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Summary. Modeling brain dynamics requires us to define the behavioral context in which

brains interact with the world; to choose appropriate mathematics, here ordinary differential

equations (ODE) and random graph theory (RGT); to choose the levels of description and

scales in the hierarchy of neurodynamics; to define an appropriate module for each level; and

to address questions of boundary conditions, linearity, time-variance, autonomy, and critical-

ity.

ODE applied to the olfactory system serves to model perception by a phase transition that

reorganizes the background activity. Feedback control theory is used to model the dynamics

of self-organized criticality and simulate the background activity and its reorganization, by

which microscopic input triggers the construction of an order parameter that retrieves a meso-

scopic spatiotemporal pattern expressing the class of input. Perception is shown to depend

on the coincidence of three conditions: intentional prediction of a sensory input by an attrac-

tor landscape; emergence of a null spike in the background activity; and the presence in the

sensory input of the expected stimulus.

RGT serves to model criticality and the phase transition and the basic operations of per-

ception in three-layered allocortex. Modeling six-layered neocortex faces the major problem

of reconciling the global formation of very large-scale activity patterns in cognition that appear

to be scale-free with the high degree of specificity in fine structure of neural activity relating

to sensation and action. The developmental anatomy of neocortex provides essential guide-

lines on how to construct random graphs that can model both the large-scale and small-scale

operations by which high-level cognition engages with the world, and their interactions across

hierarchical levels. It is likely that use of RGT will succeed in describing these complex neural

mechanisms, which cannot be expected for ODE alone, provided that close collaboration is

maintained by mathematicians, neuroanatomists, and neurophysiologists.
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1.1 Introduction

1.1.1 The context of quantitative brain dynamics from psychology, biology and

philosophy

Animals and humans use their finite brains to comprehend and adapt to infinitely complex en-

vironments. The dynamics employed by brains conforms to the scientific method of hypothesis

formation and experimental testing. As mathematicians we seek to devise formal systems by

which to describe the neural processes of construction and evaluation of hypotheses in brain

dynamics by reformulating the existing hypotheses that have been developed by psychologists,

neurobiologists, and philosophers to describe the dynamics underlying behavior.

Experimental psychologists describe the process in terms of trial-and-error behaviors

guided by reinforcement [41] and by temporal difference learning [106]. Trial behaviors con-

stitute hypotheses that, if successful, are rewarded by release of chemicals such as dopamine

and CCK into the brain. The power of chemical reinforcement is readily apparent in the world-

wide epidemic of cocaine usage, which triggers the reward system. Intermittent reinforcement

establishes persistent behaviors that can be extremely resistant to extinction, when the rules

change and reward is no longer forthcoming. Scientists and rats that have been conditioned

to expect failure may persevere indefinitely in unsuccessful behaviors. This criterion shows

the greater dependence of choice of actions on pre-existing brain states of expectancy than on

environmental conditions. In this review we use random graph theory (RGT) to describe the

formation and exercise of such states of focused attention in brain networks.

Neurobiologists describe the process in terms of the action-perception cycle [48]. Brains

construct predictions of future desired goal states. These expectancies emerge in the form of

spatiotemporal patterns of brain activity having two aspects. One aspect is motor: the for-

mation of strategic plans of action in the motor systems [58], [63], in which are embedded

a variety of directions for tactical moves that may be imposed by environmental and bodily

constraints and contingencies. The other aspect is preafference [70]: the evocation in each

of the sensory cortices of attractor landscapes, which embody the predictions of the several

forms that sensory input is expected to take as the result of successful action. For example,

an animal searching for food can expect to find one of two or more possible types of food,

or none, or a novel odor that must be explored, or an odor of predator, each with its attractor

in the landscape, only one of which will be selected by the stimulus. Brains then adapt to the

results of the action-based test by modification of their synaptic networks through learning by

association and habituation. RGT is exceptionally well adapted to modeling these changes in

synaptic connectivity.

Philosophers describe this process as the exercise of intentionality [81]. Goal- directed

action is preceded by intent to act that thrusts the body forth into the world. The senses report

the consequences to the brain, which, from the distortion of the self resulting from action,

reorganizes and reshapes itself and the body so as to accommodate to the world, thereby

coming to know the world by assimilation. This view is predicated on two forms of unity.

The local unity is the integrity of the individual, literally undividable, forming a closed system

with respect to meaning but open to flows of energy and information. The universal unity is

the essential embedding of every individual in the material, social and spiritual worlds by the

process of embodied cognition through brain dynamics. A valid mathematical description of

the dynamics must conform to the outlines of the cycle of prediction, action, perception and

assimilation.

In the past half century science has opened several new windows for direct experimental

observation of normal brain function after 3000 years of logic and speculation. Our preferred
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window of observation is on the electric fields that are generated by brains, because our tech-

niques enable us to record and measure neural activity patterns from brains of animals and

humans that are actively engaged in intentional behaviors. The behaviors and the electric

activity patterns range in size from single neurons to an entire cerebral hemisphere, and in

duration from fractions of a millisecond to minutes, days and even years. Indirect measures

of neural activity by measuring blood flow in order to estimate metabolic energy dissipation

provide supportive data. Brains are profligate in energy dissipation as heat at rates an order

of magnitude greater than other organs of comparable mass. Additional insights come from

measurements of magnetic and chemical energy gradients. The space-time patterns of these

observable signs of neural activity are well suited to precise measurement. Until now our pre-

ferred tool for modeling the dynamics underlying the measured activity has been ordinary

differential equations (ODE) in space-time, because the neurodynamics of large-scale popula-

tions, as manifested by the electric currents of axonal action potentials and dendritic synaptic

potentials, can be modeled in a mesoscopic continuum. Now we propose to adapt another tool,

neuropercolation, which has been opened to brain science by recent developments in RGT.

1.1.2 The mathematical foundations shared by ODE and RGT

Brain function is nonlinear, nonstationary, non-Gaussian and drenched in noise. It is therefore

counterintuitive to find that the dynamics of most areas of cortex maintain themselves in small-

signal domains that are linear, stationary and Gaussian, as shown by testing for superposition

with impulse inputs. These frames last on the order of 0.1 s and occupy domains at the scale of

cm2. There are temporal nonlinear discontinuities between these frames, which require very

few ms for spatial dissemination, so the relatively long time spans (∼ 1s) that are required

for application of the standard tools of linear analysis (Fourier transform, Principal Compo-

nent Analysis, Independent Component Analysis, regression models, wavelets, etc.) provide

space-time averages over the data that yield reproducible decompositions, such as the clinical

frequency bands (theta, alpha, beta, gamma, etc.) and that relegate the brief nonlinearities to

the residuals. Neural activity can readily be elicited in response to perturbation by sensory

or direct magnetic and electrical stimulation of the brain. If that evoked activity remains well

within the amplitude and frequency ranges of the background brain activity, it conforms to

superposition and can be measured by curve-fitting with sums of linear basis functions that

are the solutions to linear ODE. The preponderance of clinical and experimental descriptions

of large-scale neural activity are expressed in terms of frequencies on the assumption of lin-

earity and stationarity, and the fact that these methods work as well as they have for over half

a century is testimony to the power of Fourier and Laplacian methods, as well as to the basic

simplicity of cortical dynamics, if it is seen from an optimal point of view.

The coefficients of the fitted basis functions evaluate the poles and zeroes (eigenvalues) of

the optimized ODE. The ODE are structured to represent the topology of the neural networks,

in which the time constants are fixed, and the synaptic interaction strengths are represented by

feedback gains. Sets of solutions give root loci in the complex plane along the phase curves

at either 0 rad for positive feedback loops or π rad for negative feedback loops. The feedback

gains are given by the intersections of the amplitude contours with the root loci. Solution sets

and root loci have been derived for changes in cortical function with variations in stimulus in-

tensity, location, and timing [44], from which the changes in interaction strengths are inferred.

Changes in functional connectivity during learning have been modeled by using the driving

impulse as a conditioned stimulus. Likewise the root locus method has been used to model

the neural connectivity changes that underlie changes in the levels of arousal and motivation;

type and level of anesthesia, and the pharmacological effects of common neurotransmitters,
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neuromodulators, and their agonists and antagonists. The ODE that have been evaluated by

fitting sums of linear basis functions to cortical impulse responses have enabled the construc-

tion of a hierarchical set of dynamical networks entitled Katchalsky sets (K-sets) [51]. These

models provide the formal structure, from which we undertake representation of large-scale

neurodynamics, first in the ancient, primitive, six- layered allocortex common to all verte-

brates (’reptilian’) and then in the six-layered neocortex found only in mammals. In this report

we summarize the dynamics as seen by use of ODE, so that RGT can replicate the dynamics

as currently known and then proceed into the unknown.

1.1.3 The applicability of ODE and RGT depends on the following properties

of cortex

• Hierarchy: Brain activity exists simultaneously at all levels of a hierarchy from atomic and

molecular to psychosocial, whereas observation and measurement is restricted by the ex-

perimental tools to bounded ranges in space and time. In conformance to our main sources

of data we restrict our concerns to three levels imposed by the tools of observation: micro-

scopic measurements in microns and ms of synaptic potentials and action potentials from

microelectrodes; mesoscopic measurements in mm and tens of ms from electrode arrays

of electrocorticograms (ECoG); and macroscopic measurements in cm and s from scalp

electroencephalograms (EEG), magnetoencephalograms (MEG), and functional magnetic

resonance imaging (fMRI) reflecting levels of cerebral metabolism.

• Scaling: Most descriptions of cortical connectivity emphasize microscopic, local nets.

Recent studies on neocortical connectivity have emphasized conformance of large- scale

connectivity to power-law distributions [115], [74], [28], [57], which opens the likeli-

hood of self similarity of connectivity across scales, and which imposes the necessity of

choosing a scale of description that matches the scale of experimental observation. In

spatial scale we focus on the mesoscopic population of neurons, because our reliance on

electric fields enables us to interrelate our observations of ECoG downwardly to the mi-

croscopic activities of neurons that form the population, and upwardly to the macroscopic

activity patterns that are formed by the mesoscopic ensembles. The most interesting and

important brain dynamics concerns the relations across levels in the hierarchy: millions of

microscopic neurons (action potentials) create mesoscopic order parameters (ECoG) that

regulate the neurons. Likewise in temporal scale we focus on mesoscopic states having

durations on the order of 0.1-1.0 s. Microscopic events such as action potentials lasting

0.5-2.0 ms are described in statistical averages such as probability density distributions.

The changes in brain dynamics that result from learning occur on still slower time scales,

which we treat as state changes that we describe as a temporal process over hours and

days. The energy used by brains for electrodynamic events is drawn from an immense

store of electrochemical energy in the ionic gradients across membranes. Energy deficits

incurred during events of activity are small fractions of the total available; restoration is

by slow metabolic processes that are measured in s, which is the scale of fMRI and related

hemodynamic techniques. This separation of time scales permits use of ODE as Hamilto-

nians applied to a conservative system, and separately to deal with the dissipation of free

energy in brain dynamics [111], [53].

• Dimensionality: The large-scale dynamics of cortex is optimally described in planar net-

works of ODE and random graphs, owing largely to its laminar organization.

• Modularity: Description of brain dynamics at every level is based on choosing a module to

represent a node and then constructing a network of modules. In microscopic neural net-

works the module is a model neuron having a summing junction and a nonlinear threshold



1 Scale-Free Cortical Planar Networks 5

device. In mesoscopic neural networks the module is the KO set, which represents an en-

semble of microscopic neurons. Its properties are averages of well-known time and length

constants that parameterize the processes of spatiotemporal integration by dendrites and

the transmission of output by action potentials of dendrites. Nonlinear interactions among

the neurons in a KO ensemble support the emergence of mesoscopic order parameters

that are observable in sums of axonal and dendritic fields of potentials, which collectively

are called brain waves: axonal multiple unit activity (MUA) and the electrocorticogram

(ECoG) and electroencephalogram (EEG) of dendrites. The optimal module for RGT is

the KO set, because our focus is on large-scale neural activity.

• Boundary conditions: Brains are anatomically bounded structures, but efforts to identify

absorptive or reflective boundaries at the edges of anatomically defined collections of

neurons [89] have not succeeded. Use of partial differential equations has been limited to

describing the dynamics of core conductors in axons and dendrites. ODEs are extended

into the mesoscopic spatial domain by use of integro-difference equations on digital com-

puters to model distributed arrays described by K-sets with periodic boundary conditions.

This is the main point of entry for RGT.

• Linearity and time-invariance: An effective tool for testing superposition in mesoscopic

populations is single-shock and paired-shock electrical stimulation of axonal afferent

pathways, which yields cortical impulse responses. The technique of paired shock testing

for superposition reveals a small-signal, near-linear range of dynamics for input domains

that give impulse responses not exceeding the amplitude of the on-going, self-stabilized

background activity. Both additivity and proportionality hold for time ensemble averages

of sums of superimposed evoked potentials, within limits that are imposed by the refrac-

tory periods of the stimulated axons. However, linearity is temporally bounded into brief

epochs of brain activity that are interrupted by the discontinuities recurring several times

each second. Repeated samples of impulse responses reveal time-variance in the wave

forms, showing that state changes occur at the discontinuities. Linearity is progressively

violated as the intensity of input pulses is increased and the ensembles are driven outside

the small signal range. Time variance and amplitude-dependent nonlinearity are made

compatible with description with linear ODE by the introduction of state- and amplitude-

dependent gain coefficients in the ODE and by display of the changes in the characteristic

frequencies with root locus techniques [44].

• Stationarity: The ongoing background spontaneous ECoG and EEG from populations re-

veal endogenous discontinuities, because the synchronized oscillatory signals from multi-

ple electrodes in arrays abruptly disorganize and then resynchronize quickly at a different

frequency that varies little until the next discontinuity. By this criterion the populations

can be treated on average as stationary over extended time periods and as having a sin-

gle mean frequency with a decay envelope that represents a distribution of frequencies.

Though in fact the populations undergo repeated state transitions and exhibit stationar-

ity only briefly, the ODE and RGT suffice to represent the dynamics averaged over the

duration and spatial domain of averaging required for observation and measurement.

• Autonomy: The brain is deeply engaged with body and the environment at all times, not

as a passive recipient of energy and information but as a proactive, predictive agent. All

normal brain areas exhibit background spontaneous activity, which is the source of ex-

ploratory drive. It can be completely suppressed under deep anesthesia, but it returns

robustly with recovery of normal brain function. This autonomous background activity

is notable for its repetitive discontinuities in multiple frequency ranges, which recur in-

dependently of the engagement of the subject by intentional behavior. The temporal dis-

continuities appear as essential steps in the action-perception cycle by which cognition
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proceeds, including the emergence of a goal state, the successive construction and exe-

cution of plans for actions of observation, the perception of stimuli upon generalization

and abstraction, and assimilation by learning. We propose that the spontaneous disconti-

nuities provide the opportunity for phase transitions, by which cognition proceeds frame

by frame. The ODE suffice to represent the compartmentalized dynamics in functional

domains preceding and following a phase transition; we now seek to describe with RGT

the transition that links the preceding and following frames.

• Criticality: Piece-wise linear analysis using root locus techniques with ODE have brought

to light the existence of a nonzero point attractor in cortical dynamics, which is manifested

as a zero eigenvalue (a pole at the origin of the complex plane), and at least one limit cycle

attractor (a pair of complex conjugate poles on the imaginary axis of the complex plane).

The point attractor is absolutely stable and provides the background excitatory bias that

all brains require for maintenance of their intentionality. The limit cycle attractor is con-

ditionally stable. Modeling with K-sets and ODE indicates that during a discontinuity in

temporal dynamics the neural population may closely approach the complex pole pair

[[49], [53], at which the cortical dynamical system becomes undefined and goes critical.

At or near that point all frequencies and wave lengths coexist. This is the gateway to phase

transitions by which order parameters impose synchronized oscillations [95] at high fre-

quencies on very large neural populations, in humans covering large fractions and at times

the whole of each hemisphere [47], [13], [100], [107]. The critical state is self-stabilized

and therefore self-organized. As the main route to the adaptiveness and conditional sta-

bility of cognitive functions of brains, criticality is the main target for description using

RGT.

1.2 Allocortex: The simplest model for the phase transition in

criticality

1.2.1 Microscopic sensation and mesoscopic perception

Olfaction is the least complex of the sensory systems, phylogenetically the oldest, the algo-

rithmic predecessor of all others, and for most nonhuman animals by far the most important

cognitive organ. In the simplest description the olfactory system consists of the receptor layer

in the nose treated as a KO set, the olfactory bulb, and the olfactory cortex, both having in-

teractive excitatory (KIe set) and inhibitory (KIi set) populations in Fig.1.1A that in negative

feedback comprise KII sets. These structures along with the hippocampal formation are ex-

amples of three-layered cortex, referring to the outer layer of input axons and dendrites, the

middle layer of cell bodies, and the inner layer of output axons and interneurons.

The receptor cells numbering 108 send topographically ordered axons to the olfactory

bulb with a convergence ratio of roughly 2000:1. The ∼ 103 types of receptor indicate 105 of

each type, with convergence to 5×105 excitatory bulbar neurons that are coupled in negative

feedback with a roughly equal number of clusters of inhibitory interneurons (granule cells

grouped by gap junctions). The mitral cells send axons to the cortex not by topographic map-

ping but by a divergent-convergent pathway. Each bulbar transmitting neuron excites a broad

distribution of cortical neurons, and each cortical neuron receives from many bulbar mitral

cells. This transmission pathway performs a spatial integral transformation of bulbar output

that selectively amplifies that component of mesoscopic activity that has everywhere at each

instant a common frequency of oscillation. That condition is met only by the endogenously

generated activity of the bulb and not by the activity that is driven by the receptor input.
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Fig. 1.1. A. Topology of olfactory system. B. Operation of a Hebbian cell assembly.

The benefit from the large number of receptors is the capture of faint odorants at exceed-

ingly low concentrations, such that only a very small fraction, perhaps 102 among the 105

available receptor cells is activated on any one sniff. Owing to turbulence in the nose, the

selection and number differs on every sniff. The problem of generalization from the sample

on each sniff to the class of the odorant is solved in the bulb by Hebbian learning (Fig.1.1B).

A reward is given on each trial in which the expected odorant is present, but not on the tri-

als without the odorant. Chemical neuromodulators such as dopamine and chole-cystokinin

(CCK) increase the strength of connection between just those pairs of neurons that are coex-

cited on reinforced trials. On unreinforced trials the connection strengths among other pairs

of coexcited neurons are automatically reduced by habituation. Over multiple sniffs a Heb-

bian nerve cell assembly forms by strengthening of the excitatory synapses between pairs of

excitatory neurons, represented in the ODE by a gain coefficient kee, and weakening of other

excitatory connections represented by kei. The output connection strengths of the inhibitory

neuron populations, represented by kie and kii, are unchanged. The effect of the increase in kee

is modelled in Fig.1.2B. An increase in kee of 20% increases the output 50-fold; a decrease in

kee of -25% decreases output 1000-fold. The entire assembly is vigorously excited into oscil-

lation no matter which neurons in the Hebbian assembly are excited by sensitive receptors, or

how many are excited; this demonstrates generalization to the relevant class of stimulus.

However, the activation of a Hebbian nerve cell assembly constitutes ∼ 0.1% of the bulbar

output neurons. The further step that is required is a phase transition by which the entire

olfactory bulb enters into a spatial pattern of oscillation that is governed by an attractor. Figure

1.2A shows examples of oscillatory wave forms in the gamma range that appear on every

channel but are spatially modulated in amplitude, called AM patterns. These AM patterns

manifest an attractor that corresponds to the class to which the conditioned stimulus (CS)

belongs. In each olfactory system a landscape of attractors embodies the repertoire of odorants

that the subject is capable of classifying at each stage of its lifespan. Each attractor is based in

the synaptic matrix of the bulb in conjunction with other parts of the brain, which constitutes

the memory of the subject for that odorant and its significance for intentional behavior. The

lack of invariance of the AM patterns for control and odor stimulation shows that they are not

representations of CS formed by filtering; they are creations through nonlinear dynamics.
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Fig. 1.2. A. Increase in the form of induced oscillations in the gamma range (20-80 Hz) by

increase in mutually excitatory feedback gain. B. Amplitude. C. Frequency. The link between

excitatory neurons is the most sensitive synaptic site for increasing and decreasing the sensi-

tivity of the olfactory system in learning both by association and by habituation; from [45].

1.2.2 The origin of the background activity in mutual excitation: positive

feedback

Three types of KO ensemble are active in brains: excitatory, inhibitory, and modulatory. The

dynamics of each module is described by a transfer function that consists of a component for

linear pulse to wave density conversion with gain ka, a distance-dependent part, H(x,y), and a

time-invariant, amplitude-dependent nonlinearity, G(v). The necessary and sufficient minimal

representation of ka is by measuring the impulse response of a KO population in which inter-

actions have been blocked by deep anesthesia. The response to an excitatory impulse is the

average synaptic potential with a rapid depolarization and exponential return to the baseline

(Fig.1.3). Paired shock testing reveals proportionality and additivity. The minimal fitted curve

is the sum of two exponential terms, for which the equation is a linear 2nd order ODE.

(ab)
d2 pi(t)

dt2
+(a+b)

d pi(t)

dt
+ pi(t) = Fi(t). (1.1)

A 1st order ODE does not suffice, because the single exponential term only captures the

passive membrane capacitive delay and fails to incorporate the synaptic and dendritic cable

delays, which are crucial in the population dynamics. Here a and b are biologically determined

time constants. pi(t) denotes the pulse density at the i-th node as a function of time; i ∈ N,

where N is the index set of all nodes. Fi(t) includes the effects of the neighboring populations

influencing node i.

H(x,y) is represented by linear matrix algebra. Most calculations to date have been with

a fully connected squared array of nodes with periodic boundary conditions. The employed

models incorporate conduction velocities for distance-dependent delays. The source term in

Eq.(1.1) can be expressed as Fi(t) = G(ka ∑ j∈N H(xi,x j)p j(t)), where the summation runs

over the index set N of all populations.
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Fig. 1.3. The open loop impulse response (averaged evoked potential under deep anesthesia)

of the olfactory system is fitted with the sum of four exponential terms, two approximating the

synaptic and dendritic cable delays, the passive membrane decay, and the slow rate (∼ 1/s) of

the metabolic recovery process.

G(v) is determined by calculating the action potential probability conditional on ECoG

amplitude. The fitted curve, which was derived for the population by a generalization from the

Hodgkin-Huxley equations for single neurons [45], is a sigmoidal function that expresses the

axonal pulse density output of an ensemble as a function of dendritic wave density:

G(v) = q{1− exp(−
1

q(ev −1)
)} (1.2)

In Eq. 1.2, q is the parameter specifying the slope and maximal asymptote of the curve.

This sigmoid function is modeled from experiment on biological neural activation [44].

The nonlinear gain can be replaced by a gain constant equal to the tangent to the sigmoidal

curve in piece-wise linear approximation of the dynamics in the vicinity of a steady-state oper-

ating point. The linking of KO modules into distributed networks of K-sets yields descriptions

of brain dynamics at the macroscopic level, which describe the neural mechanisms of inten-

tional behavior, including assimilation by learning [51], [66].

1.2.3 Source of the repeated discontinuities facilitating phase transitions:

Rayleigh noise

A neural mechanism for the variability of the decay rate of the impulse response and the

aperiodic approach to criticality has been revealed by detailed analysis of the background

ECoG [11]. The characteristic form of the power spectral density (PSD) of subjects at rest

is power-law in log-log coordinates with a slope close to -2 (brown noise) and decreasing in

sleep near -3 (black noise) [101]. In animals intentionally engaged in perceptual tasks the PSD

deviate from 1/f with peaks reflecting excess power in the gamma and theta ranges [33], [35],

[39]. These peaks result from inhibition by negative feedback that acts as a band pass filter.



10 Scale-Free Cortical Graphs

The application to the raw ECoG of a band-pass filter in the gamma range followed by the

Hilbert transform yields the analytic signal, which is decomposed into the analytic power, and

the analytic phase. Calculation of successive differences, divided by the digitizing step, yields

the analytic frequency. The spatial mean, and spatial standard deviation , SDX(t), co-vary

with time, revealing nearly constant values of analytic frequency and low values of SDX(t)
for ECoG segments lasting 50-120 ms, but bracketed by brief epochs of high SDX(t) and

either low or high values of frequency. These are the times of temporal discontinuity, across

which the values for the frequency change on average by ∼ 10Hz (∼ 16% of mean frequency)

together with sudden large changes in spatial patterns of amplitude and phase of the ECoG.

The discontinuities coincide with the decrease in mean analytic power, A2(t), to values

as low as 10−4 below the modal values. The high spatial variance in phase revealed by the

maxima of SDX(t) at null spikes reflects the indeterminacy of phase at the minima. This pat-

tern of repeated near-zero values of analytic power accompanied by maxima in analytic phase

variance in very brief time periods was simulated by band pass filtering simulated brown

noise, applying the Hilbert transform, calculating the analytic power and phase difference at

each point in time and space, and plotting mean power, A2(t), and phase SDX(t). We infer

that these coordinated analytic phase differences are a type of Rayleigh noise, in which the

mesoscopic power nearly vanishes, owing to summation and cancellation of excitatory and in-

hibitory currents, but without decrease in the microscopic power. The observable mesoscopic

potential differences vanish, but the microscopic ionic currents persist undiminished. At this

minimum the order parameter vanishes, and the complete disorganization of the microscopic

activity enables the cortex to transit to a new phase. Being mesoscopic, the preceding and

succeeding patterns and the transient abeyance in the null spike are completely invisible in

microelectrode recordings at the microscopic level. What is seen is the sustained firing of neu-

rons in Hebbian nerve cell assemblies, which is identified as that of feature detector neurons

[99], also pejoratively known as grandmother cells [71].

We postulate that the source of the variation in wave form with fixed input is the varia-

tion in the mesoscopic amplitude imposed by the null spikes. If so, the impulse driving of the

KIIei population reveals by the decreased decay rate the amplification of the response to the

evoking stimulus, whenever the mesoscopic background activity diminishes. We propose that

the necessary condition for the transposition from the microscopic pattern given by a Hebbian

nerve cell assembly to the mesoscopic order parameter, which is realized in the AM spatial

pattern governed by an attractor, is the occurrence of a null spike during the sustained dis-

charge of an activated Hebbian assembly. Then the initiation of a phase transition that leads

to perception requires the conjunction of three recurring events of independent origin. One

is the macroscopic initiation by the limbic system of a behavioral act of observation, such as

a sniff, saccade or whisk, that brings a sensory volley to the cortex primed by preafference.

The second is the onset of a mesoscopic null spike, which opens the cortical dynamics to the

singularity by which a state of criticality is closely approached. The third is the presence in

the sensory volley of microscopic action potentials from receptors that belong to the expected

class of input and active a Hebbian assembly. Therefore the formation of a percept is contin-

gent on the presence in the environment of that which is sought, on the intentional observation

of the environment, and the local opening of a gate in sensory cortex, ready to reorganize its

background activity.

Empirically the recurrence rates of null spikes are proportional to the value of the center

frequency and to the width of the pass band. The mathematics remains to be worked out. Null

spikes occur independently in multiple frequency bands spanning the beta and gamma ranges.

The appearance of neocortical ECoG in array windows fixed on the brain surfaces of active

animals resembles that of a pan of boiling water, in which the bubbles resemble the epochs of
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transient stationarity. Most null spikes do not lead to phase transitions; most incipient phase

transitions are quenched, either because there is no concomitantly active Hebbian assembly,

or because the reduction in background power is insufficient.

1.3 Application of RGT to neocortex

1.3.1 Topology of large-scale neocortical connectivity: Generality versus

specificity

Allocortex is relatively simple; 2 quick steps takes it from a selection of receptor cells to a Heb-

bian assembly and then to a chaotic attractor [46], [109], [65]. Neocortex is more complex.

The greatest challenge in modeling the dynamics of neocortex is posed by the requirement

to meet two seemingly irreconcilable requirements. One is to model the specificity of neural

action even to the level that a single neuron can be shown to have the possibility of capturing

brain output. The other is to model the generality by which neural activity is synchronized and

coordinated throughout the brain during intentional behavior. The topology of allocortex sum-

marized in Fig.1.1 displays these two essential features of cortex: specificity in the topographic

mapping of receptors into the bulb, and generality in the divergent-convergent integration of

bulb to cortex. Neocortex provides these two features as well but on a far greater range of

spatial scale. The temporal dynamics of visual, auditory and somatic cortices is very similar

to that of olfaction, including the provision of background spontaneous activity, power-law

distributions of connection lengths and spatial and temporal power spectral densities, repeated

formation of AM spatial patterns with carrier frequencies in the beta and gamma ranges, and

frame recurrence rates in the theta range. ODE serve to describe the mesoscopic dynamics

of neocortical populations, but falter in attempts to model the entire range including the tran-

sitions between levels, which appear to take place very near to criticality. RGT offers a new

approach, by simulating the results from mesoscopic recording and ODE modeling.

Neocortical area and neuronal density

Anatomists [104], [14], [102] agree on the relative invariance across areas of neocortex and

species of mammal, the number of neurons/mm2 being close to 105 within a factor of 2,

compared with wide variations in number of neurons/mm3. The logarithm of the area of both

allocortex and neocortex varies across species in accordance with the logarithm of body size,

so inversely does the thickness of cortex and therefore the volume density, respectively in

human neocortex 2.6 mm average thickness and 4×104/mm3. Apart from the scaling factor

of body size that holds for allocortex, the way by which neocortex increases in size with

evolution is by increase in surface area, adding neurons at nearly fixed density per unit surface

area. By the extra degree of freedom neocortical area increases more than volume relating to

body mass, leading to gyrification by wrinkling of the surface. The area of allocortex varies

over 3 orders of magnitude in proportion to body size. Neocortical area ranges an additional

2 orders of magnitude. The largest brain in the sperm whale is 105 greater in area than the

smallest in the tree shrew, yet the temporal dynamics revealed by the ECoG is similar from

mouse [43], to whale [77] giving dramatic evidence for power-law distributions of connectivity

and self- similarity in scale-free dynamics.

The challenge posed by neurobiologists to physicists and mathematicians is to explain the

phase transitions that appear in scalp EEG and MEG recordings from normal humans [10]. The
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fine structure of neocortex reveals each hemisphere to be a unified dynamical organ with no

interruptions in connectivity over its entire surface. Given that fact alone it is not surprising to

find synchronized oscillations over distances that often approach the length and breadth of the

hemisphere. The similarity in patterns of phase synchrony extended across a difference in scale

of 34:1 between human and rabbit. What is surprising is that the beta and gamma oscillations

at each spike jump to a new value of frequency that differs from the previous frequency on

average by 10 Hz over the range in animals of 20-80 Hz. The repetitive resynchronization

over relatively immense correlation distances is surprising, because the coordination of the

activity is based in the main in communication by action potentials with conduction velocities

for the most part well under 10 m/s. [52] have reviewed the variety of proposed alternatives

in field theory to explain the rapid resynchronization and concluded that it is an emergent,

macroscopic property. [13] came to the same conclusion in their study of MEG modelled

using small-world theory.

The large-scale embryological growth and development of neocortex

Anatomists have for over a century recognized the coexistence of relatively numerous local

connections within putative modules and relatively sparse long connections among networks

of modules, with the likelihood of dynamic modification in formation of Pavlov’s temporary

connections by learning. Recently several research groups have attempted to model cortical

structure and function with small world networks [114] by constructing a cellular neural net-

work and replacing a small proportion of local connections with long connections. The net-

work is grown by adding new cells one at a time and forming new connections for each node

as it is added [e. g., [8]).

This conception lacks important features of how neocortex forms [1], [88], [62], [80]. At

the microscopic level the neurons initially replicate as small spheres in large numbers, migrate

toward the surface of the brain, and then sprout axons that reach out and form synaptic con-

nections on dendrites. The dendrites also extend branches that provide the surface area needed

to accommodate synapses, each with a current path to the axonal trigger zone near the cell

body. Neurons continue to branch, extend, and form new connections, long after replication

ceases and excess neurons are pruned by apoptosis (programmed cell death). Lifelong growth

continues in some areas by cell division and maturation of new neurons, but predominantly

the existing neurons continue to reach out and form new connections that provide the matrix

of connectivity that is shaped by learning. Lengthening and branching of axons and dendrites

continues well into the sixth decade of human life and perhaps beyond.

Forms of the distributions of connection lengths used in random graphs are schematized in

Fig. 1.4A. In the initial formulation by Erdős and Rényi [38] the probability of connections is

uniform with distance (lower line). In cellular neural networks the connections are restricted

to nearest or next nearest neighbor nodes, e.g., [30]. In small-world graphs/networks a low

percentage of the local connections is replaced with uniformly distributed long connections,

step function [114], which dramatically reduces the depth by bridging across many nodes.

Anatomical studies of cortical connectivity report exponential distributions of the lengths of

axon collaterals and projections (dashed curve) [92], [24], which display predominantly local

connections and increasingly sparse connections with increasing distance from the cell bodies.

Revising the data display from semi-log plots to log-log plots gives power-law distribu-

tions of distances in the middle range with deficits at both ends. The deficits can be explained

by the limitations in the experimental methods. For short distances the observations using

light microscopy omit gap junctions and most unmyelinated axons, which in electron micro-

graphs substantially outnumber the myelinated axons. For long distances the observations of
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Fig. 1.4. A. Distributions of the numbers of connections at varying distances are schematized

in log-log coordinates. The straight line indicates the power-law relation, 1/ f α . B. Distribu-

tions of measurements of lengths of axons that were made in histological sections of Golgi

preparations [24]. The data were re-plotted in log-log coordinates.

axon lengths in Golgi preparations are made in tissue sections of limited thickness (e.g., 300

microns, Fig.1.4B) in small mammals (here mouse). Continuity is very difficult to follow in

serial sections, leading to a deficit in the numbers of long connections. The self-similarity of

many axonal and dendrite trees is well-documented [110], [60], and the distributions of cor-

tical structural connectivity are power-law [74], [59], [57], [83]. The most appropriate model

for generating an embedding generalist random graph is a large fixed number of nodes having

power-law distributions of connection distances at fixed slope and with steadily increasing

asymptotes as new stochastically generated links are added. Specializations within this matrix

need then to be undertaken to model the effects of genetic factors on selective targeting biases

and apoptosis, and the effects of learning from experience.

Special significance is attached to the graph with power-law distribution of connection

distances, owing to the introduction of self-similarity at different scales of observation and

measurement. The significance lies in the dynamical properties endowed by scale-free con-

nectivity [25], [29], [5], particularly the capacity for repetitive phase transitions to occur al-

most simultaneously over very large areas of neocortex, owing to the approach to criticality

giving the long correlation lengths.

1.3.2 Evolution of heterogeneous cortical structures

Spatially heterogeneous networks are important in various systems, including the cortex. To

model the development of such inhomogeneous brain structures, we describe the evolution

of large-scale graphs starting from well-defined initial configurations. To model brain devel-

opment from the inception of the individual to the formation of detailed brain structures, we

evoke the concepts of pioneer neurons [34], [85] and the transitory subplate [103], [6]. We start

from an initial set of 103 pioneer neurons, |V0| = 103. Pioneer neurons are modeled as small
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balls densely packed in a small area of characteristic size of 10µ . During the developmental

stage, this tiny cortical tissue multiplies about 108-fold, to have the fully developed brain with

1011 neurons. This means a 104-times increase in linear size, by considering the essentially

2-dimensional structure of the cortex. For illustration, the stages of the development of the

brain are given in Table1.1.

Table 1.1. Illustration of brain growth

Linear size Number of Neurons Description

10 µ 103 Pioneer neurons in subplate

100 µ 105 Evolving populations

1 mm 107 Cortical columns

10 mm 109 Cortices

100 mm 1011 Full brain

The evolution of the brain is described as a inflation of the initial graph G0 formed by the

interconnected pioneer neurons. Assume an initial population of about 103 pioneer neurons

packed on a small lattice; packing distance is ∼ 0.33µ . As the cortex develops, the space

spanned by the neurons expands so that the distance between the original neurons increases.

The space created by this expansion is filled in with newly created neurons. These new neurons

grow connection to the existing ones. A schematic view of the initial stage of development is

shown in Fig.1.5.

Directedness in cortical networks

An important constraint in RGT is directedness [8]. Most neural connections by synapses (un-

like gap junctions) are unidirectional; with the exception of dendrodendritic synapses recipro-

cal interconnections are by different axons. Topologically the result is parcellation of a large

network into a giant component, one or more input components, one or more output compo-

nents, and miscellaneous islands having insufficient densities of links to participate in the other

three groups. The utility of these distinctions in applications to cortex is obvious. The concept

of the giant component provides an interesting candidate for a neural correlate of conscious-

ness by virtue of its immense size, unity, and capacity for rapid state transitions. The islands,

evolving in relative isolation by continuing growth of connections, might be fruitful for using

scalp EEG to study the process of insight, the ’aha’ phenomenon described in [56] and as the

collision of matrices of thought by Arthur Koestler [64], which has been documented in the

auditory cortical EEG of gerbils engaged in category learning [90].

Sparseness in cortical networks

In graphs the number of synapses between neurons (mono-, di-, poly-synaptic) determine con-

nection distances. In networks the radial lengths of axons/dendrites from cell bodies determine

distances. Most dendritic trees are small enough (< 1mm radius) to sum their currents by pas-

sive cable spread; most axons are long enough (∼ 1mm) to require communication by pulses

that use local energy so as to transmit with delay but without attenuation. Every synapse re-

quires a dendritic loop current path to the axon like a leaf on a tree, hence the large surface area

of the dendritic tree and the high packing density in humans of neurons (4× 104/mm3) and
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G0

G1

G2

Fig. 1.5. Schematic illustration of the sequential evolution of the cortical graph G; black cir-

cles - pioneer neurons G0, grey and white circles - consecutive generations of neurons. The

first two steps of the evolution are shown. The illustrated regular structure is used only for sim-

plicity, while the actual brain tissue evolves random topological and connectivity structures.

synapses (4×108/mm3) to accommodate the 104 synapses on each neuron sent by 104 other

neurons [104], [14], [24], [108]. So great is the density of neurons and their connecting fibers

that on average a neuron demarcated by its cell body and nucleus connects sparsely with < 1%

of the neurons within its dendritic arbor, and the likelihood of reciprocal connections between

pairs is < 10−6. Given that each neuron transmits to ∼ 104 others, the number of its targets in 3

steps would be 1012, which approaches the 13.7±1.6 109 neurons in each cerebral hemisphere

[23]. This leads to an estimated depth of 3 for a cortical network. As most of the connections

are local, real world networks have depths much larger than this value; see also Appendix.

Here we propose a 3-level hierarchy of cortical organization: microscopic networks of neu-

rons within cortical columns; mesoscopic populations in dedicated areas of sensory, motor

and associational cortex, and the entire cerebral hemisphere serving as a macroscopic system

that organizes the intentional activity of the brain and body. A node at each level consists of

a network of nodes at the next level below. To some as yet unknown extent this hierarchical

organization is made possible by self-similarity of connectivity and dynamics across levels.

1.3.3 Topology of small-scale neocortical connectivity: Specificity

Structural connectivity: Emergence of neocortex from allocortex

The laminar neuropil in the phylogenetically older parts of the cerebrum is called allocor-

tex [86]. Examples include the prepyriform cortex (paleocortex), the hippocampus (archicor-
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tex) and parts of the perirhinal and entorhinal cortex (mesocortex) [78]; the olfactory bulb

is here included as allocortex owing to its similarity to the others in topology and phyloge-

netic derivation, though not all anatomists accept this taxonomy [24]. Generically allocortex

has three layers with differing subdivisions specific to each area; see Fig. 1.6. Layer 1 is also

called marginal layer, which lies under the bounding pial membrane and has input axons and

the dendritic trees on which they synapse. Layer 2 has the cell bodies, often with triangular

shapes giving the name pyramidal cells (mitral cells in the bulb). Layer 3 has output axons

with recurrent side branches called collateral branches that synapse on other pyramidal cells

and on local interneurons called stellate cells (internal granule cells in the bulb).

Fig. 1.6. Schematic summary of the transition from allocortex to neocortex by intrusion of

cells into Layer 2 of allocortex through transitional mesocortex around the landmark separat-

ing neocortex from allocortex, the rhinal fissure. Adapted from [84], p. 237.

In contrast to allocortex with three layers, neocortex (also called isocortex) is described

as having six layers. The layers are defined on the basis of the spatial patterns of the cell

bodies revealed by selective staining of the DNA in the cell nuclei [72], not on connectivity

[26], [104]. In allocortex (also called reptilian) the layers form by cells migrating from inside-

out and spreading under those already arrived. Comparative neuroanatomists have shown how

neocortex (found only in mammals) has evolved from reptilian allocortex by intrusion into

allocortical (Layer II in Fig.1.6) of neurons migrating from the basolateral forebrain [62], [1].

The first neocortical cells called pioneer cells [34], [85] are guided by a transitory subplate

[103], [6] that enables subsequent cells to leapfrog over pioneer cells by inside-out progression

and form the fine-grain radial bundles of parallel cells that are oriented perpendicular to the

pia in neocortical columns and hypercolumns. The cytoarchitectures and connectivity patterns

in Layers II to IV vary greatly between local areas. These palisades of axons preferentially

following the pioneer cells provide topographic mapping of sensory input and motor output



1 Scale-Free Cortical Planar Networks 17

to and from neocortex. The local areas by Brodmann [26]. These specializations support the

specialized functions that are performed by local networks in the many sensory, associational,

and motor areas of neocortex. The individuation is enhanced by close dependence on topo-

graphically organized specific thalamic inputs by axons forming synapses in Layer IV. The

neocortical marginal Layer I continues to receive input axons from nonspecific thalamic nu-

clei and from allocortex. In neocortex the input to Layer IV percolates outwardly to smaller,

local neurons; in allocortex the input to Layer 1 percolates inwardly to larger, long-range pro-

jection neurons in Layer 2.

Braitenberg and Schuz wrote [24]: ”A recent hypothesis by Miller [82], based on differ-

ences in both connectivity patterns and spontaneous activity between upper and lower layers,

assigns to the upper layers the role of a neuronal library, storing most of the information en-

coded by assemblies, while the lower layers are assumed to catalyze the process of assembly

formation” (p. 150). Kaas wrote [61]: ”Generalizing from cats and monkeys it appears that the

evolutionary advance in brain organization is marked by increases in the numbers of unimodal

sensory fields, not by increases in multimodal association cortex as traditionally thought” (p.

147). Therefore Layers II-IV can be conceived to provide highly textured mesoscopic mod-

ules that are most active in learning and adaptation, while the embedding neuropil in Layers

I, V and VI provides the connectivity needed for rapid integration of modular activity into

macroscopic ensembles. We conclude that the local networks within Layers II to IV are em-

bedded in the continuous sheet of neuropil in each cerebral hemisphere, which is unified by

the global network of Layers I, V and VI. The deep pyramidal cells in Layers V and VI have

long basal dendrites that receive connections from neurons broadly situated in Layers II to

IV, and their apical dendrites extend and branch into Layer I. The deep pyramidal cells send

the longest output axons to other areas of cortex, to the basal ganglia and brainstem, and by

widely radiating collaterals into the overlying layers. Long cortico-cortical connections are

not fully random; they are often distributed in patches with high local connection density,

with intervening regions having few connections [79]. Most analyses of anatomical data have

emphasized point-to-point networks, for example, the meta-study by Fellemin and Van Es-

sen [40] of connectional architecture in visual cortex, and the cortico-subcortical modules of

Houk [58]. These linkages are essential for dissemination of activity among the nodes in the

networks. However, they do not address the connectivity required for the long-range coherence

and rapid phase transitions revealed by carrier waves. Therefore the best target for modeling

neocortical activity by random graphs appears to be the embedding layers.

Considerations of differences between allocortical and neocortical activity

Three major differences allocortical and neocortical activity were revealed between by the

functional properties of the beta and gamma patterns. First, there was only one bulbar phase

cone at a time. In neocortex there were multiple overlapping phase cones at all times. Second,

each bulbar oscillatory pattern occupied the entire bulb with fixed diameter. The neocortical

patterns of shared frequency varied in diameter (correlation distance), averaging 2-3 times

larger than those in the bulb and often appearing large enough in cats and rabbits to occupy

the entire hemisphere. Third, the variation in bulbar phase cone duration was limited to half

to two thirds of the interval between frames recurring at the rate of breathing or sniffing. The

distributions of durations from frames with AM patterns that were classified with respect to

CS also conformed to the same power law. Hence within a range spanning nearly three orders

of magnitude the durations of phase cones showed self-similarity and lack of characteristic

mean and standard deviation, characteristic of scale-free distributions as seen also for the

PSD of the EEG. Each of the myriad small phase cones without classifiable AM patterns was
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interpreted as a local state transition that appeared to abort before accessing a learned basin of

attraction. The superimposed local events resembled the subthreshold fluctuations described

by Prigogine [96] in a system held very close to criticality and a transition at the boundary of

a basin of attraction.

Preferentiality in the assignment of probability of connections

A feature of random graphs is preferentiality [8], [4], in which the probability of a node receiv-

ing new connections is proportional to the number of connections it already has. Constraining

a scale-free network with preferentiality in the assignment of the probabilities of input and

output connections may lead to the emergence of a hub, which is a node of exceptionally high

density of connections, an outlier in a power-law distribution that includes long-distance links.

Widely studied networks with hubs include the route maps of major airlines and the patterns

of connectivity on the Internet. Such networks are relatively unaffected by random loss of

nodes but fail with loss of hubs [112], [113]. Likewise the performance of cerebral cortex

is relatively resistant to degradation by local lesions in areas not affecting input and output

pathways. The medical literature is rich with descriptions of transient loss of circumscribed

cognitive functions that accompany focal damage to limited areas of neocortex [32] and are

repaired by learning, but cortex can fail catastrophically with certain critical lesions, such as

damage to the midbrain reticular formation leading to coma, the substantia nigra leading to

Parkinson’s disease, and the perforant path in Alzheimer’s disease. Functional evidence for

hubs might be seen in the patches of cortical activity seen in fMRI that are associated with a

broad range of cognitive functions [27].

Significant preferentiality is seen in the mechanism by which pioneer neurons provide the

initial guidance that is required for the construction of topographic maps, which are displayed

in textbooks as motor and sensory homunculi. This mechanism addresses the local organiza-

tion that is required for sensorimotor integration by neurons in Layers II to IV. The question

is whether another form of preferentiality might be modelled in Layers I, V and VI, which

might help to explain hubs, if indeed they exist. The connectivity of single neurons does not

obey power-law, but have carrying numbers of input and output synapses numbering in the

thousands. The requirements for macroscopic connectivity supporting hubs in neocortex are

unknown. A mathematical model for large-scale preferentiality is needed to guide anatomists

and physiologists in the search for the requisite structural and functional properties of cortex.

For example, scale-free connectivity at the population level may give a fresh start to under-

standing the enigmas of speech localization, and the paradox that the higher is the verbal IQ,

the smaller is the speech area [91]. Broca’s area is in close conjunction with the motor areas

for the lips and tongue, yet linked by the uncinate fasciculus to the temporal lobe for audition

and by U-fibers to the parietal lobe for proprioception. Wernicke’s area is at the conjunction of

somatic, visual and auditory sensory cortices. In both instances the tendencies for preferential

connectivity may support the growth of hubs respectively for motor and perceptual speech

functions. Focal electrical or magnetic pulse stimulation by neurosurgeons temporarily inacti-

vates speech, but that does not imply that speech is localized to the site of stimulation. Instead

the elucidation of speech mechanisms requires investigation of how neurons in a hub partici-

pate in macroscopic coordination of oscillatory neural activity. Definitive exploration of hubs

may be optimized by recording EEG/MEG from a dense array of channels overlying a large

percentage of the surface each hemisphere, and with sampling at 1 cm intervals corresponding

to the width of gyri so as to capture adequately the texture of AM patterns of spatially coherent

activity [47]. A foreseeable device with 512 channels for EEG would cover an area of scalp

23×23 cm, comfortably fitting over the calvarium.
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1.4 Structure and Dynamics in Cortex Models

The cortical tissue has a complex anatomical structure of interconnected neural population

producing well-studied behaviors manifested through spatio-temporal oscillations. These os-

cillations have been studied intensively using various brain monitoring tools. The major chal-

lenge is to determine the relationship between structure and function. The mathematical theory

of random graphs and percolations [15], [22], [21] have been very useful for th characteriza-

tion of structural properties of large-scale networks. There are some promising approaches to

establish the structure-function relationship in complex networks, including brains [8], [105],

[67], [7]. However, a systematic mathematical analysis of this field is still missing. Here two

major aspects of the structure-function relationship will be emphasized:

• Assuming a given structure, in the absence of significant growth and learning effects, one

is interested in studying the dynamic behavior of the networks. How a desired oscillatory

behavior can be achieved by changing the structural parameters of the network?

• At the next level, structural changes are introduced, which are related to learning and

adaptation. One may assume certain biologically motivated evolution rules acting through

the addition/removal of nodes and connections. The aim is to study how the behavior of

the network varies under such dynamically changing conditions?

Oscillations have been studied in 2-dimensional lattice using probabilistic cellular au-

tomata (PCA) [7]. The state of a node at a given time is defined by the sum of the active states

of its neighbors in the previous steps, using a probabilistic threshold function. The PCA has

been originally defined with a completely regular and homogeneous neighborhood structure

with a binary function defined over the nodes of the graph. In addition, mean-field models

have been studied as well over random graphs. The existence of critical behavior and phase

transitions have been rigorously shown in the case of very low level of noise and mean field

model [7]. Simulations indicate that mixed models with local and long-range connections ex-

hibit critical behavior of weak Ising type [67]; such models are also called neuropercolation.

An extended neuropercolation model with excitatory and inhibitory nodes can exhibit periodic

oscillations, where the frequency of the oscillations is controlled by the coupling coefficients

between the nodes [98]. These are narrow-band oscillations with well-defined frequencies in

the gamma band.

We described critical oscillations over various PCA. It is of special interest to determine

statistical properties of average activation (magnetization) as an order parameter. Mean field

probabilistic cellular automata over finite tori can exhibit bi-stable and multi-stable oscilla-

tions with exponentially long waiting time between transitions, while each transition takes

polynomial time [7]. Simulations show that the power spectra density (PSD) of magnetization

oscillations exhibit 1/ f a behavior near the critical state, where f is the temporal frequency.

The following major scenarios are distinguished:

• Far from criticality, the dynamics stays for very long time at a resting state, i.e., oscillating

around a given magnetization level, when clusters grow and dissolve randomly, without

the emergence of a giant component representing large-scale ordering.

• Near critical state, the waiting period is reduced and large clusters are frequently formed.

Simulations show that such large clusters eventually cover most of the network, and ulti-

mately the system flips to another basic state.

• Cluster formation and growth, and statistical distribution of the size of the clusters is a

problem of great importance, and should be attempted using tools of rigorous mathemati-

cal analysis.
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Functional brain networks have been studied by EEG, MEG and fMRI tools. In the exper-

imental studies it is typically postulated that there is a functional link between nodes if their

activations show correlation above a threshold level. Such studies indicate the dominance of

relatively simple connectivity motifs with 3 and 4 nodes [105].

Preferential attachment is a popular model of building networks. Due to the inherent short-

comings of certain versions of preferential attachment models of growth, more rigorous ap-

proaches are sought [21]. Cortical structures evolve along the path of pioneer neurons, which

can be considered a form of preferentiality. It is highly desirable to introduce a mathematically

tractable growth model to describe the observed neural processes. Such models are outlined

in the next section.

1.5 Requirements the mathematical models

Several simplifications will be introduced when formulating a mathematically tractable the-

ory of the structure-dynamics relationship in the cortex. The cortex is approximated as a 2

dimensional sheet of interconnected neurons and modelled as a planar graph G(V (x),E) over

the vertex set V and directed edges E, where x ∈ S ⊂ R
2. G(V (x),E) is a directed graph de-

fined by the connected neurons, where axons and dendrites signifying outgoing and incoming

connections, respectively. The following are some key parameters of the model:

• ωx(r): Distribution function of the lengths of the connections originating from a node at

location x. Biological arguments point to a 1/rk distribution, where r is the connection

length, k is the exponent of the scale-free length distribution, k ≈ 2.

• nx: Spatial distribution (density function) of vertices V in 2D. It can be uniform or may

evolve following a some patterns specified by a given model V0,V1,V2, . . . ,Vt , . . .. Often

we consider a sequence of evolving subsets of vertices in V0 ⊂V1 ⊂V2 ⊂ . . .Vt ⊂ R
2.

• d+
x /d−

x : Degree distribution of the outgoing/incoming edges of the nodes. Neurobiology

indicates that the average in-degree of a node is 104 in the cortex. It is not clear if scale-free

degree distribution is valid in the cortical tissue. The apparent presence of some distributed

hub structure may point towards scale-free degree distribution.

The parameters d+
x ,ωx(r),nx describe certain important features of the planar graph net-

work structure. Depending on the specifics of the model, various relationships can be derived

between these quantities. For a variety of suitable models, see the Appendix.

1.6 Conclusions

The challenge of describing and modeling the dynamics of immense numbers of neurons

and synapses in cortex has been met by invoking a continuum to represent the mesoscopic

pulse and wave densities with state variables of neuronal populations in networks of ODE

[44], [12]. This strategy works well in stationary, small-signal, near-linear ranges and can

be extended into time-varying, amplitude-dependent nonlinear dynamics with piece-wise lin-

earization giving analytic solutions to the equations for simple approximations. Large-scale

modeling has provided a platform in K-sets. The KO set models the mesoscopic node in a

space-time continuum. The KIe set models the synaptic interaction supporting the non-zero

point attractor that sustains cortical background activity. The KIi set models mutual inhibition

and spatial contrast enhancement that is required for spatial AM pattern formation. The KIIei
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set predicts one or more limit cycle attractors that support sustained oscillations in the gamma

and beta ranges. The KIIei set suffices to model the essential dynamics of allocortex.

ODE in K-sets have been extended in several directions. The KIII set consisting of a KIe

set and three KIIei sets chaos with multiple long feedback connections model the landscapes

of chaotic attractors that form by learning and provide the memory system for conditioned

stimuli [48], [46], [65], [73]. The KIV set consists of three KIII sets devised to model the

limbic system in goal formation, learning, and navigation [66]. KIV has been successfully

demonstrated intentional behavior in embedded robotics [68], [69]. The KV set is proposed

to model neocortex. Advances using ODE are in progress in three directions: nonequilibrium

thermodynamics [49], [50]; dissipative quantum field theory [53]; and renormalization group

theory.

However, further use of ODE is severely limited. Networks of populations with multiple

types of nonlinear feedback cannot be solved analytically and must be solved by numerical

integration with digital computers, in which case the differential equations are discretized in

time and space into coupled integrodifference equations. Owing to attractor crowding and

numerical instabilities from the extremely large number of attractors in high-dimensional

networks, the digital models are unstable and must be tempered with additive noise, which

requires stochastic difference equations. The digital computations for solving the ODE are

prohibitively slow. The alternative route of analog computation using VLSI to solve the ODE

has met with early success [97] but has encountered problems with bias control. The equations

suffice empirically to replicate the pulse and wave densities and their spatial patterns governed

by nonconvergent chaotic attractors [65], but none of the equations can be used to model phase

transitions, only the states before and after the transitions.

Random graph theory offers a fresh beginning, in which the discreteness of neurons and

synapses can be approximated with numerical representations in percolation theory. It is read-

ily adapted to describing neural nets at the microscopic level, the nodes at mesoscopic and

macroscopic levels, and the relations among spatial and temporal variables between levels in

phase transitions. Modeling of structural and functional connectivity in allocortex by neurop-

ercolation theory is already well advanced, particularly in modeling the interplay of long con-

nections, inhibitory feedback, and additive noise in the genesis of self-regulated spontaneous

activity of large nets of nodes at the mesoscopic level. Results to date suffice to simulate white

noise with a flat PSD (white noise) [101] at low levels of interaction strength, brown noise

with 1/ f 2 PSD when close to a phase boundary, and narrow band gamma oscillation just be-

yond a phase transition. The extension to neocortex requires specification of the input and

output connection densities of nodes in a form that is compatible with the known distributions

of neuron sizes, connections, and correlation lengths.

1.7 Appendix: Mathematical models

In this Appendix we shall first describe some existing models of random graphs with properties

that may make them useful in the analysis of the neocortex, and then go on to describe new

such models.

We should emphasize that, as always when modelling complex systems, we have to try

to reconcile two contradictory aims: a model should produce random graphs whose structure

resembles that of the neocortex as much as possible, but it should not be so complicated that

it is not susceptible to mathematical analysis. The hope is that eventually the mathematical

theory of random graphs will be advanced enough that both requirements can be satisfied: a

sophisticated model can be constructed that incorporates most of the requirements, and this
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very complicated model can be analyzed precisely, meaning that one can obtain mathematical

descriptions both of its structure, and of the associated dynamics. At the moment we are very

far from this Holy Grail.

In this appendix we shall approach the task just described from the mathematical side:

we shall examine models of random graphs that can be analyzed, and that can be viewed as

primitive models of the neocortex.

Let us start with the most studied random graph models, namely the ‘classical’ models

G(n,M), introduced by Erdős and Rényi [37], and G(n, p), introduced by Gilbert [54]. In

G(n,M), the numbers n of vertices and M of edges are given, and the random graph is chosen

uniformly from among all graphs with vertex set {1,2, . . . ,n} and M edges. In G(n, p), there

are again n vertices, and each possible edge is present with probability p, independently of

the other edges. In many contexts, such as the present one, the two models (with appropriately

related parameters) are essentially equivalent, and both are now known as Erdős–Rényi ran-

dom graphs, since it was they who pioneered the use of probabilistic methods to study random

graphs.

The models G(n,M) and G(n, p) are homogeneous, in the sense that the vertex set has no

structure; in particular, all vertices are equivalent. Most networks in the real world are inhomo-

geneous, either in the sense that different vertices have very different properties (for example,

in scale-free networks, some have much higher degree than others), or in the sense that, while

the roles of individual vertices are similar, the vertex set has (usually geometric) structure

which influences the network structure: nearby vertices are more likely to be connected. In

the last few years, many new inhomogeneous random graph models have been introduced; we

shall briefly describe a few of these in the next subsection.

1.7.1 A general inhomogeneous model

Bollobás, Janson and Riordan [18] introduced a very general model of sparse inhomogeneous

random graphs, designed for representing graphs with geometric or similar structure. Here

‘sparse’ means that the number of edges grows linearly with the number n of vertices, so the

average degree d̄ is constant, but the definitions adapt immediately to other density ranges, for

example graphs in which the average degree is n2/5. In the fully dense range, with order n2

edges, a closely related but much simpler model was introduced by Lovász and Szegedy [76].

Note that the mathematical definitions of ‘sparse’ and ‘dense’ involve limits as n → ∞; the

distinction may not be so clear in practice when modelling real-world graphs.

The full definition of the BJR model is rather complicated, so let us present a simplified

version, adapted to the directed graph setting. Given a probability space (S ,µ), we shall

call a measurable function κ from S ×S to the non-negative reals a kernel on S . (In [18],

where undirected graphs are considered, the kernel is assumed to be symmetric.) Let p = p(n)
be a normalizing function, for example, p = n−3/5, corresponding, somewhat crudely, to the

probability p = p(n) in G(n, p). The random graph Gp(n,κ) with vertex set {1,2, . . . ,n} is

defined as follows: first choose x1, . . . ,xn independently from S according to the distribu-

tion µ . Then, given these ‘vertex types’, add each possible directed edge i j with probability

min{pκ(xi,x j),1}, independently of the other possible edges. Here the minimum has no sig-

nificance: it is needed only to make sure that we work with probabilities that are at most 1.

Much of the time pκ is less than 1, so the minimum is simply pκ .

One of the simplest instances of this model is defined in a geometric setting. Let R be a

region in the plane, and let µ be Lebesgue measure, scaled so that µ(R) = 1, say. Then the

‘types’ xi are simply points in the plane, chosen independently and uniformly from R. The

kernel κ is a function of two points x, y ∈ R, for example
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κ(x,y) =
c

(ℓ0 +d(x,y))α
, (1.3)

where d(x,y) denotes the Euclidean distance between x and y, the constant ℓ0 is a charac-

teristic length scale, α > 0 is the distance exponent, and c is a normalizing constant. In this

case Gp(n,κ) is a random graph on points distributed randomly in R, with nearby points more

likely to be joined than distant ones, but edges of all lengths possible.

Note that if κ is chosen as above, then it is explicitly built into the model that the proba-

bility that two vertices are joined is a function of their distance, and that this function follows

a power law.

In general, κ can be any function of two points in R; it need not depend only on their

distance, but might also vary in other ways, representing possible variations in the average

number of connections in different parts of the cortex. Also, the number n of vertices need

not be exactly fixed. It is often convenient to take n to have a Poisson distribution: the vertex

types (in the geometric setting, simply their locations in R) are then distributed according to

a Poisson process. This is the most natural mathematical model for objects distributed with

roughly uniform density but not arranged in an ordered lattice.

It is very natural to consider graphs whose vertices are points in the plane, or in a higher

(or sometimes lower!) dimensional space, in which the probability that two vertices are joined

is a function of their distance. The very first such model, dating back almost to the beginning

of the related subjects of random graph theory and percolation theory, is the disc percolation

model of Gilbert [55]. Here the vertex set is a Poisson process in the plane, and two vertices

are joined if they are within a certain distance ℓ0. A more recent example is the spread-out per-

colation model of Penrose [93], which is essentially the same as the special case of the (later)

BJR model considered above: simplifying his model somewhat, the connection probability for

points at distance d scales as r−2ϕ(d/r), where ϕ is some function chosen in advance, and

r is a parameter of the model. In spread-out percolation one studies the limiting behaviour as

r → ∞ with ϕ fixed. In general, random graphs with geometric structure are known as random

geometric graphs; see the book by Penrose [94].

An advantage of the more general formulation of the model Gp(n,κ) is that one can in-

corporate additional features within the same mathematical framework. For example, it may

make sense to model the neocortex by a random graph in the plane, reflecting the predomi-

nantly 2-dimensional structure, while representing neurons in different layers of the neocortex

by vertices of different classes. To reflect the different patterns of connections within and be-

tween the different layers, the edge probabilities can be taken to depend on the vertex classes.

For example, given constants p1, p2, . . . , pk with ∑ pi = 1 representing the relative numbers of

neurons in different layers, one can take (roughly) pin vertices of class i distributed uniformly

at random in R, and then join a vertex of class i at point x with one of class j at point y with

a probability pi j(x,y) depending on i, j, x and y. Although this appears to be a generalization

of the BJR model, it is in fact included in the original definitions, by taking the type space S

to consist of k copies of R, one corresponding to each class of vertex.

Furthermore, one can easily include spatial variations in the density of neurons, as well as

in the connection probabilities, by taking the measure µ to be non-uniform. When there are

several vertex classes, their densities need not be the same.

There is always a danger when introducing a random graph model, or any mathematical

model, that the model becomes too general; while flexibility is desirable, it is important that

the model remains simple and specific enough for mathematical analysis. Although the BJR

model is very general, as shown in [18], it is still simple enough for analysis. There the main

focus is on the percolation phase transition, but other properties are also studied. For example,
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it is shown that the degree distribution is mixed Poisson: roughly speaking, the degree of a

vertex of type x is Poisson with mean λ (x) =
∫

κ(x,y)dµ(y).
Translating this to the present setting, suppose we have k vertex classes (for example,

perhaps we should take k = 6, for the six layers of the neocortex). Suppose that the distribution

of vertices of class i is given by a density function fi(x), x ∈ R, and that there are ni vertices

of class i. Suppose also that the probability that a vertex of class i at point x is joined to one

of type j at point y is given by pi j(x,y) as above. Then the expected out-degree of a vertex of

type i at a point x is

d+
i,x =

k

∑
j=1

n j

∫

y∈R
pi j(x,y) f j(y)dy,

and the expected in-degree by

d−
i,x =

k

∑
j=1

n j

∫

y∈R
p ji(y,x) f j(y)dy.

As in [18], the degrees are concentrated around their means, so the in- and out-degree dis-

tributions of vertices of class i are given by sampling the functions above with respect to the

distribution fi(x). In the simple special case where the connection probabilities depend only

on which classes the vertices are in and the distance between them, then, except near the

boundary, the degrees do not depend on x, and we find that while vertices of different classes

may have very different degrees, and within a class out- and in-degrees may be different,

all vertices in a class have roughly the same out-degree as each other, and roughly the same

in-degree.

1.7.2 The exponentially expanding graph model

In the study of graphs with power-law degree distributions, there are two very different basic

approaches. One is to build the power law into the model; this approach was taken by Aiello,

Chung and Lu [2, 3], for example. The other is to seek to explain the power law by incorpo-

rating into the model some simple features also present in the real-world networks that one

hopes lead to power laws. For degree distributions, this was the approach of Barabási and

Albert [9], who showed that growth with ‘preferential attachment’ leads to scale-free degree

distributions. Their mathematically imprecise model was made precise in [20], and its de-

gree distribution first analyzed rigorously by Bollobás, Riordan, Spencer and Tusnády in [22].

Many other models soon followed, for example the much more general (but harder to ana-

lyze) model of Cooper and Frieze [31], and the directed scale-free model of Bollobás, Borgs,

Chayes and Riordan [16]. For general background on the rapidly expanding field of scale-free

networks see, for example, [4, 19, 36, 87].

In the previous subsection we took the analogue of the first approach, building power-

law distribution of edge-lengths into the model. In this section we propose a new model, the

exponentially expanding graph model, which incorporates one of the basic features of cortical

development, described in Subsection 1.3.2; as we shall see, this automatically leads to a

power-law distribution of edge lengths.

As described in Subsection 1.3.2, as the neocortex develops, new neurons force their way

in between existing ones. To a first approximation, existing neurons retain their connections

and relative positions, except that the distances between them increase with time, and new

neurons connect to nearby neurons; see Fig. 1.5. In our mathematical model, it is convenient

to rescale time so that the distances grow exponentially with time: we do not claim that this
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is the actual growth rate in the brain. At any given time, the density of neurons is roughly

constant, but they do not form a regular lattice. The appropriate mathematical model for their

locations is thus a Poisson process. Although a realistic model would start with a fairly small

number of neurons (around 103), mathematically it happens to make no difference, and is

somewhat cleaner, if we start from nothing.

To define the model formally, let R0 be a region in the plane, with area A0. (One can also

take R0 to be the whole plane, obtaining an infinite random graph.) For all real numbers t, let

Rt = etR0 = {(etx,ety) : (x,y)∈ R0} be the region obtained by scaling R0 by a factor et in each

direction, and let C = {(t,x,y) : (x,y) ∈ Rt ,−∞ < t < ∞} be the corresponding ‘exponential

cone.’

Let P be a Poisson process on C with intensity 2. In other words, P is a random set

of points of C such that the probability that a small volume V of C contains a point is 2V ,

and the numbers of points in disjoint regions are independent. We take a point (s,x,y) ∈ P

to represent a vertex v that arrives at time s at position (x,y). At a later time t, the vertex is

then at position (et−sx,et−sy). There are many possibilities for the edge-formation rule. The

simplest is to join an arriving vertex v to all older vertices w that are within a fixed distance ℓ0

of v at the time that v arrives. Let Gt be the graph formed in this way by time t. Thus the vertex

set of Gt is the set of all points v = (s,x,y) of P with s ≤ t. There is a directed edge from

v = (s,x,y) to w = (s′,x′,y′) if and only if s′ < s and the Euclidean distance between (x,y) and

(es′−sx′,es′−sy′) is at most ℓ0.

Let Ct = {(s,x,y) ∈ C : s ≤ t} be the part of C corresponding to times up to t. Then the

volume of Ct is

vol(Ct) =
∫ t

s=−∞
area(Rs)ds =

∫ t

s=−∞
A0e2s ds = A0e2t/2.

Let nt denote the number of vertices of Gt . Then the expectation Ent of nt is exactly

2vol(Ct) = A0e2t , and nt has a Poisson distribution with this mean. By considering the part of

Ct corresponding to a small region of Rt , we see that the positions at time t of the vertices of Gt

form a Poisson process on Rt with intensity 1. This is the reason for considering exponential

growth: the Poisson process P corresponds to new vertices arriving at a constant rate (2 per

unit time per unit volume); exponential expansion is then exactly what is needed to maintain

a constant density of vertices.

Having defined (the simplest form of) the model, let us turn to its basic properties. Al-

though the graph Gt grows as t varies, the motivation is to model the adult cortex, so we are

primarily interested in the properties of the graph Gt with t fixed, where in the application

the parameters will be chosen so that Gt has around 1010 vertices. As noted above, the actual

number nt of vertices has a Poisson distribution, but this is sharply concentrated around its

mean A0e2t .

The first property we consider is the degree distribution. When a vertex v arrives at time s,

it sends edges to all vertices in a disk of radius ℓ0 around it. Ignoring boundary effects (which

are small once the linear size of Rs is much larger than ℓ0), i.e., assuming the whole disk lies

inside Rs, the number of vertices in this disk is Poisson with mean πℓ2
0. Hence the limiting

out-degree distribution in Gt is Poisson with mean πℓ2
0. If ℓ0 is fairly large (as in a model of

the brain, where the average degree is in the thousands), then the out-degrees are concentrated

around their average value of πℓ2
0.

The average in-degree is of course equal to the average out-degree. Turning to the distri-

bution, let v = (s,x,y) ∈ P be a vertex born at time s, and set

Iv =
{

(s′,x′,y′) : s′ > s, (x′− es′−sx)2 +(y′− es′−sy)2 ≤ ℓ2
0

}

.
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Then a vertex w sends an edge to v if and only if w = (s′,x′,y′) ∈ Iv. Thus the expected

in-degree of v at time t is µv = vol(Iv ∩Ct), and the distribution is Poisson with this mean.

Ignoring boundary effects, Iv ∩Ct is made up of a disk of radius ℓ0 at each time s′, s < s′ <
t, so µv = (t − s)πℓ2

0. Once again, to a good approximation, the degrees are close to their

expectations, but now there is some variation due to the ages of the vertices: the expected

in-degree of a vertex v at time t is proportional to its age a = t − s. Since the number ns of

vertices born by time s has mean A0e2s, the fraction of vertices with age at least a > 0 is e−2a,

so the in-degree distribution follows (approximately) an exponential distribution: the number

of vertices with in-degree at least d is proportional to exp(−2d/(πℓ2
0)).

Let us turn to the edge-length distribution. Since the length of an edge increases in pro-

portion to et once it is formed, very roughly speaking, edges of length at least r ≥ ℓ0 arise

from vertices with age at least a = log(r/ℓ0), so the fraction fr of edges with length at least

r is roughly the fraction of vertices with age at least a, i.e., fr ∼ e−2a = ℓ2
0/r2. A little more

precisely, at any time s, for 0 < r′ < ℓ0 the rate of formation of edges with length (at the time

they are born) between r′ and r′ + dr′ is 2A0e2s2πr′ dr′: the first factor represents the rate of

formation of new vertices, and the second factor the area at the right distance from a new

vertex, and hence the expected number of old vertices at the right distance.

For r > ℓ0, an edge at time t with length between r and r + dr must have been born at

some time s = t − a with a > log(r/ℓ0), and its length when it was born must have been

between re−a and (r + dr)e−a. It follows that the expected number of edges at time t with

length between r and r +dr is
∫ ∞

a=log(r/ℓ0)
2A0e2(t−a)2πre−a dr e−a da =

∫ ∞

a=log(r/ℓ0)
4A0πr dr e2t−4a da

= 4A0πre2t(ℓ0/r)4/4dr = A0e2tπℓ4
0/r3 dr.

Recalling that the expected number of edges at time t is πℓ2
0Ent = πℓ2

0A0e2t , the fraction fr of

edges with length at least r is

(πℓ2
0A0e2t)−1

∫ ∞

r′=r
A0e2tπℓ4

0/(r′)3 dr′ = ℓ2
0/(2r2).

In other words, the edge-length distribution follows a power law; this power law is valid over

all scales from r = ℓ0 up to r comparable with the linear size of Rt . The exponent 2 here fits

well with the experimental exponent 2.2 seen in Fig. 1.4B.

The exponent 2 above is equal to the dimension of the space in which the graph lives:

this is no coincidence. Regardless of the real rate of growth, we may reparameterize time so

that linear distances grow proportional to et . Assuming the spatial density of vertices remains

roughly constant, this means that nt grows with edt , where d is the dimension. The derivation

above is easily seen to lead to a power law with exponent d in this case.

We next turn to the typical graph distance d(v,w) between vertices of Gt , often known as

the diameter. (Note, however, that in graph theory the diameter of a graph G normally refers

to the maximum value of d(v,w), v,w ∈V (G), or, if the graph is not connected, the maximum

over pairs (v,w) with v and w in the same component of G.) For the moment we view Gt as an

undirected graph; this is not a reasonable simplification in this context, but the argument we

give for this case will apply to a related model treated as a directed graph; we return to this

later.

In any reasonable model of the cortex, although the number of vertices is very large

(around 1010), the typical degrees are also fairly large (around 104), so it is potentially the

case that most pairs of vertices are joined by a path of length 3. On the other hand, the scale-

free distribution of axon lengths (see Fig. 1.4B) shows that almost all connections have lengths
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much shorter than the scale of the whole cortex; if all connections were short, then clearly the

diameter would be very large. As is well known in graph theory (see, for example, Bollobás

and Chung [17]), a few long-range connections are often enough to bring the diameter down.

As we shall see, that is the case for the model Gt , even if the average degree is not that large.

The key observation is that among the roughly πℓ2
0 earlier vertices that a new vertex v

sends edges to, there is a distribution of ages. At any given time, the proportion of vertices

with age at least a is e−2a, so typically v will send an edge to some vertex w born around

∆ = log(πℓ2
0)/2 time units earlier than v. (Edges to vertices this old may or may not appear,

but edges to somewhat less old vertices are very likely.) Starting at a vertex v, there will

typically be a path v = v0v1v2 . . .vk where each vi is older than the previous vi by a time of

around ∆ . The sequence stops at around the time t0 where the graph first starts developing,

or, more precisely, when area(Rt0) ∼ πℓ2
0: at this point, all vertices are joined to each other.

Starting at two vertices and following two such paths, we find that typically vertices are at

graph distance at most 2(t − t0)/∆ . Now 2(t − t0) ∼ log(nt/nt0) = log(nt/(πℓ2
0)), so we find

that the diameter is approximately

diam(Gt) ∼
log(nt/(πℓ2

0))

log(πℓ2
0)/2

= 2
logn

log(πℓ2
0)

−2.

This shows that, in the regime where the average degree πℓ2
0 is constant and the number n = nt

of vertices tends to infinity, the diameter is logarithmic in n, as is to be expected. Note that

the diameter is roughly twice the value logn/ log d̄ that one would expect in a homogeneous

random graph.

The calculation presented above is a simple heuristic, but it is possible to make it precise,

using branching process methods to show that the desired paths really do exist for a large

fraction of the vertices. In the other direction, one can estimate the expected numbers of paths

of various lengths to show that the diameter is not significantly smaller than this estimate; this

should not be taken for granted: in the scale-free LCD graph of [20] (a precise version of the

Barabási–Albert model [9]), although the average degree is constant the diameter is (slightly)

sublogarithmic in n.

The exponentially expanding graph model Gt defined above incorporates one new feature

that we believe is essential in any accurate model of the neocortex, namely a development

process involving expansion in space that guides the formation of connections. So far, we

concentrated only on this one feature, but to obtain a more realistic model, some modifications

are required.

Firstly, assuming that a new vertex joins to all older vertices within distance ℓ0 leads to

unrealistically high clustering: a vertex born just before time t will be joined to most of the

other vertices within distance ℓ0; many of these will also be recent, and joined to each other.

The simplest modification to correct this is to add an additional parameter p, and consider the

model Gt(ℓ0, p) defined as above, except that a new vertex sends an edge to each older vertex

w within distance ℓ0 with probability p, independently of the other edges. The analysis above

carries over essentially unchanged to this extension, as long as the average degree πℓ2
0 p is

reasonably large. In this variant a typical (and therefore recent) vertex is joined to a fraction

O(p) of the nearby vertices, so values of p around 10−2 would be realistic.

There is a rather more natural generalization of Gt(ℓ0, p), where we replace the sharp

cutoff at distance ℓ0 by a smooth one. Most generally, we simply take a function ϕ : R
+ →

[0,1], and when a new vertex v arrives, the probability that it sends an edge to w is simply

ϕ(d(v,w)), where d(v,w) is the distance from v to w at the time that v arrives. Note that the

role of the function ϕ here is rather different from that of κ(x,y) in (1.3); taking ϕ dropping
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off sharply beyond some characteristic length, for example ϕ(r) = ϕ0e−r2/ℓ2
0 , the analysis of

Gt above carries over, and we still see power-law distribution of the edge lengths in Gt . Unlike

in the previous subsection, where this was built into the model through the choice of κ , here

it comes from the expansion.

The alert reader may have noticed that there is a much more serious problem with Gt as a

directed graph model of the neocortex: if vertices only send edges to older vertices, then there

are no directed cycles, so no feedback is possible. One possible modification is to assume that

when a new vertex v arrives, not only does v send out edges to nearby vertices w, but some

nearby w send new edges to v.

An alternative and much more satisfactory modification of the model is as follows: sup-

pose that we have a function ψ(t) defined on the positive reals, representing the rate at which

a new vertex will send out edges at time t after it is born; the most natural example is perhaps

ψ(t) = ae−bt for t > 0, with a and b positive constants. Given a function ϕ(r) as above, we

may define a new model Gt(ϕ,ψ) as follows: the vertex set evolves exactly as in the origi-

nal model Gt . Given the vertex set, in any time interval [s,s + ds] of infinitesimal length ds,

each vertex v has probability ϕ(d(v,w))ψ(a(v))ds of sending an edge to each vertex w, where

d(v,w) is the distance from v to w at time s, and a(v) is the age of v at time s. Of course, more

generally one can consider a single 2-variable function ϕ(d(v,w),a(v)), or even a function

also depending on the age of w. In all these variants a significant fraction of edges will go

from older vertices to (slightly) newer vertices, so there will be many directed cycles in the

graph.

Once again, the simple heuristic analysis above carries over in this greater generality, and

shows that the edge length distribution remains a power law with exponent 2, and the diameter

remains logarithmic in n even if the average degree is constant as n → ∞. Of course, turning

this into rigorous mathematics in this generality is likely to require considerable effort.

Of course, the exponential expansion in Gt can be combined with features present in other

models, such as the original preferential attachment mechanism of Barabási and Albert [9].

One natural formulation is to take the vertex set of Gt , but to join a new vertex v to a vertex

w with probability proportional to ϕ(d(v,w))ψ(deg(w)) for some functions ϕ and ψ , where

d(v,w) is defined as above and deg(w) is the degree (or perhaps the in-degree) of vertex w at

the time v is born. This model is much harder to analyze than the LCD model mentioned above,

but we believe that if the ‘preference function’ ψ is linear, then it will also have a power-law

degree distribution, with the exponent depending on the exact details of the model. A closely

related (but not exponentially expanding) geometric random graph model with preferential

attachment has been introduced and analyzed by Flaxman, Frieze and Vera [42]. Of course it

is not clear that power-law degree distribution is appropriate in modelling the cortex.

For future work, we believe that there are two important directions. One is the rigorous

mathematical analysis of models of the type we have described here, including the particular

model Gt(ϕ,ψ). Another, even more important, topic is the development of further models

that more accurately represent the structure of the brain, but are still simple enough to analyze.
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