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Abstract

Scale free graphs have attracted attention as their non-uniform structure
that can be used as a model for many social networks including the WWW
and the Internet. In this paper, we propose a simple random model for gen-
erating scale free k-trees. For any fixed integer k, a k-tree consists of a
generalized tree parameterized by k, and is one of the basic notions in the
area of graph minors. Our model is quite simple and natural; it first picks a
maximal clique of size k + 1 uniformly at random, it then picks k vertices
in the clique uniformly at random, and adds a new vertex incident to the k
vertices. That is, the model only makes uniform random choices twice per
vertex. Then (asymptotically) the distribution of vertex degree in the resul-
tant k-tree follows a power law with exponent 2+1/k, the k-tree has a large
clustering coefficient, and the diameter is small. Moreover, our experimen-
tal results indicate that the resultant k-trees have extremely small diameter,
proportional to o(log n), where n is the number of vertices in the k-tree, and
the o(1) term is a function of k.

Key words: scale free graph, small world network, clustering coefficient,
k-tree, Apollonian network.

1 Introduction
Small world networks are the focus of recent interest because of their potential
as models for interaction networks of complex systems in real world since early
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works by Watts & Strogatz [12] and Barabási & Albert [1]. Connected graphs
with a power law degree sequence (SF), high clustering coefficient (CC) and low
diameter (SW) are said to be small world networks or scale free networks (see,
e.g., [10]). In more detail, these properties are as follows:

(SF) The degree distribution of G follows a power law distribution. That is, the
number of vertices of degree i is proportional to iα for some fixed α. It is
known that α is between 2 and 3 in real social networks.

(CC) Two neighbors of any node of G are also likely to joined by an edge. More
precisely, the clustering coefficient CC(v) at v is defined as follows:

CC(v) =
|{u ∼ w : u,w ∈ N(v)}|(

d(v)
2

) ,

where u ∼ w means that they are joined by an edge. The clustering coeffi-
cient CC(G) of the graph G is the average clustering coefficient CC(v) for
all vertices v in G.

(SW) Any two nodes of G are connected by a relatively short path.

The possibility of generating small world networks using discrete random graph
processes has been studied by many authors and in many contexts. The study
of such processes dates back at least, to Yule [14] in 1924. Many models of
such process exist. For details see, for example, the surveys [5, 9] and the mono-
graph [2]. Interest in such models in computer science follows from the work of
Barabási and Albert [1] who observed a power law degree sequence for a sub-
graph of the World Wide Web, and of Faloutsos, Faloutsos and Faloutsos [7] who
observed power law behavior for the internet graph. Small world networks have
many of the properties required by peer-to-peer (P2P) networks. P2P networks are
by nature decentralized, and the possibility to structure such networks randomly
is attractive.

The results of this paper are as follows. In Theorem 1 we obtain the precise
expressions for the expected number of vertices of degree i for any feasible i as a
function of k; and give the associated power law. We also obtain a precise estimate
of the expected clustering coefficient, as a function of k. This allows a value of k
to be chosen to give the required clustering coefficient. The precise dependence
of the diameter on the value of k is unknown. We give an experimental study of
this dependence.
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We assume that the reader is familiar with the notion of probability and graph
theory. In this paper we prove Theorem 1, briefly discuss Theorem 2 and give
experimental results supporting Theorem 1 and our hypothesis regarding diameter.

We believe the random k-tree model analyzed in this paper is interesting for
several reasons. The model satisfies all three small-world properties (SF), (CC),
and (SW). Many random processes have properties (SF) and (SW), and some have
(CC) and (SF), for example see the discussion below for [11]. Few models, except
the one we propose, enjoy all three properties. In real life, a network based on k-
trees (for large k) is particularly attractive as it is locally highly connected, and
thus robust under edge and vertex failure. Moreover, simulations suggest that the
diameter is O(log n/ log k) where n is the network size. The model is easy to
generate, and our simulations (see Section 5) suggest that the properties of the
model are achieved by quite small instances. The model can easily be extended
to give a formal analysis of a random instance of a packing process known as an
Apollonian network. Previously only a mean field analysis of random Apollonian
networks has been made [8, 15].

Recently, Shigezumi et al. [11] also proposed a model of scale free graphs
which satisfies the two properties (SF) and (CC) with high probability. Their
model, based on time sequential data, the scale free interval graph, employs in-
terval graphs as basic graphs. A graph is an interval graph if and only if there
is a one-to-one mapping between vertices and intervals such that two vertices
are joined by an edge if and only if the corresponding intervals share a common
point. In their model, each vertex in the graph corresponds to a time period, and
its lifespan is determined by a simple rule: longer life tends to survive in the next
generation.

2 Random k-trees, model and results
In the area of graph algorithms, k-trees form a well known graph class that gener-
alizes trees and plays an important role in graph minor area (see [3, 4] for further
details). There are several equivalent definition of k-trees, and we employ one of
them as follows; for any fixed positive integer k,
(0) a complete graph Kk of k vertices is a k-tree,
(1) for a k-tree G of n vertices, a new k-tree G′ of n + 1 vertices is obtained by
adding a new vertex v incident to a clique of size k in G.
We note that a complete graph Kk+1 of k+1 vertices is a k-tree, which is obtained
by adding a vertex to Kk.
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For each time t = 1, 2, . . ., our model is an algorithm that generates a sequence
of k-trees of k + t vertices as follows.

Algorithm 1: Generation of k-trees
Input : Positive integer k.
Output: A series of k-trees Gk(1), Gk(2), . . ..
begin1

t = 1; let Gk(t) be Kk+1; output Gk(t);2

for t = 2, 3, . . . do3

pick Dt = Kk+1 from Gk(t − 1) uniformly at random with4

probability 1
t−1

;
pick ft = Kk from Dt uniformly at random with probability 1

k+1
;5

let Gk(t) be the graph obtained from Gk(t − 1) by adding a new6

vertex vt incident to every vertex in ft;
output Gk(t);7

end8

end9

By the definition, it is clear that Gk(t) is a k-tree of k + t vertices. We remark that
the algorithm only makes two uniform random choices at each step t.

Let X(t) be a random variable, and X(t) = EX(t) be its expectation, then
limt→∞ X(t)/t is the limiting expected proportion of X(t). The limiting expected
clustering coefficient c(k) is defined by

c(k) = lim
t→∞

ECC(Gk(t)).

Our first theorem states that the simple combination of two uniform random choices
makes a scale free k-tree with properties (SF) and (CC).

Theorem 1 Let k ≥ 2. For a graph Gk(t), we denote by ni the number of vertices
of degree i. Then the graph Gk(t) has the following properties.

1. The limiting expected proportion ni of vertices of degree i = k + ` − 1 is
given by

nk+`−1 =
(` − 1)!k`−1(k + 1)∏
j=1...`((j + 1)k + 1)

. (1)

This expression has power law asymptotic

ni ∝ i−(2+ 1
k
). (2)
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2. The limiting expected clustering coefficient c(k) is given by

c(k) =
∑
`≥1

(
k
2

)
+ (k − 1)(` − 1)(

(k−1)+`
2

) (` − 1)!k`−1(k + 1)∏
j=1...`((j + 1)k + 1)

. (3)

We have c(k) ≥ 1/2 for k ≥ 2, and c(k) → 1 if k → ∞.

We give a short combinatorial proof of this theorem, and also the following the-
orem for the finite process Gk(t), which states that our model also has the small
world property (SW). This is an advantage compared to the scale free interval
graphs of [11]; their model generates scale free interval graphs of n vertices with
diameter Θ(n).

We say that a sequence of events Et occurs with high probability (whp) if
limt→∞ Pr(Et) = 1.

Theorem 2 The following properties hold whp

1. Let N (i, t) denote the number of vertices of degree i in Gk(t). Then N (i, t) =
tni(1 + o(1)) for i ≤ ta, where a is some positive constant.

2. CC(Gk(t)) = c(k)(1 + o(1)).

3. The diameter of Gk(t) is O(log t).

We also study k-trees of finite size experimentally. We show that the resul-
tant k-tree has a very strong small world property (SW). The experimental results
indicate that the diameter of the resultant k-tree of n vertices is proportional to
o(log n), as k increases, and we conjecture a diameter of O(log n/ log k).

Finally we mention a connection with Apollonian networks. Processes related
to the one we consider have been studied in the context of Apollonian packing
by e.g. [8, 15]. In the Apollonian model, a random k-clique which has never
previously been selected is extended to a k + 1-clique by adding an extra vertex.

In [15], the evolution of degree of a given vertex is approximated using mean
field theory. The authors show that, for k ≥ 3 the degree sequence follows a
power law with coefficient 2 + 1/(k − 2).

We note that the power law coefficient 2+1/(k−2) for the random Apollonian
model differs from the value of 2 + 1/k obtained for our model. For example, a
power law of 3 is obtained in our model when k = 1, by choosing a random
endpoint of a random edge. Indeed, this is the preferential attachment model of
[1]. In the Apollonian model a power law of 3 occurs when k = 3, i.e., when the
network grows by subdividing a triangular face.
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3 Proof of Theorem 1
To prove the theorem, we first show the following lemma:

Lemma 1 Let vt be the vertex added to Gk(t) at time t. For any t′ ≥ t, let ` be
the number of Kk+1 that contain vt. Then the clustering coefficient at vt in Gk(t

′)
is

CC(vt) =

(
k
2

)
+ (k − 1)(` − 1)(

(k−1)+`
2

) .

Proof. Suppose that at time t > 1, we add a vertex vt and join it to each vertex
u1, . . . , uk in the clique ft of size k chosen in step 5 in the clique Dt of size k + 1
chosen in step 4. Then Gk(t) contains k + t vertices. We call each induced clique
Kk in Gk(t

′) a face of Gk(t
′), and define the degree of a face f by the number of

Kk+1 containing f , that is denoted by degt′(f). At time t, we add a new clique
Q = Kk+1 by joining vt to an existing face ft. Thus degt(ft) = degt−1(ft) + 1
since ft is in Q.

We define face degree Degt′(v) of a vertex v by the total face degree of all
faces incident with v. That is, Degt′(v) =

∑
v∈f degt′(f). Initially, when vt is

added at time t, Degt(vt) = k as there are k faces containing vt, i.e., Q = Kk+1

contains k Kk subgraphs with distinguished vertex v (delete any of the k edges
incident with v). Extending a face f to Kk+1 adds one to deg(f) (since it is now in
an extra Kk+1) and k − 1 extra faces at vt of face degree 1. Thus Degt′(vt) = k`,
where ` is the number of Kk+1 that contain vt.

At time t′, we denote the set of neighbors of v by Nt′(v), and define dt′(v) =
|Nt′(v)| (that is, dt′ is the ordinary degree of v in Gk(t)). When vt is added to
Gk(t), we have dt(vt) = Degt(vt) = k. Each time a face containing vt is extended
the face degree of vt increases by k, but the vertex degree of vt only increases by

1. Hence dt′(vt) = (k − 1) +
Deg

t′ (vt)

k
.

Now we define triangle degree ∆v of v by the number of K3 in the subgraph
induced by {v} ∪ N(v). That is, CC(v) is given by ∆v

(d(v)
2 )

. Initially, when vt is

added to Gk(t) it is contained in a unique Kk+1(= Q), and the k edges incident
at v induce

(
k
2

)
triangles. Suppose face ft = Kk, incident with vt, is extended

to a Kk+1 at step t′. Face f already has k − 1 edges vui with i = 1, . . . , k − 1,
each of which will form a new triangle (vt′vt, vt′ui, vtui) with the new vertex
vt′ . Thus ∆vt =

(
k
2

)
+ (k − 1)(dt′(v) − k). Therefore if Degt′(vt) = k` then

dt′(vt) = (k − 1) + ` and ∆vt =
(

k
2

)
+ (k − 1)(` − 1). Since CC(vt) =

∆vt

(d(vt)
2 )

,

the lemma follows. 2
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We now turn to the clustering coefficient of a graph Gk(t), which is defined
by CC(Gk(t)) =

∑
v

CC(v)
k+t

. Let f`k be the limiting proportion of vertices of face
degree `k and nk−1+` the limiting proportion of vertices of degree k−1+ `. Then
we have f`k = nk−1+` and hence

lim
t→∞

CC(G(t)) =
∑
`≥1

f`k

(
k
2

)
+ (k − 1)(` − 1)(

(k−1)+`
2

) . (4)

Next we analyze f`k:

Lemma 2
f`k =

(` − 1)!k`−1(k + 1)∏
j=1...`((j + 1)k + 1)

. (5)

Proof. For t ≥ t′, the relationship between vertex degree and face degree of a

vertex vt′ is given by dt(vt′) = (k − 1) +
Deg

t
(vt′ )

k
. Thus it suffices to study face

degree Degt(vt′) of the vertices vt′ of Gk(t).
Let F i(Gk(t)) be the number of vertices of face degree i in Gk(t) at the end

of time t, and let Fi(t) be its expected value.
Recall that we make Gk(t + 1) from Gk(t) by picking a Dt+1 = Kk+1 uni-

formly at random from Gk(t) with probability 1
t
, and then picking a face ft+1 =

Kk uniformly at random from Dt+1 with probability 1
k+1

. This process in fact
picks faces proportional to their degree. This can be seen as follows. Suppose
face f has degree i and thus occurs in i distinct Kk+1. Then

Pr(f is chosen) =
i

(k + 1)t
.

Similarly, Pr(face incident with v chosen) =
Deg

t
(v)

(k+1)t
.

On adding vertex vt+1, the number of vertices of face degree i is updated as
follows:

F i(Gk(t + 1)) = F i(Gk(t)) + 1(i = k) +
∑

Deg
t
(v)=i−k 1(v is in chosen face)

−
∑

Deg
t
(v)=i 1(v is in chosen face),

where 1(H) is the indicator for the event H . On taking expectations over the
random choices made by the process on the given graph Gk(t), we obtain

Fi(Gk(t + 1)) = F i(Gk(t)) +
(i − k)F i−k(Gk(t))

(k + 1)t
− i F i(Gk(t))

(k + 1)t
+ 1(i = k).
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On taking expectations over all processes Gk(t), we obtain the following recur-
rences, which are valid for i = `k, ` ≥ 1.

Fk(t + 1) = Fk(t) + 1 − kFk(t)

(k + 1)t

Fi(t + 1) = Fi(t) +
(i − k)Fi−k(t)

(k + 1)t
− iFi(t)

(k + 1)t
(i > k).

Now we use the following lemma on real sequences [6, Lemma 3.1]:

Lemma 3 ([6, Lemma 3.1]) If (αt), (βt) and (γt) are real sequences satisfying
the relation

αt+1 =

(
1 − βt

t

)
αt + γt,

where limt→∞ βt = β > 0 and limt→∞ γt = γ, then limt→∞
αt

t
exists and equals

γ
1+β

.

Using Lemma 3, we have

lim
F`k(t)

t
=

(` − 1)!k`−1(k + 1)∏
j=1...`((j + 1)k + 1)

= f`k.

2

Theorem 1(i) now follows Lemma 2, and taking the limit of equation (5) gives
the claimed power law. Theorem 1(ii) follows from inserting equation (5) into
relationship equation (4). It can be seen directly that for k ≥ 2, c(k) ≥ 1

2
. For the

value of c(k), when k → ∞, we see that

c(k) →
∑
`≥1

1

`(` + 1)
=

∑
`≥1

(
1

`
− 1

` + 1

)
= lim

`→∞

(
1 − 1

` + 1

)
= 1.

4 Proof of Theorem 2
We give a brief outline of the proof. Recall that F i(Gk(t)) be the number of
vertices of face degree i in Gk(t) at the end of time t. The whp convergence
of F i(Gk(t)) to fit(1 + o(1)) can be established by standard methods e.g. [13].
This holds for i ≤ ta, where a is some positive constant. This establishes that the
proportion of vertices of degree i in the finite process Gk(t) is close to its limiting
value. The value of the clustering coefficient follows directly from this.

8



As regards the diameter, a crude calculation suffices to establish a whp upper
bound of O(log t). Consider a shortest (edge) path vt, u1, ..., ui, v0 back from vt

to a root vertex v0 in G1(t). As half of the Kk+1 in Gk(t) were added by time t/2,

Pr(vt chooses a face f in Gk(t/2)) =
degt(Gk(t/2))

(k + 1)t
≥ 1

2
.

Thus the expected distance to the root must be (at least) halved by the edge vtu1.
Whatever the label s of u1 = vs, this halving occurs independently at the next
step. This must terminate whp after c log t steps, for some suitably large constant
c, as we now prove.

Let Zi be an indicator variable for the event that the distance to the root halves
at step i, (conditional on not being at the root), or Zi = 1 identically, if we have
arrived at the root. Then Pr(Zi = 1) ≥ 1/2, and Sj = Z1 + · · ·+Zj stochastically
dominates the binomial random variable B ∼ Bin(j, 1/2). As Pr(B < j/4) =
O(e−j/16), then after j = c log2 t steps, where c > 4 we conclude whp that we
have arrived. Thus whp DIAM(Gk(t)) = O(log t).

5 Experimental Results
Algorithm 1 can be implemented easily. In this section, we give experimental
results for the three properties (SF, CC, SW) of our model. The properties (SF)
and (CC) were checked on a standard PC. To check the diameter property (SW)
for large n we used a supercomputer (SGI Altix 4700: 96 Processors with 2305GB
Memory).

Property (SW) This property implies that any two nodes on the network is con-
nected by a relatively short path. The experimental results are shown in Figure 1.
The figure implies that any pair of two nodes in a scale free k-tree of n vertices
in our model seems to be joined by a very short path, possibly even of length
O(log n/ log k). To observe this, we also plot the number of vertices and the value
of (diameters× log k) in Figure 2. From these experimental results, we conjecture
that the diameter of a random k-tree is proportional to Θ(log n/ log k).

Property (SF) As shown in Theorem 1(1), the distribution of degrees follows
power law on the resultant k-tree in asymptotically. The experimental results
imply that convergence to the asymptotic degree distribution occurs rapidly. In
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Figure 3, we randomly generate a k-tree of n = 100000 vertices for k = 3, 5 and
10.

Property (CC) As shown in Theorem 1(2), the limiting expected clustering co-
efficient c(k) converges to 1 for sufficiently large k. In Figure 4, we generate
k-tree of n = 10000 vertices and note the convergence to the asymptotic result.

6 Conclusions
The model of random k-trees we propose exhibits small world properties of scale-
free degree sequence, large clustering coefficient and small diameter. The model
is closely related to Apollonian networks, and is easily extended to provide a
formal analysis of random Apollonian networks. We also suggest the study of a
more general model which allows the construction of partial k-trees. This would
be achieved by modifying step 6 of Algorithm 1.

It would be interesting to establish the precise diameter D as a function of k.
At present we have D = O(log n), with high probability, for an n vertex network.
It seems reasonable to suppose that D = O(log n/f(k)) where f(k) → ∞ with k.
On the basis of simulations it seems the diameter is at most of order log n/ log k.
The exact functional form of f(k) is, however, unknown to us.
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