, in which the ‘‘nodes’’ are the

metabolites and the ‘‘links’’ the enzyme-catalysed biochemical

reactions. The analyses of the metabolic networks of 43 different

organisms from all three domains of life (eukaryotes, bacteria, and

archae) indicate that the cellular metabolism has a scale-free

topology, in which most metabolic substrates participate in only

one or two reactions, but a few, such as pyruvate and coenzyme A,

participate in dozens and function as metabolic hubs [17,18]. In

our study, we consider that each amino acid residue is a ‘‘node’’

and we observe that 4 amino acids establish many more pairwise

interactions with other residues than the other 16 amino acid

residues. We define a through space interaction between 2 amino

acid residues as the ‘‘link’’. The probability that a node (amino

acid) has k links follows a power-law distribution P(k) a k2c.

Therefore, the amino acid network in a protein is a scale-free

network. In our manuscript we reported that when plotting the cell

population observed in the 8D matrix (number of amino acid pairs

observed in each cell) against the number of cells that has that

same population size, we observe a scale-free distribution

[Fig. 1(A)]. This means exactly the same as in the previous text,

just with other words. Furthermore, a new interesting new

observation if that this scale free distribution is only observed

when several dimensions are included (Fig. 1 and Table 1). The 8

dimensions are: the type of each amino acid residue interacting

(AA1, AA2), their solvent accessibility, the secondary structural

element where they are located (SS1, SS2), the protein size, the

sequence and spatial distances between the amino acid residues

interacting. So, a protein network is observed to be a scale-free

network only if we take into account the many dimensions of the

network. The four residues or ‘‘nodes’’ that have the highest

number of ‘‘links’’ are 4 amino acid residues: Ala, Ile, Leu and Val

[see Fig. 3(A,B)]. The highest-degree nodes in a network are

usually called ‘‘hubs’’, and they are thought to serve specific

purposes in a network. It has been a common practice in the

analyses of protein interaction networks to define an ad hoc

threshold or degree scale such that all nodes (proteins) that have

degree higher than this threshold are considered to be special in

some sense and are called ‘‘hub’’ nodes. We could attempt to call

Figure 3. Amino acid pair distribution. (A) Distribution of the amino acid pair containing residues for rank 1 cells (1.15*106 amino acid pairs); (B)
Distribution of the amino acid pair containing residues for rank$50 cells (1.07*106 amino acid pairs). Each amino acid is represented by its one letter
code; (C) 2D histograms of Euclidian distance between the amino acids in a pair vs solvent accessibility seen for rank 1 cells; (D) 2D histograms of
Euclidian distance between the amino acids in a pair vs solvent accessibility seen for rank $50 cells.
doi:10.1371/journal.pone.0041322.g003
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these 4 amino acid residues ‘‘hubs’’. However, since no threshold

has yet been defined, we prefer to simply state that these 4 ‘‘nodes’’

have a high degree since they establish a large number of

connections to other nodes.

The present study has unraveled the preferential occurrence of

amino acid pairs in protein structures in a local context in a

particular solvent shell. Clearly the organization of such pairs is

very specific if it involves pairs of Ala, Leu, Ile or Val [Fig. 3(B,D)],

and very diffuse and unspecific if the pair is composed of the other

residues [Fig. 3(A,C)]. Based on these observations it appears

plausible that well defined pairwise interactions essential to protein

structure and protein stability are formed by the 4 residues Ala,

Leu, Ile and Val, followed by Phe and Gly [Fig. 3(B) and Fig. 7(A)].

Our observations may explain why predicting protein 3D

structures from amino acid sequence alone, has proven so hard.

Any rule is based on statistical evidence – but since our results

indicate that amino acid pair interactions are organized in a scale

free manner, only a few amino acid pairs occur sufficiently

frequent, such that a rule can be constituted. Extracting high

incidence occurrences, such as the Leu-Leu pairs mentioned above

(Fig. 6), would represent observations that could be transformed

into a ’rule’. If we want more than 500 occurrences, before we

regard the observation as statistically sound, we will only cover

around 26000 pairs in the matrix. If we reduce stringency to 50

occurrences, we will cover about 1.02 million pairs, or less than

20% of the total [Fig. 2(A)].

The observed large connectivity among the 4 residues (Ala, Ile,

Leu, Val) observed in our present work is supported by the

findings of Buchete et al. [28]. They present a quantitative analysis

of the amino acids pair distributions and their associated contact

potentials, comparing some of the contact potentials developed to

date. Furthermore, they rank quantitatively the importance of

various inter-residue interactions. Pairwise contact potentials are

widely used representations of inter-residue interactions and have

been successfully used in many applications ranging from protein

structure prediction to protein design and docking. Buchete et al.

[28] observe that most contacts occur between the small-

hydrophobic amino acid residues (Ala, Ile, Leu, Val, Met). Both

works point at that Ala, Ile, Leu, Val are part of a ‘‘reduced folding

alphabet’’ of some of the most used contact potentials such as those

of Miyazawa and Jernigan [29]. Our analysis done here has

several novel points - most notably the clear observation of the

scale-free relationship behind the distribution of pairwise interac-

tions. This has never been reported before. The work by

Miyazawa and Jernigan [30] estimates the effective inter-residue

Figure 4. Number of amino acid pairs containing each specific
amino acid residue as a function of cell rank. The residues that
have a large number of links to other residues are underlined in red
(Ala, Ile, Leu and Val).
doi:10.1371/journal.pone.0041322.g004

Figure 5. Natural occurrence of amino acid residues in proteins (A), occurrence of amino acid pairs containing a particular amino acid residue
retrieved from the 8D matrix (B) and occurrence of amino acid pairs containing a particular amino acid residue retrieved from the randomized
reference 8D matrix (C).
doi:10.1371/journal.pone.0041322.g005
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contact energies for protein in solution from the numbers of

residue-residue contacts observed in crystal structures of globular

proteins. They report that the residues with the largest amount of

surrounding residues are (Gly, Val, Ala, Leu, Ser, Ile). In our

studies, we report that the residues that establish the largest

number of pairwise interactions are (Leu, Val, Ile, Ala, followed by

Phe and Gly). Both works point at that Ala, Ile, Leu, Val are

among the residues that establish a large number of inter-residue

contacts in proteins, despite the fact that these are not the 4 most

abundant residues in proteins (see Figure 5, panel A – the most

abundant residues in proteins are Leu, Ala, Glu, Pro, Val, Gln).

Our work not only shows which residues establish the largest

number of pairwise interactions but also we report what are the

residues that they pair with. Furthermore, we show that there is a

scale-free relationship behind the distribution of pairwise interac-

tions. When comparing our finding with the results from

Miyazawa and Jernigan [30], we do see that both works report

that the residues that establish the largest number of contacts

among themselves are (Leu, Val, Ile, Ala, Phe, Gly). This can be

seen in our present work in Figure 7A and in the work published

by Miyazawa and Jernigan [30], Table IV therein].

In the present work the scale free organization of the

frequency of the number of interactions (pairs) established by

each amino acid residue is shown (Fig. 1). Data has pinpointed

the importance of the four amino acid residues that establish the

larger number of interaction [see Fig. 3(A,B)]. Pairs of Ala, Leu,

Ile, Val and their mixed pair combinations thereof form the

highly connected nodes of the protein and occur many times,

whereas all other amino acid pairs occur fewer times (see Fig. 7).

It is important to stress that the scale free organization of the

amino acid pair interactions is only observed in a higher

dimensional space (Fig 1 and Table 1), and it may differ

topologically from many of the other lower dimensional networks

addressed in literature [31]. Figure 1B shows that when only

AA1 and AA2 dimensions are included, the network seems to be

random since the degree distribution is characterized by a

Poisson distribution. Data in Table 1 reports which subsets of

observables in the 8-dimensional space still gives a reasonable

scale-free approximation, with an exponent lambda closest to the

value of 2.3 and a rms better or equal to 0.980, extracted from

the full data set and with a reasonable fit. For scale-free networks

the slope l is generally between 2.1 and 3 [23,32]. Barabasi and

Albert [23] have analyzed the distribution function of connec-

tivities for various large networks: actor collaboration network,

www, and the citation patterns of the scientific publications. The

respective exponents found were: lactor=2.360.1,

lwww=2.160.1, and lcite=3. For relatively modest sized

networks like the electrical power grid of the western USA with

only 4941 vertices, the scaling region is less prominent but is

nevertheless approximated by a power law with an exponent

lpower=4.

In Figure 3(C) is shown that for rank 1 cells (cells where only one

amino acid pair has been found) there is neither distinct distance

nor solvent exposure preferred by the amino acid pair. The pairs

present in cells of rank 1 [Fig. 3(C)] reflect the statistical

preferences for residues being buried. In contrast, in Figure 3(D)

it is seen that the inter-residue distance of 3.8–4.3Å is dominating

the observations for rank $50 as well as a very low solvent

accessibility – this is consistent with hydrophobic contact between

the two linked residues. A distance of 4–5Å is often used in protein

structural analysis to indicate a structural contact. Data displayed

in Figure 6 and Figure 7 confirms that the most abundant amino

acid pairs are indeed formed between Ala, Ile, Leu and Val

residues. Interestingly, the next most preferred residues are Phe

and Gly [Fig. 5(B) and Fig. 7A]. Data in Figure 5 shows that

despite the higher occurrence of these four residues in pairs of

amino acid residues in proteins, these are not the four most

abundant residues in proteins. The same applies to Phe.

Furthermore, data displayed in Figure 5C (distribution observed

in the randomized dataset) shows that the peaks displayed in

Figure 5B are statistically relevant: the clear preference for Ala, Ile,

Leu and Val in amino acid pairs is not observed in the randomized

matrix [Fig. 5(C)] while it was clear in the original non-

randomized 8D matrix [Fig. 5(B)]. In Figure 5 we want to

highlight that the occurrence of single amino acids is distinct from

the occurrence of pairs of amino acids containing a particular

Figure 6. Number of amino acid pairs and the type of amino acid forming pairs in cells with population $50 (rank 50). As an insert, is
displayed the 2D projection of the same graph.
doi:10.1371/journal.pone.0041322.g006
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Figure 7. Pairwise preferred interactions - (A) Number of pairs in the 8D matrix (non-randomized, cells with rank$50). The insert shows in detail
the distribution of the pairs not clearly seen in the main panel (from pair VAL-CYS onwards). (B) Ratio plot between the ‘‘number of pairs in the 8D
matrix’’ and the ‘‘number of pairs in the randomized 8D matrix’’ (for the cells with rank $50).
doi:10.1371/journal.pone.0041322.g007

Figure 8. Secondary structural preferences. (A) The graph shows how the secondary structure assignment changes with rank. Red codes for
alpha-helix, green for beta-strand, blue for coil and black for turn. The vertical red line is located at rank 50. (B) Amino acid pairs and their secondary
structural location in cells with population $50 (rank 50). Color scheme is the same as described for panel (A). Ala, Ile, Leu and Val residues are
highlighted with a red or green box.
doi:10.1371/journal.pone.0041322.g008
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amino acid. Our data strongly indicates that these pairs should be

given much more attention than is currently the case. Please notice

that Ile is not among the 10 most abundant residues in proteins

[Fig. 5(A)] but is the third most abundant amino acid involved in

pairwise interactions with other residues [Fig. 5(B)]. In Figure 3B

we show the distribution of the amino acid pair containing

residues for cells with rank $50 (cells where the number of pairs is

$50; a total of 1.07*106 amino acid pairs are observed). Unlike

Figure 5, we now demand the each cell in the matrix containing

information about each pair of amino acids has at least 50 pair

occurrences. And we can see that the message is now even more

distinct from the distribution of the single amino acids observed in

Figure 5A. Please see Figure 3B. There is no doubt that proteins

favor the pairwise interactions between Ala, Ile, Leu, and Val and

that this preference is not due to the natural occurrence of single

amino acids in nature. Please see that message depicted in

Figure 5A and Figure 3B. We see in panel 3D that those residues

(Ala, Ile, Leu, and Val) are buried (SA #10%).

The rank 1 residue pairs constitute a set of pairs for which a

unique environment was found. Curiously, this set encompasses

the vast majority of all residues on the protein surface, thus any

amino acid pair on the protein surface is likely to represent a

unique structural environment. Most sequence alignment meth-

odologies will disregard sequence matches between the four most

connected residues (Ala, Ile, Leu and Val). The argument has been

that such residues are very abundant in the protein core and

therefore provide little guidance for the alignment process. The

data presented in the present paper suggests that whereas the

single Ala, Ile, Leu or Val may be of little relevance, closely spaced

pairs of such residues in space is the single most abundant feature

in the data cube. A 3D structural prediction methodology that

incorporates both the 1D sequence information with secondary

structure information and with the new insight into the

importance of the highly connected residues should be investigat-

ed.

The ratio plot displayed in Figure 7B (ratio between the number

of each type of pairs found in the protein dataset and the number

of pairs found in the randomized dataset) shows the statistical

relevant of each type of pair. Data confirms that the most

abundant pairs observed displayed in Figure 6 and Figure 7 are

also statistically significant.

In Figure 8 is shown that the secondary structure of the amino

acid pairs also vary with rank in a scale free manner. At rank = 1

all 4 types of secondary structures are well populated. At rank$50

(red vertical line) no amino acid pairs are found in the turn

category, and coil is significantly less populated than both alpha

and beta categories. From the analysis of the amino acid

distribution [Fig. 3 (A,B)] we know that the four residues Ala,

Ile, Leu and Val dominate the cells with rank $50, and that they

occur largely buried (SA#10%) in hydrophobic contact (3.8–4.3Å)

(Fig 3D). We conclude that the four residues predominately

located in alpha helices or beta strands form hydrophobic clusters,

which provide the structural core of the protein structure. We also

know that the amino acid pairs are separated by more than 4

residues. We conclude that these pairs are involved in through

space contacts between different alpha-helices, beta-strands or a

combination thereof. Data displayed in Figure 8 confirms that

pairs containing the residues with the highest number of links (Ile,

Leu, Val and Ala) connect different secondary structural elements

(alpha-helices and beta-sheets), contributing in a significant way to

protein structural stability.

Jha et al. [33] have reported a knowledge-based approach for

determining the effective interactions between amino acids based

on amino acid type, their secondary structure and the contact

based environment that they find themselves in the native

structure as measured by the number of neighbors. One major

difference between this work and our present work is that they

compute the number of connections based on the Ca-Ca
connections while in our study we report contacts made through

the functional groups of each amino acid side chain. This is an

important difference. However, they find that the probability of

contact of amino acids from the same type of secondary structures

is higher in the case of helix and sheet, whereas for residues in the

loop structure, the interacting residues are distributed in all types

of secondary structures. Amino acid residues L, A, E, V, L, R and

K make more contacts within helices and V, L, I, A, T, and F

dominate in beta-sheets. G, P, A, S, and D amino acids favor

contacts within loops. In our study, we also see that the most

frequent interactions among residues happen among hub residues

(L, I, V, A) when they are located in helices and beta-sheets. These

very frequent interactions do not happen when they are located in

turns or loops. Both studies find that interactions critical to keep

protein fold involve the presence of hub residues (L, I, V, A) in

helices and beta-sheets.

Protein Structure Network: Small Scale-network or Scale-
free Network
We will now further correlate our data with the previously

published data and discuss the nature of protein networks. The

dataset used by Brinda and Vishveshwara [34] in their analysis

consisted of 232 globular proteins structures obtained from PDB.

This dataset was non-redundant with sequence identity ,20%.

Each protein is represented as a graph consisting of a set of nodes

and edges. Each amino acid in the protein structure is represented

as a node, and the nodes (amino acids) are connected by edges

based on the strength of non-covalent interactions between the

side chains of the two amino acid residues. The strength of

interaction between two amino acid side chains is evaluated taking

into account the number of distinct atom pairs between the side

chains of two interacting amino acid residues which come within a

distance of 4.5Å. A hub is defined as a residue that established

more than 4 contacts. Their analyses of the distribution of the

nodes with k links as a function of the interactions criterion shows

that above a certain cutoff, the plots show a power law tail with the

critical exponent l ranging from 1.2–2.3. Below that critical value

the protein network seems to be random. When they investigate

the preferences of different type of amino acids they observe that

charge-delocalized planar side chains of Phe, Tyr, Trp, Arg, and

His along with Met are preferred as strong hubs at higher

interactions cutoffs, whereas the hydrophobic side chains of Leu,

Figure 9. Visualizing amino acid pairs containing Ala, Ile, Leu
and Val residues - Crystal structure of the N-heptad repeat of HIV-1
gp41 mimetic 5-helix complexed with two antibody fragments
(3MA9.pdb). Amino acid pairs containing Ala, Ile, Leu or Val residues
are highlighted in yellow and as CPK. Alpha-helices are colored red and
beta-sheets green. The three different chains are displayed: A (HIV-1
gp41 5-helix), L and H (Fab fragments).
doi:10.1371/journal.pone.0041322.g009
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Ile, and Val, preferred as weak hubs, appear only at lower

interaction cutoff. They do not state with which amino acid

residues the hubs pair with and do not show the frequency of such

contacts. They report that most hubs belong to the regular

secondary structural regions of helices and sheets though the loops,

turns, and the unassigned regions are not excluded at any

interaction cutoff. In our study, we see that the most frequent

interactions among hub residues (Val, Ala, Ile, Leu) happen when

they are located in helices and beta-sheets (see Figure 8B). Less

frequent interactions can happen when they are located in coils

and they are not observed in turns. In our study we use a set of

8272 non-redundant pdb entries vs 232 used in the study by

Brinda and Vishveshwara [34]. The methodology used in our

study is different. We characterize an interacting pair of amino

acid residues in terms of the previously mentioned 8 dimensions.

The number of pairs found in a particular environment is stored in

a matrix cell in an 8D data cube. When plotting the cell

population against the number of cells that have the same

population size, a scale free organization is found: v(R) =R2l,

where R is the rank or population of a cell, and v(R) is the number

of times such a cell population was encountered [19]. When

plotting log2(v(R)) against log2(R), a straight line with slope22.3 is

obtained [Fig. 1(A)]. When analyzing which amino acid paired

residues contributed to the cells with a population above 50, pairs

of Ala, Ile, Leu and Val dominate the results. This result is

statistically highly significant. We postulate that such pairs form

‘‘structural stability points’’ in the protein structure. Those are the

so called hub residues. It is important to highlight that the way

different authors arrived at the definition of ‘‘hub’’ might be

different. Both our work and the work from Brinda and

Vishveshwara34 leads to the conclusion that the hydrophobic side

chains of Leu, Ile, and Val are hub residues. In our work we

additionally show with which amino acid residues the hubs pair

with and show the frequency of such contacts. Furthermore we

show that the network of pairwise interactions has a scale-free

nature. Our data shows that pairs of Ala, Ile, Leu and Val

dominate the results are in buried a-helices or b-strands, in a

spatial distance of 3.8–4.3Å and in a sequence distance .4

residues (please see Figure 6 and Figure 8 B). The location of the

hubs can sometimes include coils, in the cases of less frequent pairs

(blue areas in Figure 8B). Brinda and Vishveshwara [34] report

that most hubs belong to the regular secondary structural regions

of helices and sheets though the loops, turns, and the unassigned

regions are not excluded at any interaction cutoff. We speculate

that the scale free organization of the 8D protein fold structure

combined with the clear dominance of Ala, Ile, Leu and Val is

important for understanding the very nature of the protein

structure formation. Our observations suggest that protein

structures should be considered as a higher dimensional organi-

zation.

The work by Bagler and Sinha [35] reports that proteins show

small-world network property, regardless of their structural class.

This is based on the definition of ‘‘small world network’’, since

their L(average shortest path length)-C(average clustering coeffi-

cient) plots show a high C value and L scales logarithmically with

N (number of nodes). In their paper the nodes were the Ca atoms

of each residue. However, the degree distributions reported for the

different classes of protein folds are characterized by a Poisson

distribution, which points at random networks and not scale-free

networks. It has been suggested that one of the main reasons for

deviations from a scale-free connectivity distribution is the limited

capacity of a given node [36]. A very important point is that in

Bagler and Sinha [35] study they have used the Ca atoms of the

amino acid as a node and two such nodes are said to be linked if

they are less than or equal to 7Å. This analysis ought to give very

different results if the nodes are defined as an atom belonging to

the side chain. It is the different side chains that make the amino

acid residues different and interactions among side chains are

crucial for defining and keeping the protein fold, and any

information on their connections is lost in an analysis based solely

on the Ca atoms. Our observations are also shared by Greene and

Higman [32]. The bulk of the interactions made by one residue

are made through its side chain. Both in our work and in Brinda

and Vishveshwaras work [34] we have considered the interactions

between the side chains of the two amino acid residues, and we

both see that the distribution of the ‘‘number of nodes with k links’’

as a function of the ‘‘number of links’’ is a scale free distribution at

high interaction cutoff. Interestingly, the works of Bagler and

Sinha35, Atilgan et al. [37], and Vendruscolo et al. [38] report that

proteins have small-work network properties and their analyses

had considered Ca or Cb atoms as nodes, instead of atoms in the

residues side chains. There seems to be correlation between the

nature and degree of connectivity of the node (if the node is less

connected atom such as Ca, Cb or a more connected atom

belonging to the side chain of the amino acid residue) with the

observed nature of the degree distribution: if small scale-network

or scale-free network. If the nodes are less connected, like in the

case of Ca or Cb atoms, the study reveals that proteins are small-

scale networks. On the other hand, if the nodes establish a larger

number of connections, such as when the nodes include the side

chains of the amino acid residues, than the scale-free nature of

proteins is revealed. This observation is supported by the work by

Amaral et al. [36] which report that one of the possible reasons for

such a rich range of possible structures for small-world networks

(scale-free networks are also small-world networks) is the capacity

of a node to establish connections.

The Functional Importance of ‘‘High Degree Nodes’’
Very diverse organizations in nature and society such as social

networks [39], scientific collaboration networks [40], metabolic

networks [17] and human mobility [41] have all been found to

exhibit scale free behavior. The World Wide Web is a scale free

structure with hubs and nodes, where there are a few hubs with

many millions of links and many nodes with few links. This type of

structure has been shown to be very robust towards random errors

and attacks [16]. It has been a common practice in the analyses of

protein interaction networks to define an ad hoc threshold or degree

scale such that all nodes (proteins) that have degree higher than

this threshold are considered to be special in some sense and are

called ‘‘hub’’ nodes. The notion of a hub protein is a special one

because hub proteins, though defined arbitrarily, often do have

special biological properties: they tend to be more essential than

non-hub proteins [42,43]. In spite of the scale-free degree

distribution that characterizes most protein interaction networks,

it is common to define an ad hoc degree scale that defines ‘‘hub’’

proteins having special topological and functional significance.

This raises the concern that some conclusions on the functional

significance of proteins based on network properties may not be

robust [44]. The rules for identifying hubs in protein interaction

networks are still being discussed. Just as the sharp rise in

connectivity at a certain degree defines a degree ‘‘scale’’ that can

be used to differentiate hubs from non-hubs, other centrality

measures could have characteristic scales in protein interaction

networks, such has concepts that include the functional signif-

icance of the protein. In our paper we analysed the interaction

network in a protein, i.e., the residue-residue interaction network

and we showed that it also has a ‘‘scale-free’’ property, since the

distribution of the amino acid pairwise interaction is a power-law
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distribution. Indeed some amino acid residues pair or interact

much more frequently that others and the frequency of those

interactions is observed to be scale-free. Furthermore, we

correlated the observation that 4 amino acid residues (the 4

high-degree ‘‘nodes’’) display significantly larger number of

contacts with other amino acids with the biological significance

of this observation, namely the important of such interaction

among super-hydrophobic and hydrophobic residues for protein

structural stability. In our study, the 4 amino acid residues (high

degree nodes) with the high number of through space contacts

done are known to be superhydrophobic (Ile, Leu and Val) and

hydrophobic (Ala) residues and the many interactions carried out

by those few residues do play an important role in protein

structural stability. It is not surprising to find a high proportion of

hydrophobic amino acids in the protein core – but it is surprising

that the packing of the four most abundant paired residues is

restricted to relatively few (Ala, Ile, Leu and Val). So, the

functionality or purpose of the above mentioned ‘‘highly linked

nodes’’ is clear in a protein inner network. Interestingly, out of the

4 ‘‘high-degree’’ residues, it is the 3 super hydrophobic ones that

establish the larger number of interactions with other amino acids.

Leu has the high-degree connectivity followed by Val, Ile and at

last Ala (please see 2D insert in Figure 6). We can also see that all

four residues have the larger number of interactions with Leu,

which is interesting.

An important question for the community that studies protein-

protein interaction networks is what leads to the high connectivity

of hub proteins. Ekman et al report that there is an enrichment of

multi-domain proteins among the hub proteins compared to non-

hub proteins, and they are, on average, longer [26]. Moreover,

repeated domains are clearly overrepresented in hub proteins. The

presence of repeated domains and multiple domains in hubs may

partly explain their high connectivities. It is evident that domain

repeats, which are associated with binding, are enriched in hubs.

The evolutionary origin of scale-free networks is probably rooted

in gene duplication [45–50]. In a parallel way, the reasons for the

large connectivities seen among the reported 4 residues (Ala, Ile,

Leu, Val) can be discussed. Among those 4 residues, the 3 amino

acid residues that display the largest number of pairwise

interaction are Ile, Leu and Val. These residues are known to

be very hydrophobic amino acids. Ala is also hydrophobic.

Interestingly, none of these residues have a functional side chain

critical, for example, for catalysis. These residues through the

establishment of a large number of hydrophobic interactions

mediated by their side chains contribute significantly to protein

structural stability. The large number of such interactions

contributes to protein stability. It can be observed from

Figure 3D that those residues that display many pairwise

interactions are located in buried regions of the protein (solvent

accessibilities between 0 and 10%), indicating that their contribu-

tion to protein stability is achieved at the proteins core.

Furthermore, they are preferentially located in ahelices and b-
sheets, in a sequence distance .4 residues, at a preferred distance

of 3.8–4.3Å, which is consistent with hydrophobic contacts

between the interacting residues. This is important in order to

achieve the proteins 3D structure and secure structural stability.

Conclusion
The present work has demonstrated that scale free organization

characterizes amino acid pair interactions in proteins. Several

other authors have addressed scale free aspects of protein

structures [51–54] but at a higher level of complexity such as

structural diversity, fold identification or protein functionality.

This is the first report in literature documenting that amino acid

pair interactions in proteins are organized in a scale free manner.

We suggest that 3D structure prediction methodologies should also

incorporate the new insight into the importance of the highly

connected residues presented in this paper.

Methods

Protein Dataset
A list of high resolution protein chains (resolution #3.0 Å) with

sequence identity #35% was retrieved from the Pisces server [19].

All structures had a minimum chain length of 40 and a maximum

R value – a measure of how well the experimental data can be

predicted from the refined model - of 1.00. Non-X-ray structures

and structures only with Ca atoms were excluded. The Pisces

culling method selected was ‘‘chain’’. The downloaded list

contained 9039 chains, present in 8598 different.ent files. The.ent

files were downloaded from the Research Collaboratory for

Structural Bioinformatics (RCSB) [20]. The corresponding.hssp

files were downloaded from the homology-derived secondary

structure of proteins (HSSP) database [21]. Entries in the Pisces list

for which the corresponding.hssp files were not available were

discarded, leaving 8272.ent files with corresponding.hssp files.

These files contained 8706 of the non-redundant chains from the

Pisces list.

In our analysis we only included experimental PDB structures.

We have not included homology derived structures in order to

achieve a larger dataset. The.hssp file associated to each protein

structure file (.ent file) has been downloaded simply in order to

know in which secondary structural element (alpha helix, beta

strand, coil or turn) each amino acid was located. This information

was needed in order to display the data presented in Figure 8.

Software
One software package called ProExtract was developed [22].

ProExtract combined the data from.ent and.hssp files into

MATLAB structures, which were saved in.mat format (a

MATLAB data file). For each.ent file, the atoms’ coordinates

and chain information were loaded into ProExtract, while

information on residue type, secondary structure and solvent

accessibility (SA) was loaded from the corresponding.hssp file.

Since many.ent and.hssp files were found to contain errors,

ProExtract included a validation routine, where residues as a

minimum were required to have information on the Ca and

functional atoms coordinates (vide infra), residue type, secondary

structure, solvent accessibility (SA) and chain length. Furthermor-

e,.hssp entries were required to have information about which

residue and chain they corresponded to in the.ent file, as

numbering in.hssp and.ent files might differ. Residues that did

not have all the required information were discarded, while the

rest of the chain information was retained. Those that were

accepted were added to the MATLAB structure file for that

protein. As a result, a file for each protein was created containing

combined information on atom coordinates and chains, residue

types, secondary structure and SA.

The program ProExtract has been made accessible. ProExtract

was developed using MATLAB v7 (2010a). The source code of the

program ProExtract (used to create the 8D tensor) has been

uploaded as supplementary information. The file names are:

‘‘Information S1’’ and ‘‘Figure S1’’. The description on how to

run the software ProExtract can be found in the file ‘‘Instructions

S1’’. In order to run ProExtract two input files are needed: the

protein.ent list and the list of correspondent hssp files. A file named

‘‘Information S2’’ has been uploaded as supplementary informa-

tion, where the name of all pdb files has been listed. This file
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should be open with WordPad. The associated.ent and.hssp files

are publically available.

As output, ProExtract created a database in the form of an 8D

tensor from the.mat files. The tensor contained information about

pairs of amino acids present in the different SA protein shells. Two

amino acid residues were considered a pair if they belonged to the

same chain, were within the same SA-bin and had a distance less

than 8.25Å between their functional atoms (vide infra). Each of the

eight tensor directions was binned according to:

1. Type of the first amino acid (AA1) (20 bins)

2. Type of the second amino acid (AA2) (20 bins)

3. Solvent accessibility of the amino acid pair (SA) (12 bins)

4. Distance between atoms in functional groups (D) (14 bins)

5. Secondary structure for the first amino acid (SS1) (4 bins)

6. Secondary structure for the second amino acid (SS2) (4 bins)

7. Chain length (CL) (12 bins)

8. Sequence distance between AA1 and AA2 (SD) (6 bins)

Please notice that the first and second tensor directions are not

the probability of occurrence of the amino acids in proteins. We

are not addressing the occurrence of individual amino acids – we

are addressing pairs of amino acids, enumerated only if the two

component amino acids are found in a mutual distance of less than

8.25Å and if they are found in the same solvent accessibility bin.

See bin definitions in section ‘‘Bin definitions and functional atoms’’.

8272.mat files were processed successively. All possible combina-

tions of two residues were carried out to test if the two residues

would constitute a pair (vide supra). When a pair was identified, the

count in the data tensor cell with the coordinates (AA1, AA2, SA,

D, SS1, SS2, CL, SD) was increased by one. A total of 5.211.796

pairs were identified. These were distributed between 1.756.714

cells in the tensor.

As output, ProExtract created an index dataset which could be

used to identify the specific interactions that gave rise to the counts

in a tensor cell. The index set was an 8D MATLAB cell character

array. Whenever a pair was registered, a string was added to the

corresponding cell in the index array of the form ‘‘1AB-

C0102A1030B’’ for the imaginary pair of amino acids 102A and

1030B in Protein Data Bank (PDB) structure 1ABC. When more

than one pair was registered in the same cell, a new line was

created for each pair in the cell. In this way it was possible to

retrieve the protein(s) as well as the local structural context around

an amino acid pair that contributed to the count in a particular

cell.

In order to determine the statistical significance of the

coordinates of each of the pairs in a protein, ProExtract shuffled

the amino acid residues maintaining the amino acid composition

of each protein. This process was repeated 10 times for each of the

8272 proteins, and the resulting 8D tensors were averaged. The

average 8D tensor was used as a reference dataset. For a given

pair, the ratio between the actual count in a cell in the observed

8D tensor and the average count in the reference dataset was a

measure of the significance of the cell. We have computed the ratio

between the actual findings and the randomized value

[Fig. 5(B,C)].

Bin Definitions and Functional Atoms
The first dimension of the dataset tensor had 20 amino acid

bins: Ala, Arg, Asn, Asp, Cys, Gln, Glu, Gly, His, Ile, Leu, Lys,

Met, Phe, Pro, Ser, Thr, Trp, Tyr, Val. The second dimension

had 20 amino acid bins, identical to the first dimension. The third

dimension had 12 solvent accessibility bins (SA in %): SA#0,

0,SA#10, 10,SA#20, 20,SA#30, 30,SA#40, 40,SA#50,

50,SA#60, 60,SA#70, 70,SA#80, 80,SA#90,

90,SA#100, SA.100. The fourth dimension had 14 distance

bins (D in Å): D#1.75, 1.75,D#2.25, 2.25,D#2.75,

2.75,D#3.25, 3.25,D#3.75, 3.75,D#4.25, 4.25,D#4.75,

4.75,D#5.25, 5.25,D#5.75, 5.75,D#6.25, 6.25,D#6.75,

6.75,D#7.25, 7.25,D#7.75, 7.75,D#8.25. The fifth dimen-

sion had four secondary structure bins for AA1: a-helix, b-strand,
turn and coil. The sixth dimension had four secondary structure

bins for AA2, identical to the fifth dimension. The seventh

dimension had 12 chain length bins: CL#0, 0,CL#100,

100,CL#200, 200,CL#300, 300,CL#400, 400,CL#500,

500,CL#600, 600,CL#700, 700,CL#800, 800,CL#900,

900,CL#1000, CL.1000. The eighth dimension had 6

sequence distance bins: 0, 1, 2, 3, 4, .4.

The functional atoms were for Ala CB, Arg NH1 and NH2, Asn

ND2 and OD1, Asp OD1 and OD2, Cys SG, Gln NE2 and OE1,

Glu OE1 and OE2, Gly CA, His ND1, Ile CG1 and CG2, Leu

CG, Lys NZ, Met SD, Phe CZ, Pro CG, Ser OG, Thr OG1, Trp

CE2, Tyr OH, Val CG1 and CG2 (atom nomenclature as

described in the.ent files).

Supporting Information

Figure S1 Source code associated file. This is the user

interface that is automatically displayed in MATLAB when we

open and run the source code file ‘‘Information S1’’.

(FIG)

Information S1 Source code file. The source code of the

program ProExtract (.m file, version 2.4) is listed in the file

‘‘Information S1’’ with associated file ‘‘Figure S1’’. These files can

be open in MATLAB.

(M)

Information S2 List of PDB files. The two input files needed

in order to run ProExtract are the protein.ent list and the list of

correspondent hssp files. A file named ‘‘Information S2’’ contains

the name of all pdb files that have been used. This file should be

open with WordPad. The associated.ent and.hssp files are

publically available.

(TXT)

Instructions S1 How to run the software ProExtract.

Detailed description of all files needed and how to run the

program ProExtract.

(DOC)

Author Contributions

Conceived and designed the experiments: SBP MTNP. Performed the

experiments: SBP. Analyzed the data: SBP MTNP SBH. Contributed

reagents/materials/analysis tools: SBP MTNP. Wrote the paper: MTNP

SBP. Took part in the discussion of the manuscript: RJM HMG.

References

1. CATH, Protein Structure Classification Database. Available: http://www.

cathdb.info/. Accessed: 2010 November 1.

2. Govindarajan S, Recabarren R, Goldstein RA (1999) Estimating the total

number of protein folds. Proteins 35(4): 408–414.

3. Kauzmann W (1959) Some factors in the interpretation of protein denaturation.

In: Anfinsen CB, Anson ML, Bailey K, Edsall JT, editors. Advances in protein

chemistry, Vol. 14. New York Academic Press. p. 163.

4. Bernal JD (1939) Structure of proteins. Nature 143: 663–667.

Amino Acid Pair Interactions in Proteins

PLoS ONE | www.plosone.org 13 July 2012 | Volume 7 | Issue 7 | e41322



5. Tanford C (1987) Amphiphile orientation: physical chemistry and biological
function. Biochem. Soc. Trans. 15: 1S–7S.

6. Tanford C (1978) The hydrophobic effect and the organization of living matter.
Science 200: 1012–1018.

7. Levinthal C (1969) How to fold graciously. Mossbauer spectroscopy in biological
systems: proceedings of a meeting held at Allerton House, Monticello, Illinois;
22–24.

8. Anfinsen CB (1973) Principles that govern the folding of protein chains. Science
181(96): 223–230.

9. Service RF (2008) Problem Solved* (*sort of). Science 321: 784.

10. Onuchic JN, Wolynes PG (2004) The theory of protein folding. Curr Opin
Struct Biol 14: 70–75.

11. Rackovsky S (1993) On the nature of the protein folding code. Proc Natl Acad
Sci USA 90(2): 644–648.

12. Mathews B (2010) Protein Folding: Short question-long answer. Protein Sci:
Virtual Issue. Available: http://www.proteinscience.org/view/0/
ProteinFolding.html. Accessed 2010 November 1.

13. Dill KA, Ozkan SB, Weikl TR, Chodera JD, Voelz VA (2007) The protein
folding problem: when will it be solved? Curr Opin Struct Biol 17: 342–346.

14. Dill KA, Ozkan SB, Shell MS, Weikl TR(2008) The protein folding problem.
Annu Rev Biophys 37: 289–316.

15. Fersht AR (1997) Nucleation mechanism in protein folding. Curr Opin Struct
Biol 7: 3–6.

16. Albert R, Hawong J, Barabasi AL (2000) Error and attack tolerance of complex
networks. Nature 406: 378–382.

17. Jeong H, Tombor B, Albert R, Oltval ZN, Barabasi AL (2000) The large-scale
organization of metabolic networks. Nature 407: 651–654.

18. Wager A, Fell D (2001) The small world inside large metabolic networks. Proc.
R. Soc. Lond. B 268: 1803–1810.

19. Wang G, Dunbrack Jr RL (2003) PISCES: a protein sequence culling server.
Bioinformatics 19: 1589–1591. Available: http://dunbrack.fccc.edu/PISCES.
php. Accessed: 2010 June 1.

20. Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, et al. (2000) The
protein data bank. http://Nucl Acids Res 28: 235–242. Available: www.pdb.org.
Accessed 2010 November 1.

21. Sander C, Schneider R (1991) Database of homology-derived protein structures
and the structural meaning of sequence alignment. Proteins: Struct Funct and
Genet 9(1): 56–68. Available: http://swift.cmbi.kun.nl/swift/hssp/.

22. Henriksen C, Mortensen R, Geertz-Hansen H, Neves-Petersen MT, Arnason O,
et al. (2011) ProPack, a program for hyperdimensional analysis of amino acid
distribution in proteins: case studies involving cysteines and salt bridge forming
amino acid residues. PLoS ONE 6(12): e25638.

23. Barabasi AL, Albert R (1999) Emergence of scaling in random networks. Science
286: 509–512.

24. Barabasi AL, Oltvai ZN (2004) Network biology: understanding the cells
functional organization. Nature Reviews 5: 101–113.

25. Yook SH, Oltvai ZN, Barabasi AL (2004) Functional and topological
characterization of protein interactions networks. Proteomics 4: 928–942.
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human sexual contacts. Nature 411: 907–907.

40. Newman MEJ (2001) The structure of scientific collaboration. Proc Natl Acad
Sci USA 98: 404–409.

41. Brockmann D, Hufnagel L, Geisel T (2006) The scaling laws of human travel.
Nature 439: 426–465.

42. Jeong H, Mason SP, Barabasi AL, Oltvai ZN (2001) Lethality and centrality in
protein networks. Nature 411: 41–42.

43. He X, Zhang J (2006) Why do hubs tend to be essential in protein networks?
PLoS Genet 2(6): e88.

44. Ravishakar RV, Chakravarti D, Lutfeali S, Ray A, Raval A (2009) Identifying
hubs in protein interaction networks. PlosOne 4(4): e5344.

45. Rzhetsky A, Gomez SM (2001) Birth of scale-free molecular networks and the
number of distinct DNA and protein domains per genome. Bioinformatics
17(10): 988–996.

46. Qian J, Luscombe NM, Gerstein MB (2001) Protein family and fold occurrence
in genomes: power-law behaviour and evolutionary model. J Mol Biol 313(4):
673–681.

47. Bhan A, Galas DJ, Dewey TG(2002) A duplication growth model of gene
expression networks. Bioinformatics 18(11): 1486–93.
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