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We have analysed some structural properties of scale-free networks with the same degree distribution. Departing from a degree
distribution obtained from the Barabási-Albert (BA) algorithm, networks were generated using four additional di�erent algorithms
(Molloy-Reed, Kalisky, and two newmodels named A and B) besides the BA algorithm itself. For each network, we have calculated
the following structural measures: average degree of the nearest neighbours, central point dominance, clustering coe�cient, the
Pearson correlation coe�cient, and global e�ciency. We found that di�erent networks with the same degree distribution may
have distinct structural properties. In particular, model B generates decentralized networks with a larger number of components,
a smaller giant component size, and a low global e�ciency when compared to the other algorithms, especially compared to the
centralized BA networks that have all vertices in a single component, with a medium to high global e�ciency. 
e other three
models generate networks with intermediate characteristics between B and BA models. A consequence of this nding is that the
dynamics of di�erent phenomena on these networks may di�er considerably.

1. Introduction


e degree distribution �(�), dened as the fraction of ver-
tices in the network with degree �, is an important property
of a complex network. In particular, the degree distribution
of many real world networks [1–4] was accurately tted by a
scale-free (power-law) degree distribution

� (�) ∼ �−�, (1)

where � is a scaling parameter.
A power-law degree distribution was observed, for inst-

ance, in networks of animal movements [5]. Such networks
are examples of networks whose degree distribution may be
either estimated using a questionnaire in which the number
of contacting farm holdings is assessed or through the
analysis of animal movement records. When there is a large
number of farm holdings in the network and a data bank
of animal movements is not available, we might assess the
degree distribution using a questionnaire. From the estimated
degree distribution, one may be interested in recovering
approximately the real network to simulate, for instance, the

potential spread of infectious diseases such as foot-and-
mouth disease and bovine brucellosis, for which the network
of animalmovements is an importantmeans of dissemination
[6–8]. Nevertheless, the process of recovering a possible
real network from the estimated degree distribution may
lead to a misleading inference. 
e presence of a scale-free
degree distribution does not guarantee that the recovered
network will show the same topology as the original one.
More than one method may generate a network that shows
a scale-free degree distribution, and, from these di�erent
methods, networks can emerge with di�erent structural
properties, whichmay impact the outcomes of the simulation
of dynamical phenomena on the network.

In this paper, we depart from a given degree distribution
and we show how to generate networks using di�erent algo-
rithms and the implications in the network topology of
choosing one of these algorithms to generate networks when
all you have is the network’s degree distribution.

A well-known method to generate a scale-free network is
the preferential attachment [9, 10], in which links are added
to vertices based on their degree. In this approach, a network



2 Physics Research International

is generated, and then the resulting power-law distribution
is evaluated. We use the preferential attachment approach
to generate a network with a scale-free degree distribution.
Based on this distribution, networks are generated using four
di�erent algorithms (two of themproposed for the rst time).
To qualitatively compare these networks, we calculate some of
their structural properties [11].


is paper is organized as follows. In Section 2, we discuss
the calculation and properties of the chosen parameters to
compare the networks. In Section 3, we describe the ve
algorithms used to generate the networks. In Section 4, we
show the results of the calculations of the structural measures
for the scale-free networks obtained. Finally, in Section 5, we
discuss the implications of our ndings.

2. Structural Properties

It is worth to mention that our objective is not to perform
an extensive review of all possible metrics but just highlight
some global features of di�erent networks instead. Also,
there is an unlimited set of topological measurements, and
they are o�en correlated, implying redundancy in most
of the cases [11]. We calculated the following structural
properties [11]: average degree of the nearest neighbors,
central point dominance [12], clustering coe�cient [13], the
Pearson correlation coe�cient [14], and global e�ciency [15].
Some of these parameters are related to local properties
of the networks (average degree of the nearest neighbor
and clustering coe�cient), and others are related to global
properties (central point dominance, global e�ciency, and
the Pearson correlation coe�cient). All chosen parameters
re�ect global networks’ trends and also provide a meaningful
interpretation regarding the networks’ dynamical properties.

2.1. Average Degree of the Nearest Neighbors. 
e average
degree of the nearest neighbors of a vertex �may be calculated
as

�nn,� =
∑�0�=1 �����
��
, (2)

where ��� is the element �	 of the adjacency matrix, dened as
��� = 1 if there is an edge between vertices � and 	 and ��� = 0,
otherwise.
e average degree of the nearest neighbors checks
for correlations between the degrees of di�erent vertices. If
there are no correlations, �nn(�) is independent of �. When
�nn(�) is an increasing function of �, vertices of high degree
tend to connect with vertices of high degree, and the network
is classied as assortative, whereas whenever �nn(�) is a
decreasing function of �, vertices of high degree tend to
connect with vertices of low degree, and the network is called
disassortative [11].

2.2. Clustering Coe�cient. 
e clustering coe�cient (CC) for
undirected networks may be calculated using the following
denition [1, 13]:

CC = ∑CC�
 ,
(3)

where CC� is dened as:

CC� =
2

�� (�� − 1)
∑
�,�
���������, (4)

and
 is the total number of vertices in the network.
CC re�ects the network’s tendency to group together

nodes with common links, thus raising the number of trian-
gles found inside the network.

2.3. Central Point Dominance. 
e central point dominance
(CPD) [12] is a measure related to the betweenness centrality
of the most central vertex in a network. Its value is 0 for
networks in which the betweenness centralities of all vertices
are equal and 1 for the wheel or star network. 
e equation
for the CPD is [12]

CPD = ∑
�
�=1 (�max − ��)

 − 1 , (5)

where �max and �� are, respectively, the largest values of the
relative betweenness centrality in the network and the relative
betweenness centrality of vertex �. 
e relative betweenness
centrality is the ratio between the betweenness centrality of

a vertex and its maximum possible value, (
2 − 3
 + 2)/2,
which corresponds to the betweenness of the central vertex
in a star network.

CPD re�ects an important network characteristic, which
is the network’s dependence on specic vertices to maintain
its information �ow.Networks with higher values of CPD rely
on fewer vertices to pass their information to other vertices,
while networks with lower values of CPD have their �ow and
pathways distributed in a more decentralized way, thus being
more resilient to random vertices removal.

2.4. Global E�ciency. 
e global e�ciency (GE) is a mea-
surement that quanties the e�ciency of the network in send-
ing information between vertices, dened as [15]

GE = 1

 (
 − 1)∑� ̸= �

1
���
, (6)

where ��� is the shortest path length between vertices � and
	. Networks with high GE can send information much faster
and to a larger number of vertices than networkswith lowGE.

2.5. Correlation Coe�cient. A detailed denition for the cor-
relation coe�cient (�) may be found in [14]. Basically, it
is simply the Pearson correlation coe�cient between the
degrees at either ends of an edge, consisting of another way to
determine the degree correlation, besides the average degree
of the nearest neighbors.

3. Algorithms

To guarantee that all the networks generated follow the same
degree distribution, allowing comparisons between them,
we have rstly generated a network following the Barabási-
Albert (BA) algorithm, and then we have applied the other
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algorithms to generate networks based on the degree distri-
bution of the BAnetwork.Due to the growth process inherent
in the BA algorithm, it would be di�cult or even impossible
to generate a BA network from a given �(�) distribution.

For the sake of completeness, we describe below all the
algorithms used.

3.1. Barabási-Albert Model. 
e algorithm of the Barabási-
Albert model, described in [9], is the following.

(1) We start with a disconnected set of�0 vertices.
(2) At each time step, a new vertex with�(< �0) edges is

added, linking the new vertex to � di�erent vertices
already in the system.

(3) When choosing the vertices to which the new vertex
connects, we assume that the probability that a new
vertex will be connected to vertex � depends on the
degree �� of vertex � (preferential attachment), such
that

� (��) =
��
∑�0�=1 ��
. (7)

We have used the BA algorithm implemented in the
igraph package of the � Statistical So�ware [16].

3.2. Molloy-Reed Model. To generate networks using the
Molloy-Reed (MR) model, we have used the following algo-
rithm.

(1) For each vertex, we choose a degree from the distri-
bution.

(2) At each time step, we connect randomly a pair of
vertices, taking into account that the probability of
selecting a vertex is directly proportional to the num-
ber of its open connections, dened as the number of
remaining links [17].

(3) 
e previous step is repeated until there are no more
open connections.

In this version of the MR algorithm, multiple edges are
ignored, self-edges are not allowed, and open connections
may be discarded if there is only one vertex remaining.

3.3. Kalisky Model. 
e algorithm proposed by Kalisky et al.
[17] is based on the MR model. 
e aim of the Kalisky
algorithm is to force a hierarchy on the MR model, dening
layers in the graph, as follows.

(1) A degree is assigned to each vertex.

(2) We start from themaximal degree (�) vertex, which is
connected to � open connections. 
e set composed
by this vertex and its neighbors is the rst layer of
vertices.

(3) 
e second layer is lled out in the same way: we con-
nect all open connections emerging from vertices in
the rst layer to randomly chosen open connections.

(4) 
is process continues until the set of open connec-
tions is empty.

3.4. Model A. In this algorithm, called herea�er as Model
A (MA), the vertices are randomly sampled from a list of
vertices with available links. 
e algorithm is as follows.

(1) We choose the vertexwith the highest available degree
(ℎ) in the network (in the rst step, this is the vertex
with the maximum degree).

(2) We connect that vertex with ℎ other vertices, ran-
domly selected from a list with available vertices, thus
exhausting the links of the chosen vertex.

(3) Steps (i) and (ii) are repeated until there are no more
vertices with open connections.

3.5. Model B. In this algorithm, called herea�er as Model B
(MB), a vector, whose elements are the degrees of all vertices
obtained from the BA degree distribution, is randomly gen-
erated. 
en, the vertices are selected in sequence, following
the order of the vector elements. 
e algorithm is as follows.

(1) We choose the vertexwith the highest available degree
(ℎ) in the network (in the rst step, this is the vertex
with the maximum degree).

(2) We connect that vertex with the rst ℎ other vertices
of the generated vector, thus exhausting the links of
the chosen vertex.

(3) Steps (i) and (ii) are repeated until there are no more
vertices with open connections.

We stress that the last twomodels (MAandMB) automat-
ically avoid the generation of multiple edges and self-edges.
MA generates networks with vertices connected randomly,
starting the connection process with the hubs, while an
interesting feature of MB is that it generates networks in
which every hub is connected to the other hubs. As far as we
know, these two algorithms have not been proposed before.


e computer codes used to generate the networks are
available upon request. For making the codes freely available,
we implemented the algorithms using the � Statistical So�-
ware [18], along with the Matrix package [19].

4. Results

Figure 1 shows the scale-free networks generated using
the algorithms by Barabási-Albert (Figure 1(b)), Molloy-
Reed (Figure 1(c)), Kalisky et al. (Figure 1(d)), Model A
(Figure 1(e)), Model B (Figure 1(f)), and the corresponding
degree distribution �(�) (Figure 1(a)) based on an original
network generated using the BA model with �0 = 1000
vertices and adding, at each time step, a new edge between
two vertices (� = 1). Figure 2 shows the generated networks
and the degree distribution for � = 2. We have used the
Kamada-Kawai visualization algorithm implemented in the
� “network” package [20].

We notice in Figure 1 that the BA network has only one
component, while the other models generate networks with
several components. For � = 1, this behavior may be
observed in Figure 3. For � = 2, however, all models tend
to generate only one giant component, with the exception
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Figure 1: Network generated using the BA model with �0 = 1000 vertices and � = 1 (b) and corresponding degree distribution (a), from
which the other scale-free networks were derived using the following algorithms: (c) MR model, (d) Kalisky model, (e) model A, and (f)
model B.

of MB, which generates a larger number of components
(Figure 3).

To assess the assortativity of the di�erent networks, we
analyzed the average degree of the nearest neighbors of
vertices with degree �, ⟨�nn⟩, as a function of � for networks
with 103 vertices and � = 1 or � = 2 (Figure 4). We have

also analyzed networks with 102, 103, and 104 vertices with
� = 2 and � = 3, but the qualitative results were similar. As

a general behavior, the algorithms used provide disassortative
mixing. 
e exception is the network generated using MB
(Figures 4(e) and 4(j)), for which an assortative mixing is
observed for degrees up to a critical value (between 10 and
15), followed by a disassortative mixing onwards.

Probably due to a high level of redundancy in the giant
component, for � = 1, the median clustering coe�-
cient for the MB network (0.08) is higher than the values
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Figure 2: Network generated using the BA model with �0 = 1000 vertices and � = 2 (b) and corresponding degree distribution (a), from
which the other scale-free networks were derived using the following algorithms: (c) MR model, (d) Kalisky model, (e) model A, and (f)
model B.

observed for the others (Figure 5(a)). Due to the topology
of the BA network for � = 1, in which no triangles are
observed, the CC is zero as expected. For all networks,
both the median and the interquartile range of the CC
increase for � = 2. 
e higher median CC values (around
0.12) were observed for the BA, Kalisky, and MB net-
works.

In Figure 5(b), we notice that the CPD is lower for the
MB networks and higher for the BA networks (for � = 1).
Moreover, the CPD values are higher for networks related to
� = 2 when compared with the networks generated using
� = 1. 
e exception is the BA network, for which the
addition of edges probably reduces the betweenness centrality
of the hubs, reducing the CPD value.



6 Physics Research International

0

250

500

750

1000

BA MR Kalisky MA MB

A
ve

ra
ge

 s
iz

e 
o

f 
co

m
p

o
n

en
ts

m
=
1

m
=
2

m
=
1

m
=
2

m
=
1

m
=
2

m
=
1

m
=
2

m
=
1

m
=
2

(a) Average Size of Components

0

75

150

225

300

N
u

m
b

er
 o

f 
co

m
p

o
n

en
ts

BA MR Kalisky MA MB

m
=
1

m
=
2

m
=
1

m
=
2

m
=
1

m
=
2

m
=
1

m
=
2

m
=
1

m
=
2

(b) Number of Components

Figure 3: Boxplots for the (a) average size and (b) number of components for 100 di�erent networks with 1000 vertices each and � = 1 or
� = 2.
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Figure 4: Boxplots for the average degree of the nearest neighbors ⟨�nn⟩ as a function of the degree of a given vertex for 100 di�erent networks
with 1000 vertices and� = 1 ((a)–(e)) or� = 2 ((f)–(j)).

In Figure 5(c), we notice that the network generated using
MB is clearly less e�cient than the other networks due to its
higher number of small components (Figure 3). On the other
hand, for� = 1, the BA network has the highest median GE
(0.08), probably because in this network there is always only
one component. However, the number of components is not
the only factor in�uencingGE, since BA network has a higher

GE for � = 2 than for � = 1, showing that the number of
links also has a major impact in GE, as expected. Also, for
� = 2, as we can see in Figure 3, with the exception of the
MB network, all the networks have only one component and
a similar GE (median of 0.15).

Estimates of the correlation coe�cient for the di�erent
types of networks are shown in Figure 5(d). For � = 1, we
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Figure 5: Boxplots of the following structural measures for 100 networks with 1000 vertices and � = 1 or � = 2: (a) clustering coe�cient,
(b) central point dominance, (c) global e�ciency, and (d) correlation coe�cient.

may notice that positive values were mainly observed in the
MB network. 
is nding is consistent with the analysis of
the ⟨�nn⟩, since negative correlation coe�cients were found
for the networks with a disassortative mixing pattern. For
� = 2, negative values for the correlation coe�cient were
also observed for the MB network.

Table 1 summarizes the results of the average number of
components and the average size of the giant component
(in percentage of the entire network) for the ve models.
Comparing the models, the extreme cases are the MB and
the BA networks: the MB networks show a larger number of
components, a smaller giant component size, and a very low
(for � = 1) to low (for � = 2) GE and CPD; while the BA
networks have only one component, medium (for � = 1)

to high (for � = 2) GE, and very high (for � = 1) to very
high (for � = 2) CPD. 
e other three models analyzed
generate networks with intermediate characteristics between
MB and BA models but approaching the BA model when
� = 2. In particular, for � = 2, regarding the average
number of components, theMAnetworks are closer to the BA
networks. MR and Kalisky networks show similar number of
components and giant component size.

5. Concluding Remarks

We have implemented di�erent algorithms that generate
networks from a given degree distribution. As we show in the
sequel of this paper [21], it is possible to generate the networks
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Table 1: Average number of components, average size (in percentage of the entire network) of the giant component (GC), and categorical
classications for GE (high: GE > 0.12; medium: 0.12 > GE > 0.05; low: 0.05 > GE > 0.01; very Low: GE < 0.01) and CPD (very high:
CPD > 0.7; high: 0.7 > CPD > 0.4; medium: 0.4 > CPD > 0.2; low: 0.2 > CPD > 0.1; very low: CPD < 0.1).

BA MR Kalisky MA MB

� = 1 � = 2 � = 1 � = 2 � = 1 � = 2 � = 1 � = 2 � = 1 � = 2
No. components 1.00 1.00 140.39 1.05 136.29 1.14 70.43 1.01 303.08 112.20

GC size (%) 100.00 100.00 67.00 100.00 69.00 100.00 80.00 100.00 17.00 36.00

E�ciency (GE) Medium High Medium High Medium High Medium High Very low Low

Dependence (CPD) Very High High Medium High Medium High Medium High Very low Low

using the algorithms and then simulate the dynamics of an
infectious disease on these networks. An important nding
of [21] is that the simulations for the susceptible-infected-
susceptible (SIS) infectious diseases models show that the
disease prevalence in MB networks is lower than in the other
networks, whichmay be related to theMB network structure,
in which a large set of vertices are not connected to the main
component of the network.

Regarding the results observed, an aspect that calls
attention is that the network generated using algorithm MB
di�ers (by visual inspection) from the networks generated
using the other models. In fact, the MB algorithm generates
a network with a larger number of components and a smaller
giant component size, if compared to the other algorithms, as
shown in Table 1 and Figure 3.


e MB networks show lower CPD and global e�ciency
values, and assortative mixing for low degree values when
compared to the other networks. 
ese properties are prob-
ably a consequence of the distribution of components in the
MB network, with one giant component and a large number
of small components. On the other hand, for � = 1, the
BA networks show the higher CPD and global e�ciency
median values, possibly re�ecting the existence of only one
component in these networks. For� = 2, a similar comment
applies to all models with the exception of MB.

Based on the ndings presented in this paper, we may
hypothesize that, based only on the observed degree distribu-
tion�(�), itmaynot be possible tomake an accurate inference
about some structural properties of the network. A conse-
quence of this remark is that di�erent scale-free networks
(and possibly other types of networks, except lattice and
similar networks)with the same degree distributionmay have
distinct structural properties so that the dynamics of di�erent
phenomena on these networks may di�er considerably.

Di�erent algorithms may be invented to generate net-
works from a given degree distribution. Provided that a net-
work is generated, sets of vertices may be rearranged to
increase or decrease the components’ sizes. In this paper, we
analyzed ve specic algorithms, ranging from the BAmodel,
which always generates a networkwith a single component, to
theMB algorithm, which can generate a network with several
components, and with three other intermediate cases. 
e
e�ects of our ndings are clearly evident, with one model
(MB) giving decentralized and low e�cient networks and
another one (BA) giving networks much more e�cient and
centralized, with three cases in the middle, all of which with
exactly the same degree distribution.

Aword of caution is in order: when generating a scale-free
network from a given degree distribution, researchers should
state and, if necessary, describe clearly which algorithm
was used. Otherwise, from the same �(�), the simulation
of dynamical phenomena can result in di�erent outcomes
depending on the algorithm used to generate the network.


us, for those interested in applying questionnaires to
infer the network structure, based only on the degree dis-
tribution, it is possible to estimate the average degree, the
degree variance and other moments of the statistical distri-
bution, that is, properties that derive directly from the degree
distribution, but it is not possible to infer the dynamical
properties. If the interest is to analyse dynamical processes
on the network, the degree distribution is not enough, it is
necessary to have the adjacency matrix. In other words, it is
necessary to know the links within the network.
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